

BOUNDS ON COMPLEMENTARY 3-DOMINATION NUMBER IN GRAPHS

V.G. Bhagavathi Ammal¹*, M.K. Anushya²

ABSTRACT

In Graph theory, a **dominating set** for a graph *G* is a subset S of its vertices such that every vertex in V - S is adjacent to atleast one vertex in *S*. The minimum cardinality of a dominating set is called the domination number and is denoted by (*G*). A dominating set *S* of a graph *G* is said to be a **complementary 3-dominating set** of G if for every vertex in *S* has atleast three neighbors in V - S. The minimum cardinality of a complementary 3-dominating set is the complementary 3-domination number γ'_3 of a graph *G*. In this paper we determine complementary 3-domination number for some standard graphs and obtain some results concerning this parameter.

ArticleHistory: Received: 10.01.2022	Revised: 14.03.2022	Accepted: 05.04.2022

AMS Subject Classification: 05C69

Keywords: Domination number, chromatic number, complementary 3-domination number

¹*Assistant Professor, Department of Mathematics, S. T. Hindu College, Nagercoil, Tamil Nadu, India, Email: bhagavathianand@gmail.com

²Research Scholar, Department of Mathematics, S. T. Hindu College, Nagercoil, Tamil Nadu, India, Email: mkanushya1996@gmail.com

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012), Tamil Nadu, India

*Corresponding Author: - V.G. Bhagavathi Ammal

*Assistant Professor, Department of Mathematics, S. T. Hindu College, Nagercoil, Tamil Nadu, India, Email: bhagavathianand@gmail.com

DOI: 10.53555/ecb/2022.11.4.030

1. Introduction:

By a graph we mean a simple, connected, finite and undirected graph G = (V,E) where V is the vertex set whose elements are vertices or nodes and E is the edge set. Unless otherwise stated the graph G with |V| = n and |E| = q. Degree of a vertex v is denoted by (v). Let $\Delta(G)$ and $\delta(G)$ denotes the maximum and minimum degree of a graph respectively. We denote a complete graph on *n* vertices by K_n . A bipartite graph G = (V, E)with partition $V = (V_1, V_2)$ is said to be a *complete bipartite graph* if every vertex in V_1 connected to every vertex of V_2 . A gear graph G, is a wheel graph with a graph vertex added between each pair of adjacent graph vertices of the outer cycle. A Fan graph F_{m} , is defined as the graph join $\overline{K}_m + P_n$, where \overline{K}_m is the empty graph on \overline{m} nodes and P_n is the path graph on n nodes. The n - Barbell graph is the simple graph obtained by connecting two copies of a complete graph K_n by a bridge. A graph G is connected if any two vertices of G are connected by a path. The complement G of G is the graph with vertex set V in which two vertices are connected if and only if they are not adjacent in G. A star graph $K_{1,n}$ is a tree on n vertices with one vertex having vertex degree n-1 and the other n-1 having vertex degree one. The *friendship graph* F_n can be constructed by joining ' copies of the cycle '' n graph C_3 with a common vertex which becomes a universal vertex for the graph. A wheel graph W_n is a graph formed by connecting a single universal vertex to all vertices of a cycle. A graph C(1) is obtained by attaching a path P_2 to any vertex of degree C_m . $C_m + e$ is a graph obtained by adding an edge into a cycle C_m . $C(P_n)$ is a graph obtained by attaching a path P_n to any vertex of C_m . A Nordhaus Gaddum type result is a lower and upper bound on the sum or product of a parameter of a graph and its complement. A subset S of V is called a *dominating set* of G if every vertex In V-S is adjacent to atleast one vertex in S. The domination number (G) is the minimum cardinality of a dominating set. In this paper we introduce the concept of complementary 3-domination number and we present some basic theorems related to this parameter.

Definition:1.1 A dominating set S in a graph G is said to be a *complementary 3-dominating set* of G if any vertex in S has atleast three neighbours in V-S. The complentary 3-domination number $\gamma'_{3}(G)$ of a graph G is the minimum cardinality of a complementary 3-dominating set.

