SYNTHESIS OF COUMARIN DERIVATIVES: A GREEN PROCESS

Reshu Chaudhary[a] and Monika Datta[a]**

Keywords: coumarin, solvent free condition; heteropoly acids, bentonite

Coumarins are an important class of organic compounds having biological activities. In the present work coumarin derivatives have been synthesized under solvent free conditions from substituted phenols and ethyl acetooacetate in the presence of catalysts. A catalyst based on clay and heteropoly acid has been synthesized and found to be a potential catalyst for synthesis of coumarin derivatives.

Corresponding Authors
Tel: +919811487825
E-Mail: monikadatta_chem@yahoo.co.in
[a] Department of Chemistry, University of Delhi, Delhi-110007

Introduction

Coumarins are an important class of compounds because a large number of natural product contains this heterocyclic nucleus. They have a wide variety of biological activities i.e. fluorescence sensors,1 brightening agents,2 anticoagulants,3 insecticides4 etc. coumarins can also be synthesized and the method should be simple, efficient and cheap because of diverse biological activities. There are many ways of synthesizing the coumarin such as knoevenegal condensation 5, claisen rearrangement,6 Perkin reaction,7 pechmann reaction8 etc. using a wide variety of reagents like H2SO4,9 HClO4,10 P2O5,11 ionic liquids12 and solid acid13,14 catalysts. Most of the reports are on the synthesis of coumarin derivatives having electron releasing groups and these methods also have the disadvantage of long reaction time and low yield.15,16

Using our methodology i.e. phosphotungstic acid (a heteropoly acid) intercalated bentonite coumarin derivatives having electron withdrawing groups can be synthesized with high efficiency and yield in a very short time.

Heteropoly acids are very well known solid acid catalysts. Heteropolyacids (HPAs), also known as polyoxometalates (POMs), are early-transition-metal oxygen anion clusters that exhibit very interesting properties depending on their molecular size, composition, and architecture.15-19 They are stronger acids than conventional acid catalysts. Being stronger acids, heteropoly acids will have significantly higher catalytic activity than conventional catalysts such as mineral acids, mixed-oxides, zeolites, etc. Their excellent thermal stability20 also makes HPAs good candidates for application in catalysts and sensors that may require extreme environments. In particular, in organic media, the molar catalytic activity of heteropoly acid is often 100–1000 times higher than that of H2SO4.21-23 This makes it possible to carry out the catalytic process at a lower catalyst concentration and/or at a lower temperature. Further, heteropoly acid catalysis lacks side reactions. Moreover solid acids offer many advantages by their nature, over soluble counterparts such as aluminium chloride and hydrogen fluoride. The substitution of liquid acids by solids as catalysts for organic synthesis offers a potential for superior effectiveness and environmental integrity. Although they differ in structure from liquid acids, solid acid catalysts work by the same principle. Clays have also been proposed as suitable catalysts for this purpose.24-26 Today clays are important materials with a large variety of applications such as adsorbents, decoloration agents, ion exchangers, and catalysts.27 The use of clays, as heterogeneous catalysts, offers many advantages over homogeneous acid catalysts such as ease of separation, mild reaction conditions, better selectivity of the desired product, and elimination of waste disposal problems. In a large number of organic reactions clays have been used as catalysts on laboratory/industrial scales. Properties of clays can be further improved by making pillared clays. Pillared clays are clays with high permanent porosity obtained by separating the clay sheets by a molecular prop or pillaring agent. These pillaring agents can be organic, organometallic, or inorganic complexes. Pillared clay (PILC) possesses several interesting properties, such as large surface area, high pore volume and tunable pore size (from micropore to mesopore), high thermal stability, strong surface acidity and catalytic active substrates/metal oxide pillars. These unique characteristics make PILC an attractive material in catalytic reactions. It can be made either as catalyst support or directly used as catalyst.28-30

In the present work we have synthesized the coumarin derivatives using phosphotungstic acid intercalated Bentonite via pechmann condensation of phenols with ethyl acetooacetate using microwave irradiation in excellent yield and high purity.

