SYNTHESIS AND CHARACTERIZATION OF NEW THIAZOLIDINONES AND 2-OXOPYRROLIDINES DERIVED FROM SCHIFF BASES

Z. Sami Naeem[a] and M. Shakir Magtoof[a]*

Keywords: thiazolidinones; five-membered γ-lactams; imines.

New thiazolidinones and γ-lactams were prepared from mixtures of Schiff base (imine) and thioglycolic acid or phenylsuccinic anhydride, respectively, in moderate yields (52-71 %). The structures of these new thiazolidinones and γ-lactams were established on the basis of the IR, ¹H-NMR, ¹³C-NMR, ¹³C-NMR DEPT and mass spectral data.

* Corresponding Authors
E-Mail: zainabalnasiry93@gmail.com
[a] Department of Chemistry, Science College, Thi-Qar University, Thi-Qar, Nasyria, Iraq

Introduction

Thiazolidinones (Figure 1a) are classified as doubly unsaturated five-membered heterocyclic compounds contain one nitrogen, one sulfur and three carbon atoms including a carbonyl group. Thiazolidinones and their derivatives show a large variety of biological activities such as antibiotic, diuretic, tuberculostatic, organoleptic, antileukemic and antiparasitic.¹ ² As far as literature is concerned, only a few information is available about thiazolidinones and their bioactivity. The chemistry of thiazolidin-4-one ring system is considerable interest because it is the core structure in various pharmaceuticals.

Five-membered ring lactams, which are known as γ-lactams or 2-oxopyrrolidines (Figure 1b), are essential structural motifs in biologically active natural products and used in medicines and approved drugs.³ γ-Lactams have attracted considerable attention in recent years because they are valuable building blocks in the structure of several biologically active molecules.⁴ Substituted γ-lactams, in particular, have potential application in drug synthesis, but the development of the stereoselective synthesis of chiral γ-lactams remains a challenge.⁵ ⁶ Various γ-lactams are components of natural products,⁷ and some biologically important lactams⁸ are obtained from the reaction of imines with phenylsuccinic anhydride.

Experimental part

All solvents were distilled/dried prior to use, whenever this seemed necessary, by standard methods. All solvent extracts were dried over anhydrous sodium sulfate unless otherwise specified.

FT-IR spectra were recorded using a Shimadzu FT-IR spectrophotometer as KBr. The absorption bands of interest are reported and expressed in cm⁻¹.

¹H-NMR spectra were recorded using a Bruker Varian NMR spectrometer (500 MHz). The chemical shift values are expressed in δ(ppm), using tetramethylsilane (TMS) as internal standard and DMSO-d₆ as a solvent. ¹³C-NMR spectra and ¹³C-NMR DEPT spectra were recorded using a Bruker Varian spectrometer (75 MHz). The chemical shift values are expressed in δ(ppm), δ(ppm), using tetramethylsilane (TMS) as internal standard and CDCl₃ as a solvent.

Mass spectra were recorded using a 70 eV HPLC-LCQ Fleet/Thermo Scientific instrument with 5973 type mass selective detector.

General procedure for preparation of imines

In general, the imines (2a-2d) were prepared by reaction the corresponding amines with an aldehyde or a ketone in 40 mL of methanol and 4-6 drops of glacial acetic acid with refluxing the reaction mixtures for 1-5 h under stirring. The progress of the reaction is followed by TLC. After completion the reaction, the solvent was evaporated then the residue was recrystallized from a suitable solvent. The physical data of the prepared imines (2a-2f) are gathered in Table 1.

3-Bromo-2-(pyridin-2-yliminomethyl)phenol (2a)

This compound was prepared by reacting of 2-aminopyridine (0.01 mol, 1 g) with 5-bromo-2-hydroxybenzaldehyde (0.01 mol, 2.4 g). Rf=1.2. Yield = 79.6 %, m.p. = 138-139 °C. IR (KBr disk): 1610 cm⁻¹ (C=N).
3-Bromo-2-(pyridin-3-yl)iminomethyl)phenol (2b)

This compound was prepared by reacting of 3-aminopyridine (0.01 mol, 1 g) with 5-bromo-2-hydroxybenzaldehyde (0.01 mol, 2.4 g). Rf=0.4, yield was 81.6 %, m.p. = 125-126 ºC. IR (KBr disk): 1615 cm⁻¹ (C=N).

