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BOUNDS ON COMPLEMENTARY 3-DOMINATION NUMBER

E B IN GRAPHS

V.G. Bhagavathi Ammal**, M.K. Anushya?

ABSTRACT

In Graph theory, a dominating set for a graph G is a subset S of its vertices such that every vertex in V — S
is adjacent to atleast one vertex in S. The minimum cardinality of a dominating set is called the domination
number and is denoted by (G). A dominating set S of a graph G is said to be a complementary 3-
dominating set of G if for every vertex in S has atleast three neighbors in V — S. The minimum cardinality of
a complementary 3-dominating set is the complementary 3-domination number y; of a graph G. In this paper
we determine complementary 3-domination number for some standard graphs and obtain some results
concerning this parameter.
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Bounds On Complementary 3-Domination Number In Graphs

1. Introduction:

By a graph we mean a simple, connected, finite
and undirected graph G = (V,E) where V is the
vertex set whose elements are vertices or nodes
and E is the edge set. Unless otherwise stated the
graph G with |V| = n and |E| = q. Degree of a
vertex v is denoted by (v). Let A(G) and §(G)
denotes the maximum and minimum degree of a
graph respectively. We denote a complete graph
on n vertices by K,. A bipartite graph G = (V,E)
with partition V = (V4,V>) is said to be a complete
bipartite graph if every vertex in V1 connected to
every vertex of V,. A gear graph G, is a wheel
graph with a graph vertex added between each
pair of adjacent graph vertices of the outer cycle.
A Fan graph F,, is defined as the graph join
K, + P,, where K, is the empty graph on m
nodes and P,, is the path graph on n nodes. The
n — Barbell graph is the simple graph obtained
by connecting two copies of a complete graph K,
b GF & Fe Cormectsd B 50 ek 1R
complement G of G is the graph with vertex set V
in which two vertices are connected if and only if
they are not adjacent in G. A star graph K1, is a

tree on n vertices with one vertex having vertex

egree n — 1 ar}gzl tft]e. other n—1 Raving vertex
egree one. The_ friendship graph F, can be

constructed by joining =~ copies of the cycle
n

graph Cs with a common vertex which becomes a
universal vertex for the graph. A wheel graph
W, is a graph formed by connecting a single
universal vertex to all vertices of a cycle. A graph
C(1) is obtained by attaching a path P, to any
vertex of degree C,,. C,, + e is a graph obtained
by adding an edge into a cycle C,,. C(P,) is a
graph obtained by attaching a path P, to any
vertex of C,,,. A Nordhaus Gaddum type result is
a lower and upper bound on the sum or product of
a parameter of a graph and its complement. A
subset S of V is called a dominating set of G if
every vertex In V-S is adjacent to atleast one
vertex in S. The domination number (G) is the
minimum cardinality of a dominating set. In this
paper we introduce the concept of complementary
3-domination number and we present some basic
theorems related to this parameter.

Definition:1.1 A dominating set S in a graph G is
said to be a complementary 3-dominating set of G
if any vertex in S has atleast three neighbours in
V-S. The complentary 3-domination number
v5(G) of a graph G is the minimum cardinality of
a complementary 3-dominating set.
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Example: 1.2

U] U2 Uy

G
Fig:1

For the above example the dominating set is
{v1, v7} and the complementary 3-dominating set
is {vy, v, v3} and hence y5(G) =3

2.y3 number for some standard graphs
1, Far any complete graph of order n=>4
}’3(1(1?) =1

2. For any complete bipartite graph K with
mony o P JraPh, P "'

2ifm=2n=3andm=4n=>4
Jifm=n=3andm=3,m=4
3. For any wheel graph of order n > 4,y {W,) =
1
4. For any Friendship graph F,, ¥5(G) = 1 where
n=5
5. For any prism graph CL, of order p >

' — 1whennis odd
6,v3(CLp) ={yn Z 2 whenn is eveh

wherep = 2n,n = 3

6. For any gear graph of order p > 7,y3(G,) = n
wherep =2n+1,n >3

7. For any star graph K;, of order n>
3, Vé(Kl ) =1 4

8. For a Petersen graph G, y3(G) = 3

mn

Observation:2.1 Illlustrative example for which
domination number equals the complementary 3-
dominaion number.