Experimental

Catalyst preparation

Na-Bentonite. 1.0 g of bentonite clay was added into a 250 ml conical flask containing 50 ml of 1.0 M NaCl this clay suspension was stirred for 16 hours. The residue after centrifugation was washed several times with double distilled water till complete removal of chloride ions. The residue thus obtained after above procedure was dried in an oven at 100°C to generate the Na form of the Bentonite (Na-Ben).
Synthesis of coumarin derivatives

Table 1. Effect of the amount of catalyst on the reaction efficiency

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Catalyst, mg</th>
<th>Time, s</th>
<th>Yield of 4-methyl-6-hydroxy coumarin with various catalysts, in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ben</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>60</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>60</td>
<td>58</td>
</tr>
</tbody>
</table>

General procedure for the synthesis of coumarin derivatives

To elucidate the catalytic efficiency of PTA-Ben as catalyst, a controlled reaction was carried out using PTA, bentonite, Al-Ben and PTA-Ben as catalyst with Benzene-1,4-diol as reactant. The best results were obtained with PTA-Ben in microwave. (Table 1).

Under microwave condition: phenols derivatives (10mmol) and ethyl acetate (10 mmol) were mixed with the PTA-Ben (50 mg) (Table 3). The mixture was irradiated in the microwave. After irradiation of the mixture for a specified period, the content was cooled to room temperature. The completion of the reaction was checked by TLC. After the completion of the reaction the catalyst was recovered by filtration and washed with absolute ethanol to remove all the organic impurities. The PTA-Ben was reused for evaluating the performance in the next reaction. The extract was evaporated by rota-vapour under reduced pressure and the product was purified from column chromatography with CHCl₃: MeOH with increasing polarity.

Optimization of the Catalysts amount

Reactions have been performed using different amount of various catalysts under uniform conditions. Results of the investigation are presented in the Table 1.

Optimization of Time

The reaction time has been optimized by performing reactions at regular intervals of time. After a certain time period there is not much increase in the yield. That time has been selected as optimum time. Results of the investigation are presented in the Table 2.

Table 2. Optimization of reaction time

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Time, s</th>
<th>Yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>02</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>03</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>04</td>
<td>60</td>
<td>99</td>
</tr>
<tr>
<td>05</td>
<td>75</td>
<td>99</td>
</tr>
<tr>
<td>06</td>
<td>90</td>
<td>99</td>
</tr>
</tbody>
</table>

Results and discussion

Catalyst characterization

X-Ray Diffraction techniques. The XRD pattern of Ben, Na-Ben and H⁺-Ben show a sharp peak at 2θ = 5.93, 6.83 and 9.67 respectively corresponding to a d-value of 14.9 Å, 12.9 Å and 9.1 Å. A decrease in the d-value of 2 Å and 5.8 Å is observed when interlayer cations (Ca²⁺) are replaced by the smaller ions, Na⁺ and H⁺ respectively. PAA-Ben, shows a further shift in the peak position, 2θ =5.30 and a d-value of 16.6 Å corresponding to an increase in the interlayer region by 7.5 Å w.r.t H⁺-Ben confirms the intercalation of Al Keggin ion into the interlayer region of H⁺-Ben.

Table 3. Efficiency of the catalyst (PTA-Ben) for different reactants

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Reactant</th>
<th>Product</th>
<th>Time, Sec.</th>
<th>Yield, %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td></td>
<td>60</td>
<td>99</td>
<td>Single product</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td>90</td>
<td>98</td>
<td>Single product</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td>120</td>
<td>95</td>
<td>Single product</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td>120</td>
<td>92</td>
<td>Single product</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td>300</td>
<td>83</td>
<td>Single product</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td>300</td>
<td>87</td>
<td>Single product</td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td>360</td>
<td>76</td>
<td>Single product</td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td>360</td>
<td>80</td>
<td>Single product</td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td>420</td>
<td>72</td>
<td>Single product</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>420</td>
<td>75</td>
<td>Single product</td>
</tr>
</tbody>
</table>

The Al-Ben shows a peak at 2θ = 5.20 and a d-value of 16.9 Å corresponding to an increase in the d-value of 4 Å w.r.t Na-Ben thus confirming the intercalation of Al Keggin ion in the interlayer region of Na-Ben. PTA-Ben show a peak at 2θ = 5.42 corresponding to a d-value of 16.3 Å respectively. This increase in the d-value 3.4 Å w.r.t Na-Ben confirms the intercalation of PTA in the interlayer region of Na-Ben.