Example: 1.2

For the above example the dominating set is $\{v_1, v_7\}$ and the complementary 3-dominating set is $\{v_1, v_2, v_3\}$ and hence $\gamma'_3(G) = 3$

2. γ'_3 number for some standard graphs

1. For any complete graph of order $n \ge 4$ $\gamma'_2(K_n) = 1$ 2. For any complete bipartite graph $K_{m,n}$ with $m \ge 2, n \ge 3$ $\gamma'_{3}(K_{m,n}) = \gamma'_{3}(K_{m,n})$ $\begin{cases} 2 \ if \ m = 2, n = 3 \ and \ m \ge 4, n \ge 4 \\ 3 \ if \ m = n = 3 \ and \ m = 3, m = 4 \end{cases}$ 3. For any wheel graph of order $n \ge 4$, $\gamma'(W_n) =$ 1 4. For any Friendship graph F_n , $\gamma'_3(G) = 1$ where $n \ge 5$ 5. For any prism graph CL_p of order $p \ge p$ $6, \gamma'_{3}(CL_{p}) = \{ \begin{array}{c} -1 \text{ when } n \text{ is odd} \\ n-2 \text{ when } n \text{ is even} \end{array}$ where $p = 2n, n \ge 3$ 6. For any gear graph of order $p \ge 7$, $\gamma'_3(G_p) = n$ where $p = 2n + 1, n \ge 3$ 7. For any star graph $K_{1,n}$ of order $n \ge n$ 3, $\gamma'_3(K_1) = 1$ 8. For a Petersen graph G, $\gamma_3(G) = 3$

Observation:2.1 Illustrative example for which domination number equals the complementary 3dominaion number.

Graph for which $\gamma'_3(G) = (G)$ For the figure:2, $S = \{v_3v_7\}$ forms $\gamma'_3 - set$ and hence $\gamma'_3(G) = \gamma(G) = 3$

Observation: 2.2 The complement of a complementary 3-dominating set need not be a complementary 3-dominating set.

Example for which complement of $\gamma'_3 - set$ need not be a $\gamma'_3 - set$. In figure: 3³ the set $S = \{v_4, v_6\}$ forms a $\gamma'_3 - set$ and hence $\gamma'_3(G) = 2$ but not a complementary 3dominating set. **Observation: 2.3** Every complementary 3-dominating set is a dominating set but the converse need not be true.

Consider $C_4 + e$. Let $\{v_1, v_2, v_3, v_4\}$ be the vertices of $C_4 + e$. Now the set $S = \{v_2\}$ is the complementary 3-dominating set and dominating set.

Consider C_5 . Let $\{v_1, v_2, v_3, v_4, v_5\}$ be the vertices of C_5 . Now thw set $S = \{v_3, v_5\}$ for the dominating set but not $\gamma'_3 - set$.

Observation: 2.4 Let G be a connected graph and h be a spanning subgraph of G. H has $\gamma'_3 - set$ then $\gamma'_3(G) \leq \gamma'_3(H)$ and the bound is sharp.

In the above figure, Let the set $S = \{v_1\}$ forms $\gamma'_3 - set$ and hence $\gamma'_3(G) = 1$. Let H_1 and H_2 be the spanning subgraphs of C_6 . Now $S_1 = \{v_1, v_5\}$ forms $\gamma'_3 - set$ and hence $\gamma'_3(H_1) = 2$. Let $S_2 = \{v_1, v_2, v_2, v_4, v_5, v_6, v_7\}$ forms $\gamma'_3 - set$ and hence $\gamma'_3(H_2) = 7$. Therefore **Remark:** 2.5 For $C_4 + e$ with vertices $\{\gamma_0, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_7\}$ with $e \in v \neq \gamma_3[v_3]$ forms $\gamma'_3 - set$ and hence $\gamma'_3(G) = 1$. Let $^3H \cong C_4$ be a spanning subgraph of $C_4 + e$, which implies $\gamma'_3(H) = 4$ and hence $\gamma'_3(G) < \gamma''_3(H)$. Let P be the spanning subgraph of C_n which implies

Observation: 2.6 For any connected graph G, $\gamma(G) \le \gamma_c(G) \le \gamma'_3(G)$

Fig:5 Graph for which $\gamma(G) \leq \gamma_c(G) \leq \gamma'_3(G)$ *Eur. Chem. Bull.* **2022**, *11(Regular Issue 4)*, *253 - 258*

In the above figure, $\{v_1, v_5\}$ forms a dominating set, $\{v_1, v_3, v_4,\}$ forms a connected dominating set and $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ forms a complementary 3-dominating set and hence $\gamma'_3(G) \leq \gamma'_3(H)$.