4-(5-Aminonaphthaleneylimino)pentan-2-one (2c)

This compound was prepared by reacting of 1,5-diamino naphthalene (0.006 mol, 1 g) with acetylacetone (0.006 mol, 0.63 g, 0.65ml). Rf=0.5,. Yield = 52.6 %, m.p = 90.9 ºC. IR (KBr disk): 1612 cm⁻¹ (C=N).

4-(4-Aminophenylimino)pentan-2-one (2d)

This compound is prepared by reacting of p-phenylenediamine (0.0099 mol, 1 g) with acetylacetone (0.0099 mol, 0.93 g, 0.95 ml). Rf=0.5, yield = 90.9 %, m.p. = 94-95 ºC. IR (KBr disk): 1601 cm⁻¹ (C=N).

4-(Pyridin-3-yl)iminopentan-2-one (2e)

This compound was prepared by reacting of 3-aminopyridine (0.01 mol, 1 g) with acetylacetone (0.01 mol, 1.06 g, 1.09 ml). Rf=2, yield = 93.5 %, m.p = 129-132 ºC. IR (KBr disk): 1676 cm⁻¹ (–N–C=O). 1H NMR (500 MHz, DMSO-d₆, δ, ppm) 3.88 (d, 1H), 4.07 (d, 1H), 1.90 (s, 3H), 2.79 (s, 3H), 4.65 (s, 2H) and 7.55-7.73 (m, 4H). 13C-NMR (75 MHz, CDCl₃, δ, ppm) 38.65, 48.02, 122.03-158.52, 125.95-135.95, 127.89-138.11, 172.13 and 185.88.

3-Bromo-2-(pyridin-3-yl)iminomethyl)phenol (2b)

This compound was prepared by reacting 3b (0.003 mol, 1 g) and (0.003 mol, 0.33 g, 0.25 mL) of thioglycolic acid. Rf=1.2, yield = 71 %, m. p. = 98-99 ºC. IR (KBr disk): 1672 cm⁻¹ (–N=C=O). 1H-NMR (500 MHz, DMSO-d₆, δ, ppm) 3.91(d, 1H), 4.31(d, 1H), 5.61(s, 1H), 6.22-7.51 (m, 3H), 4.29 (s, 2H), 4.60 (s, 2H) and 7.30-7.57 (m, 4H). 13C-NMR (75 MHz, CDCl₃, δ, ppm) 42.96, 52.12, 72.40-74.68, 74.92, 83.90, 119.06, 122.31-130.96, 130.97-141.65, 141.35, 148.55, 152.68, 178.93 and 201.15.

3-(5-Aminonaphthalen-1-yl)-2-methyl-2-(2-oxopropyl)-thiazolidin-4-one (3c)

This compound was prepared by reacting 3e (0.001 mol, 0.41 g) and (0.001 mol, 0.157 g, 0.12 mL) of thioglycolic acid. Rf=0.6, Yield = 69 %, m. p. = 139-140 ºC. IR (KBr disk): 1676 cm⁻¹ (–N–C=O). 1H NMR (500 MHz, DMSO-d₆, δ, ppm) 3.88 (d, 1H), 4.07 (d, 1H), 1.90 (s, 3H), 2.79 (s, 3H), 4.65 (s, 2H), 4.75 (s, 2H) and 7.55-7.73 (m, 4H). 13C-NMR (75 MHz, CDCl₃, δ, ppm) 40.80, 61.85, 18.28,26.78, 36.95, 124.44-156.76, 178.19 and 177.86.