Total Surface Area Measurement. Total surface area studies have been performed by EGME method. Surface area values of Ben, Na-Ben, H⁺-Ben, Al-Ben, PAAC-Ben and PTA-Ben are represented in the (Table 4). Total surface area of Ben has been found to be 215 m²/g. After conversion to Na-Ben total surface area has been found to be 121 m²/g which may be due to the decrease in d-spacing as indicated by XRD data. Total surface area of H⁺- Ben has been found to be 327 m²/g which is due to replacement of Na ions by H⁺ ions. Acid activation also causes the formation of small pores, consequently increasing the surface area. 34,35 Total surface area of Al-Ben has been found to be 295 m²/g. Due to the intercalation of Al-Keggin ion the inner surface also becomes assessable. PAAC-Ben has been found to have a total surface area of 350 m²/g which is again due to intercalation of Al-Keggin ion in H⁺-Ben. Total surface area of PTA-Ben has been found to be 301 m²/g respectively which confirms intercalation of PTA

FT-IR Studies. Vibrational spectra of Ben, Na-Ben, H⁺-Ben, Al-Ben and PAA-Ben clays (Figure 1 and 2) indicate two strong absorption bands ~3626 cm⁻¹ and ~3436 cm⁻¹ corresponding to the stretching vibrations of the O-H group originating from the surface adsorbed and interlayer water. The ~1642 cm⁻¹ band in these samples has been assigned to the H-O-H bending vibrations of water.
The ~1043 cm\(^{-1}\) and ~796 cm\(^{-1}\) bands are attributed to the stretching vibration of the Si–O bond. The ~522 cm\(^{-1}\) and ~466 cm\(^{-1}\) bands have been assigned to the Si–O–Al and Si–O–Si deformation vibrations respectively\(^ {36,37}\). The FT-IR spectra of PTA (Figure 3) shows an absorption band at ~3154 cm\(^{-1}\) and have been assigned to the stretching vibrations originating from the O–H groups present in the Keggin structure of PTA. The absorption band at ~1699 cm\(^{-1}\) have been assigned to the bending vibrations of the O–H group of PTA.

The ~1043 cm\(^{-1}\) and ~796 cm\(^{-1}\) bands are attributed to the stretching vibration of the Si–O bond. The ~522 cm\(^{-1}\) and ~466 cm\(^{-1}\) bands have been assigned to the Si–O–Al and Si–O–Si deformation vibrations respectively\(^ {36,37}\). The FT-IR spectra of PTA (Figure 3) shows an absorption band at ~3154 cm\(^{-1}\) and have been assigned to the stretching vibrations originating from the O–H groups present in the Keggin structure of PTA. The absorption band at ~1699 cm\(^{-1}\) have been assigned to the bending vibrations of the O–H group of PTA.

Thermal Method of Analysis. The thermogram (TGA) of Ben, Na-Ben, H\(^{+}\)-Ben (Figure 4) shows four step weight loss pattern. The first step, up to 180°C, corresponds to dehydration of surface adsorbed water. The second step, 180°C to 550°C, is attributed to dehydration of interlayer water. The third step 550°C to 675°C, is attributed to the gradual dehydroxylation of clay layers. Beyond 675°C the clay loses its structure and practically shows no weight loss.\(^ {36}\)

The ~1043 cm\(^{-1}\) and ~796 cm\(^{-1}\) bands are attributed to the stretching vibration of the Si–O bond. The ~522 cm\(^{-1}\) and ~466 cm\(^{-1}\) bands have been assigned to the Si–O–Al and Si–O–Si deformation vibrations respectively\(^ {36,37}\). The FT-IR spectra of PTA (Figure 3) shows an absorption band at ~3154 cm\(^{-1}\) and have been assigned to the stretching vibrations originating from the O–H groups present in the Keggin structure of PTA. The absorption band at ~1699 cm\(^{-1}\) have been assigned to the bending vibrations of the O–H group of PTA.