"

Ui

Fig:2
Graph for which y5(G) = (G)
For the figure:2, S = {v3v;} forms y’;— set and
hence y5(G) =y(G) =3

Observation: 2.2 The complement of a
complementary 3-dominating set need not be a
complementary 3-dominating set.
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v

i

va Vs

Fig:3
Example for which complement of y; — set need
not be a 53 — set. )
In figure:3°the set S = {v4,v6} forms a v, ~ set
and hence y'{G) = 2 but not a complementary 3-
dominating set.

Section A-Research Paper

Observation: 2.3 Every complementary 3-
dominating set is a dominating set but the
converse need not be true.

Consider C4, + e. Let {vq, vy, v3 v4} be the
vertices of C4 + e. Now the set S = {v,} is the
complementary 3-dominating set and dominating
set.

Consider Cs. Let {v4, v, v3, 14, vs} be the vertices
of Cs. Now thw set S = {v3 vs} for the
dominating set but not y;; — set.

Observation: 2.4 Let G be a connected graph and

h be a spanning subgraph of G. H has y; — set
then y’3(G) < y’3(H) and the bound is sharp.

Ve
v o 1y

In the above figure, Let the set S = {v,} forms
yé— set andeheiqce y’3 GB = 1. Let H; gm1 H, rBe

Brme ot B TEn el G A Tl sy

, U2, , .} forms vy, — set and
ghc%zyZEH% Vs Pk ardors Y™ 5¢
Remark: 25 For Ci+e with
vertices { ,v. ,v , ith e € , forms
VE_ set{aﬁ]d f’\]en%]e}’y\é\eG}}i 171 t31{1vehc4 be a

PRI 4SSRETRRRC sy VR ol S
the spanning subgraph ofgcn which implies "

Observation: 2.6 For any connected graph G,
Y(G) < v(6) < 11(G)

2

1)
Uy I Uy

Fig:5 Graph for which y(G) < y.(G) < y3(6G)
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O
Fig:4 Ggraphs tor which Y (G) < y'3(H)

Uy Vs Ty

3

In the above figure, {v1, vs} forms a dominating

set, {vq, V3, V4, } fOrms a nected dominating set
and vll', v3’2', v43',}v4, Vs, vé%rms a cpmp{éme ary

3-dominating set and hence )
V(G <y ().
Ir%e%/r,e{gizs? nlf G is any connected graph then

Proof’ If G is any non-trivial connected graph

containing degree A(G) =n —_1 or graphs. with
diam = gad el 1, t&e% yé(G) = 1,gt e lower

bounds hoks. Let A(GY "< 0p,)-<1 /F OP,d) g=ranph not
having two or more vertices of degree two
continuously then 1 < p4(G) < n. Let S be the
dominating set of G. For some vertex u € S,
(u) = 1 or 2 then S is not a complementary

Theorem: 2.8 For any connected graph G of
order n > 4, every y; (G) — dominating set of G
contains its support vertices.

Proof: Let G be a connected graph of order n > 4
and S be a y; — dominating set of G. Let u be a
support vertex of G. Then there exists a pendant
vertex v which is adjacent to u in G.
Suppose u does not belongs to S. Then v is not
dominated by any vertex in S implies v € S. But
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deg(v) = 1 shows that S is not a y';— dominating
set of G, which is a contradiction. Hence, u € S.