General procedure of γ-lactams (4)

In general the γ-lactam were prepared by reaction the mixture of imines 2a, 2b, 2e and 2f) with phenylsuccinic anhydride in 20 mL of chloroform, then the mixture was refluxed for 1-12 h with stirring. The progress of the reaction was followed by TLC. After completion the solvent was evaporated and the residue was recrystallized from ethanol. The following γ-lactams were prepared:

2-(2-Bromo-6-hydroxyphenyl)-3-(pyridin-3-yl)thiazolidin-4-one (3a)

This compound was prepared by reacting 2a (0.003 mol, 1 g) and (0.003 mol, 0.64 g) of phenylsuccinic anhydride. Rf=0.7, yield = 55 %, m. p. = 121-122 ºC. IR (KBr disk): 1638 cm⁻¹ (–N=C=O), 1727 cm⁻¹ (HO–C=O), 1H NMR (500 MHz, DMSO-d₆, δ, ppm) 3.28 (d, 1H), 3.52 (d, 1H), 4.12 (s, 1H), 6.15-6.70 (m, 5H), 7.63-8.35 (m, 7H), 10.31 (s, 1H) and 11.42 (s, 1H). ¹³C NMR (75 MHz, CDCl₃, δ, ppm) 42.88, 53.02, 59.79, 121.23-151.02, 125.95-135.95, 127.89-138.11, 172.13 and 185.88.
2-(2-Bromo-6-hydroxyphenyl)-5-oxo-3-phenyl-1-(pyridin-3-yl)pyrrolidine-3-carboxylic acid (4b)

This compound was prepared by reacting 2b (0.003 mol, 1 g) and (0.003 mol, 0.64 g) of phenylsuccinic anhydride. Rf=0.6, yield = 61 %, m. p. = 113-114 °C. IR (KBr disk): 1655 cm⁻¹ (–N–C=O), 1719 cm⁻¹ (HO–C=O). ¹H-NMR (500 MHz, DMSO-d₆, δ, ppm) 3.51 (d, 1H), 3.81 (d, 1H), 4.55 (s, 1H), 6.08-6.54 (m, 5H), 7.18-8.02 (m, 7H), 9.98 (s, 1H) and 11.40 (s, 1H). ¹³C NMR (75 MHz, CDCl₃, δ, ppm) 41.56, 51.07, 57.96, 120.53-152.74, 124.45-133.90, 171.25 and 178.25.

2-(2-Bromo-6-hydroxyphenyl)-5-oxo-3-phenyl-1-(pyridin-3-yl)pyrrolidine-3-carboxylic acid (4e)

This compound was prepared by reacting 2e (0.005 mol, 1 g) and (0.005 mol, 1 g) of phenylsuccinic anhydride. Rf=0.5, yield = 68.4 %, m. p. = 168-169 °C. IR (KBr disk): 1602 cm⁻¹ (–N–C=O), 1697 cm⁻¹ (HO–C=O). ¹H NMR (500 MHz, DMSO-d₆, δ, ppm) 3.25 (d, 1H), 3.56 (d, 1H), 1.91 (s, 3H), 2.28 (s, 3H), 3.98 (s, 2H), 6.21-8.08 (m, 9H), and 11.07 (s, 1H). ¹³C NMR (75 MHz, CDCl₃, δ, ppm) 16.02, 27.23, 37.84, 41.12, 52.11, 59.23, 121.66-157.17, 125.33-139.17, 168.94, 180.73 and 206.85.

2-(4-Chlorophenyl)-5-oxo-3-phenyl-1-(pyridin-3-yl)pyrrolidine-3-carboxylic acid (4f)

This compound was prepared by reacting 2f (0.0046 mol, 1 g) and (0.0046 mol, 0.8 g) of phenylsuccinic anhydride. Rf=0.1, yield =55 %, m. p. = 159 -160 °C. IR (KBr disk): 1602 cm⁻¹ (–N–C=O), 1695 cm⁻¹ (HO–C=O). ¹H NMR (500 MHz, DMSO-d₆, δ, ppm) 3.32 (d, 1H), 3.56 (d, 1H), 4.53 (s, 1H), 6.21-6.64 (m, 5H), 7.30-8.20 (m, 7H), and 11.40 (s, 1H). ¹³C NMR (75 MHz, CDCl₃, δ, ppm) 40.13, 51.28, 58.54, 121.67-151.66 124.56-138.54, 169.18 and 183.05.