Thermal Method of Analysis. The thermogram (TGA) of Ben, Na-Ben, H\(^{+}\)-Ben (Figure 4) shows four step weight loss pattern. The first step, up to 180°C, corresponds to dehydration of surface adsorbed water. The second step, 180°C to 550°C, is attributed to dehydration of interlayer water. The third step 550°C to 675°C, is attributed to the gradual dehydroxylation of clay layers. Beyond 675°C the clay loses its structure and practically shows no weight loss.\(^ {36}\)
The thermogram (TGA) of PAA-Ben, Al-Ben (Figure 5) shows a similar four step weight loss pattern. The first step, up to 200°C, corresponds to dehydration of surface adsorbed water. The second step, 200°C to 350°C, is attributed to dehydration of interlayer water. The third step, 350°C to 600°C, is attributed to the gradual dehydroxylation of clay layers. Beyond 600°C the clay loses its structure and practically shows no weight loss. The TGA of pure PTA (Figure 6) shows two step weight loss. The first step, up to 200°C corresponds to the loss of water of crystallization. The second step, ~200°C to 600°C corresponding to the decomposition of keggin unit of PTA.

The TGA of PTA-Ben (Figure 6) shows four step weight loss pattern, the first step, up to 150°C, corresponds to dehydration of surface water. The second step, 150°C to 500°C, is attributed to dehydration of interlayer water. The third step, 500°C to 700°C, is attributed to the dehydroxylation of clay layers and the loss of keggin ion structure. The heteropoly acids are stable up to 600°C but after intercalation the catalyst becomes stable up to 800°C.

SEM Studies with EDX analysis. The SEM pictures (magnification of 832X) of Ben, PTA-Ben are represented in Figure 7a and b respectively. The SEM pictures of Ben and PTA-Ben show no distinct change in the surface morphology and appears to have the layered structure. Therefore, it appears that PTA is not adsorbed on the surface of the clay but is intercalated in the layers of the clay. This fact is also supported by the XRD and IR studies. SEM results are also supported by the EDX analysis (Figure 7a and 7b). In all the cases surface composition consist of Al, Si, O, Mg, Fe, Ca & K. No signal corresponding to P and W was supported by the EDX data which further confirms intercalation of PTA in to the layers of Bentonite.

Reusability of PTA-Ben for the Synthesis of 6-OH-4-Me-coumarin

The reusability of PTA-Ben has been investigated up to six repeated cycles using synthesis of 6-OH-4-Me-Coumarin. The catalyst, PTA-Ben, was washed with MeOH after every cycle and was characterized using FT-IR, TGA, DSC, XRD, SEM and EDX etc. techniques. No noticeable changes were observed even after six cycles, which not only indicates the stability of the catalyst but also indicates that none of the reactants/products remain with the catalyst. The product/s, after separation and isolation, was characterized by the earlier described methods and the yield in each case was calculated (Figure 8). The variation in the yield was found to be in the range of ~ 99% to 75%.

Figure 8. Reusability of PTA-Ben up to 6 repeated cycles

The catalyst characterization was performed on the catalyst after the 6th cycle of reaction was performed on the catalyst and following observations was made. The SEM picture (Figure 9) does not show any change in the surface morphology, the layered structure is maintained. The EDX data indicates the same elemental composition as earlier, i.e. Al, Si, O, Mg, Fe, Ca, K and Na.
The thermal stability of the catalyst was found to be unaffected after reuse except a slight change in the weight loss (from 11.7 % to 14%) which may be due to the presence of small quantity of adsorbed organic matter after the 6th cycle (Figure 10).

XRD and FTIR data (Figure 11) of PTA-Ben has been found to have no significant change.

Figure 10. TGA studies of (a) PTA-Ben after 1st cycle, (c) PTA-Ben after 6th cycle

Figure 11. FTIR spectra of (a) PTA-Ben after 1st cycle, (c) PTA-Ben after 6th cycle

Characterization of coumarine derivatives

Structural assignments of the various coumarin derivatives are based on their 1H NMR and IR analysis. The analysis of complete spectral and compositional data revealed the formation of coumarin derivatives.

6-Hydroxy-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 3258 (OH stretch), 1516, 1473 (aromatic ring), 1689 (C=O), 1209, 1096 (C-O); 1H NMR δ 9.4 (s, 1H, OH), 7.5 (d, 1H, H 8 Aromatic), 6.8 (d, 1H, H 7 Aromatic), 6.2 (s, 1H, H 5 Aromatic), 3.0 (s, 1H, H 3 Aromatic), 2.2 (s, 3H, CH3).