Theorem: 2.9 If G is a graph without isolated
vertices de(G) = 3 and S is a minimal

Proof: Let G be a graph without isolated vertices
with A(G) = 3 and S be a minimal

To prove: wu is dominated by some vertex in
VG)—-S

Suppose is not dominated by any vertex in
V(G) — S. Since G has no isolated vertices and S
is a y3— dominating set of G, each vertex in
(G) — S has atleast three neighbours in S — {u}.
This contradicts the fact that S is a minimal
dominating set of G.

Note: 2.10 If G is connected graph with
de(G) = 3 and S is a y’3— dominating set of G
then the complement V — S need not be a 3 —
dominating set.

Theorem: 2.11 For any connected cubic graph of
order 8 y3(G) = x(G) =3 if and only if G =
G1or Gy.

s

24
/\ s Y
s

u

T

(e G

Proof: If G = G, or G, then obviously y3(G) =
(G) = 3. Conversely let us assume that y' @) =
(G) = 3. Let us assume that S = {x, y, z} be a
minimum complementary 3-dominating set of
Gand V — S = {uq, uy, us, ug, us}. Clearly < § >
is not equal to Ks. Therefore we consider three
cases.

Case: (1) <S>=K3
With no loss of generality, let (x) =
{uy,up,usz}. Then atleast one of the vertices of

(x) = {uy, uy, us} is adjacent to y.

Subcase:(i) One vertex of N(x) adjacent to y,
say uq.

For this case uy and us are adjacent to y.
Suppose now z is adjacent or non adjacent
to uy.

Suppose if z is adjacent to u; then z is adjacent to
uy and ug ( or equivalently usand us) or u, (or
equivalently u3) and u, (or equivalently us). If z
is adjacent to u, and us, then u, is non adjacent to
uz. Therefore u,must be adjacent to uy (or
equivalently us) and then us is adjacent to uz and
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uy Which implies G = G4. Suppose if z is adjacent
to uy and uy then u;, is non adjacent to ugand so
uy is adjacent to uz or us. If u, is adjacent to ug,

L g B PN B R v

cubic, uz is adjacent to ugand uswhich implies

G = G, y5-dominating set of G. Let u € (G).

Suppose z is non adjacent to uithen with no loss
of generality, let (z) = {uy, us, us}. Then uyis
adjacent to u,0r us0r usor uy. If uyis adjacent to
usthen {u,, y} is not a complementary 3-
dominating set. Suppose if uis adjacent to u;and
since G is cubic, usis adjacent to usand uszand so
{x,u4} is not a complementary 3-dominating set.
If uyis adjacent to uy, then usadjacent to u,and
uzand so {z,u;} is not a complementary 3-

dominating set. Suppose if uzadjacent to us, then
uyis adjacent to wusthen {x,uy} is not a
complementary 3-dominating set. If usadjacent to
uzthen usadjacent to ujand hence {us, us} is not a
complementary 3-dominating set. If

uiadjacent to usthen 3 adjacent to wuswhich
implies G = G:.

Subcase:(ii) Two vertices if N(z) is adjacent to
y, say wiand u;

For this case, let us assume that y is adjacent to
uyq. NOw z ix adjacent to u; (or equivalently uy)
or non adjacent to u; (or equivalently uy).

If z is adjacent to uq, then u,is adjacent to uz (or
equivalently us) or z or uy. If uyis adjacent to
uzthen z is non adjacent to uszand uy. Also z is
non adjacent to uszand us. If z adjacent to uzand
us then usadjacent to usand uzand so S = {x, ug}
is not a complementary 3-dominating set. If
uzadjacent to z and since G is cubic, z is non
adjacent to us (or equivglently us). Therefore
zmust be adjacent to us. Now usadjacent to
uzand ugand then usadjacent to ugwhich implies
G = Gy