Results and discussion

The Schiff bases are formed by the condensation of primary amines and an aldehyde or ketone.

A simple synthetic way to prepare the biologically active thiazolidinones⁹,¹⁰ is based on the reaction of imines with thioglycolic acid:

The IR spectra of imines 2a-2f made is characterized by four principal band groups correspond to the stretching vibrations of the aromatic C-H bonds, aliphatic C-H bonds, azomethine bonds (C=N), and aromatic C=C bonds of the and substituted aromatic ring, which occur within the ranges of 3224-3047, 3007-2777, 1638-1610, and 1586-1475 cm⁻¹, respectively.
The 13C-NMR DEPT spectrum of 3a shows a signal at δ 48 (-) ppm for (CH$_3$), and a signal at δ 38(+) ppm for CH carbon of thiazolidin-4-one ring. There are signals belong to the aromatic region in the range (125-135) (+) ppm and there are signals at δ 122-148 (+) and (177) (+) ppm for the pyridine ring and the amide carbonyl.

γ-Lactams also represent important substructures for the synthesis of biologically relevant compounds in drug discovery1 and natural products12,13 The prevalence of small molecules for biological evaluation.17,18 Based on these earlier studies, a practical way, the cyclization of imines with phenyl succinic anhydride in chloroform was followed:

\[
\begin{array}{c}
\text{R}^1\text{N}^+\text{R}^2 + \text{O} \rightarrow \text{R}^1\text{N}=\text{C}^\equiv \text{O} + \text{R}^2\\ \\
\text{CHCl}_3 \text{ reflux}
\end{array}
\]

The mass spectrum of 4a showed the molecular ion peak in 453,455 m/z and important fragmentation peaks at m/z=452, 454 m/z=424, 426, m/z= 382, 384, m/z=354, 356 m/z (these fragments contains two bromine isotopes), and fragments without bromine isotopes at m/z, 223, 181 103 78, 77 and 65. The 1H-NMR spectrum of 2-(2-bromo-6-hydroxyphenyl)-5-oxo-3-phenyl-1-(pyridin-2-yl)pyrrolidine-3-carboxylic acid (4a) (see Electronic Supplementary Information) showed signal at δ 2.57 ppm for the proton of the chiral carbon of thiazolidin-4-one ring. There are two singlet signals at δ 10.31 ppm and 11.42 ppm of phenol and carboxyl hydroxy groups, respectively.

There are two singlet signals at δ 10.31 ppm and 11.42 ppm of phenol and carboxyl hydroxy groups, respectively.

The 1H-NMR spectrum of 2-(2-bromo-6-hydroxyphenyl)-5-oxo-3-phenyl-1-(pyridin-2-yl)pyrrolidine-3-carboxylic acid (4a) (see Electronic Supplementary Information) showed signal at δ 2.57-2.58 ppm belongs to DMSO-d$_6$ solvent. Two doublet signals are appeared at δ 3.28 ppm and 3.52 ppm, (J=4 Hz) for methylene protons of pyrrolidine ring, a singlet at δ 4.12 ppm for the proton of the chiral carbon (No 2) atom (racemic), and two multiplet signals for the five protons of benzene ring at δ 6.15-6.70 and δ 7.63-8.35 for seven aromatic protons of phenol and pyridine rings, respectively.

Bands characterize the IR spectra of γ-lactams 4a, 4b, 4c, 4d and 4f belong to the stretching vibrations of the carboxylic OH, aromatic C-H, aliphatic C-H, carboxylic carbonyl group, carbonyl amide group, aromatic C=C and substituted aromatic ring in the ranges of 3134-3026, 3064-2742, 1727-1695, 1651-1586, 1602-1536 and 939-809 cm$^{-1}$, respectively.

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Raasch, M. S., 2,2-Bis(polyfluoromethyl)-4-thiazolidinones, 4-oxothiazolidinones, and -tetrahydro-4H-1,3-thiazin-4-ones. J. Heterocyclic Chem., 1974, 11, 587-593. doi.org/10.1002/jhet.5570110424</td>
</tr>
</tbody>
</table>

Received: 11.12.2018.
Accepted: 01.01.2019.