7-Hydroxy-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 3502 (OH stretch), 1504, 1455 (aromatic ring), 1671 (C=O), 1277, 1074 (C-O); 1H NMR δ 10.5 (s, 1H, OH), 7.5 (s, 1H, H 8 Aromatic), 6.8 (d, 1H, H 6 Aromatic), 6.6 (d, 1H, H 5 Aromatic), 3.4 (s, 1H, H 3 Aromatic), 2.3 (s, 3H, CH3).

6-Amino-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 3376, 3234 (NH stretch), 1610, 1512, 1493 (aromatic ring), 1636 (C=O), 1286, 1170 (C-O); 1H NMR δ 10.1 (s, 2H, NH), 8.3 (d, 1H, H 8 Aromatic), 8.1 (d, 1H, H 7 Aromatic), 7.2 (s, 1H, H 5 Aromatic), 3.4 (s, 1H, H 3 Aromatic), 2.3 (s, 3H, CH3).

8-Amino-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 3467, 3248 (NH stretch), 1519, 1578, 1457 (aromatic ring), 1644 (C=O), 1248, 1155 (C-O); 1H NMR δ 10.1 (s, 2H, NH), 7.5 (s, 1H, H 8 Aromatic), 6.8 (d, 1H, H 6 Aromatic), 6.6 (d, 1H, H 5 Aromatic), 3.4 (s, 1H, H 3 Aromatic), 2.3 (s, 3H, CH3).

6-Formyl-4-methyl coumarin. IR (υ in cm\(^{-1}\)) 1598, 1574, 1411 (aromatic ring), 1773, 1607 (C=O), 1281, 1263 (C-C); 1H NMR δ 10.1 (s, 1H, CHO), 8.3 (d, 1H, H 8 Aromatic), 6.9 (d, 1H, H 7 Aromatic), 6.7 (s, 1H, H 5 Aromatic), 4.5 (s, 1H, H 3 Aromatic), 1.9 (s, 3H, CH3).

8-Formyl-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 1606, 1558, 1474 (aromatic ring), 1716, 1610 (C=O), 1211, 1091 (C-O); 1H NMR δ 10.0 (s, 1H, CHO), 7.8 (d, 1H, H 7 Aromatic), 6.9 (d of d, 1H, H 6 Aromatic), 6.7 (d, 1H, H 5 Aromatic), 6.1 (s, 1H, H 3 Aromatic), 2.8 (s, 3H, CH3).

6-Nitro-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 1500 1496 (aromatic ring), 1613 (C=O), 1592, 1335 (NO2), 1294, 1199 (C-O); 1H NMR δ 8.1 (d, 1H, H 7 Aromatic), 7.2 (s, 1H, H 5 Aromatic), 6.9 (d, 1H, H 8 Aromatic), 6.4 (s, 1H, H 3 Aromatic), 1.9 (s, 3H, CH3).

8-Nitro-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 1510, 1450 (aromatic ring), 1600 (C=O), 1591, 1335 (NO2), 1295, 1195 (C-O); 1H NMR δ 7.8 (d, 1H, H 7 Aromatic), 7.1 (d of d, 1H, H 6 Aromatic), 6.9 (d, 1H, H 5 Aromatic), 6.4 (s, 1H, H 3 Aromatic), 2.5 (s, 3H, CH3).

7,8-Benzo-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 1593, 1576, 1474 (aromatic ring), 1632 (C=O), 1278, 1084 (C-O); 1H NMR δ 8.5 (d, 1H, H 8 Aromatic), 7.8 (d, 1H, H 5 Aromatic), 7.5-7.6 (m, 2H, H 4 Aromatic), 7.4 (d, 1H, H aromatic), 6.9 (d, 1H, H aromatic), 6.4 (s, 1H, H 3 Aromatic), 2.5 (s, 3H, CH3).

6,7-Benzo-4-methylcoumarin. IR (υ in cm\(^{-1}\)) 1601, 1512, 1466 (aromatic ring), 1631 (C=O), 1277, 1216 (C-O); 1H NMR δ 7.7 (s, 2H, H 8 Aromatic), 7.6 (d, 1H, H 5 Aromatic), 7.2-7.4 (m, 2H, H 4 Aromatic), 7.1 (d, 1H, H aromatic), 5.2 (s, 1H, H 3 aromatic), 1.7 (s, 3H, CH3).

References

Synthesis of coumarine derivatives

Received: 17. 09. 2013.
Accepted: 19. 11. 2013.