Suppose if ujadjacent to us, then z adjacent to
uzand u40r usand uz (or equivalently usand uy).
If z adjacent to usand uz then wusadjacent to
uqand uzand so {x, u4} is not a complementary 3-
dominating set. If z adjacent to uzand usthen
ugadjacent to uzand uswhich implies G = G,.
Suppose if z is non adjacent to ujthen let us
assume that z be adjacent to us0r uzand us. Now
usadjacent to uzand u40r uqand uor ujand uy
(or equivalently uzand u3). If usadjacent to uzand
uythen uqadjacent to ujand so {u,, x} is not a
complementary 3-dominating set. If usadjacent to
uiand ugthen ujadjacent to ug, if usadjacent to
uqand uythen uzadjacent to ugwhich implies G =
Gy.
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Subcase:(iii) All the vertices of N(x) are adjacent
to y, say ui, uz, uz

For this case, u.adjacent to u: (or equivalently
uz) or z (or equivalently usor us). Since G is
cubic, wu,will not be adjacent to wu; (or
equivalently us). Therefore u,must be adjacent to
z, then z adjacent to uqand u,or usand us. Since
G is cubic, z will not be adjacent to u;and also z
will not be adjacent to usand us. Therefore z must
adjacent to ugand us. Suppose if z adjacent to
uqand us, then uqwill not be adjacent to us.
Therefore wuymust be adjacent to wuy (or
equivalently us) and so wusadjacent to wusand
uswhich implies G = G.

Case:(2) <S>=PUP;

Let xy be an edge. With no loss of generality, let
us assume that x be adjacent to uiand us. Now z
adjacent to u,and ujand adjacent to uzor u40r z
adjacent to u; ( or equivalently u;) and adjacent
to any two of {us, us, us}.

Suppose if z adjacent to wuq, up, uz, then
ugqadjacent to u; (or equivalently u;) or not
adjacent to u; (or equivalently to uy). If usnot
adjacent to u; ( or equivalent to uu,) then
uqadjacent to uz, z and usand so S = {x, z, uy}
such that < S >= K which will fall under the
case (1). If usadjacent to uqthen usis adjacent or
non adjacent to to uy, If usnon adjacent to uy,
then wusadjacent to u usand y and so S =
{uy, us} which is not a complementary 3-
dominating set. If usadjacent to u4then S =
{x,z,us}and so < S >= Kzwhich will fall under
the case (1).

If z is adjacent to uq, upand usthen usis adjacent
or non adjacent to u4. If usadjacent to u then for
S={x,z,us}and so <S>=K3 which will come
under the case (1). If usadjacent to wuq then
usadjacent to any three of {y,up us us}. Let
usadjacent to wusz, uzand y. Hence for S =
{x,z,us} and so <S>=K which will fall under the
case (1).

Case:(3) <§ >=P3

Let us assume that y adjacent to x and z. Then
with no loss of generality, let y adjacent to ws.
Now ujadjacent to x, and one of {uz, uy, us} or
z and two of {us, uy, us}. Supposs if u,adjacent
to x, z and us, then usadjacent or non adjacent to
z (or equivalently x). If usnon adjacent to z, then
ugadjacent to uq, us and uzand so S={y, u,, us}
such that < S >= K; which will fall under the
case (1). If wadjacent to z, then usadjacent or
non adjacent to uy4. If us non adjacent to uythen
usadjacent to x, uj;and uzand hence S = {z, us} is
not a complementary 3-dominating set. If
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us adjacent to uythen for S = {y, u;, us} and so <
S >= Kz which will fall under the case (1).
Suppose if ujyadjacent to z, uzand ugthen usis
adjacent or non adjacent to z. If usadjacent to z,
then for S = {y,uz us}, <S>=K which will
come under the case (1). If us non adjacent to z,
then usadjacent to three of {x,uq,us, us}. Let us
assume that usadjacent to x, u,and uz. Hence S =
{y,uy us} and so < S >=K; which will come
under the case (1). Therefore y3(G) = (G) =3
ifand only if G = G4 or G».

Conclusion: In this paper we successfully
described the complementary 3-domination
number of some graphs, bounds and y; number
for cubic gaphs.
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