Theorem: 2.7 If G is any connected graph then $1 \le \gamma'(G) \le n$ **Proof:** If G is any non-trivial connected graph containing degree $\Delta(G) = n - 1$ or graphs with diam = rad = 1, then $\gamma'_{3}(G) = 1$, the lower bounds holds. Let $\Delta(G\gamma' < O_{h_{3}}) - \underline{4} \cdot \gamma F(OP_{3})$ g=tamph not having two or more vertices of degree two continuously then $1 < \gamma_{3}(G) < n$. Let S be the dominating set of G. For some vertex $u \in S$, (u) = 1 or 2 then S is not a complementary

Theorem: 2.8 For any connected graph G of order $n \ge 4$, every $\gamma'_3(G)$ – dominating set of G contains its support vertices.

Proof: Let G be a connected graph of order $n \ge 4$ and S be a γ'_3 – dominating set of G. Let u be a support vertex of G. Then there exists a pendant vertex v which is adjacent to u in G. Suppose u does not belongs to S. Then v is not dominated by any vertex in S implies $v \in S$. But deg(v) = 1 shows that S is not a γ'_3 - dominating set of G, which is a contradiction. Hence, $u \in S$.

Theorem: 2.9 If G is a graph without isolated vertices $de(G) \ge 3$ and S is a minimal

Proof: Let G be a graph without isolated vertices with $\Delta(G) \ge 3$ and S be a minimal

To prove: u is dominated by some vertex in V(G) - S

Suppose is not dominated by any vertex in V(G) - S. Since G has no isolated vertices and S is a γ'_3 - dominating set of G, each vertex in (G) - S has atleast three neighbours in $S - \{u\}$. This contradicts the fact that S is a minimal dominating set of G.

Note: 2.10 If G is connected graph with $de(G) \ge 3$ and S is a γ'_3 - dominating set of G then the complement V - S need not be a γ'_3 -dominating set.

Theorem: 2.11 For any connected cubic graph of order 8 $\gamma'_3(G) = \chi(G) = 3$ if and only if $G \cong G_1$ or G_2 .

Proof: If $G \cong G_1$ or G_2 then obviously $\gamma'_3(G) = (G) = 3$. Conversely let us assume that $\gamma'(G) = (G) = 3$. Let us assume that $S = \{x, y, z\}$ be a minimum complementary 3-dominating set of *G* and $V - S = \{u_1, u_2, u_3, u_4, u_5\}$. Clearly $\langle S \rangle$ is not equal to K_3 . Therefore we consider three cases.

Case: (1) $<S > = K_3^-$

With no loss of generality, let $(x) = \{u_1, u_2, u_3\}$. Then atleast one of the vertices of $(x) = \{u_1, u_2, u_3\}$ is adjacent to y.

Subcase:(i) One vertex of N(x) adjacent to y, say u_1 .

For this case u_4 and u_5 are adjacent to y. Suppose now z is adjacent or non adjacent to u_1 .

Suppose if z is adjacent to u_1 then z is adjacent to u_2 and u_3 (or equivalently u_4 and u_5) or u_2 (or equivalently u_3) and u_4 (or equivalently u_5). If z is adjacent to u_2 and u_3 , then u_2 is non adjacent to u_3 . Therefore u_2 must be adjacent to u_4 (or equivalently u_5) and then u_5 is adjacent to u_3 and

 u_4 which implies $G \cong G_1$. Suppose if z is adjacent to u_2 and u_4 then u_2 is non adjacent to u_4 and so u_2 is adjacent to u_3 or u_5 . If u_2 is adjacent to u_3 , then $\{y, u_2\}$ is not a complementary 3-dominating set. Suppose if u is adjacent dominating since of (Gishen $V(G) - \frac{2}{3} \frac{3}{5}$ cubic, u_3 is adjacent to u_4 and u_5 which implies γ'_{3} -dominating set of G. Let $u \in (G)$. $G \cong G_2$. Suppose z is non adjacent to u_1 then with no loss of generality, let $(z) = \{u_2, u_3, u_4\}$. Then u_2 is adjacent to u_1 or u_3 or u_5 or u_4 . If u_2 is adjacent to u_3 then $\{u_2, y\}$ is not a complementary 3dominating set. Suppose if u_2 is adjacent to u_1 and since G is cubic, u_5 is adjacent to u_4 and u_3 and so $\{x, u_4\}$ is not a complementary 3-dominating set. If u_2 is adjacent to u_4 , then u_5 adjacent to u_1 and u_3 and so $\{z, u_1\}$ is not a complementary 3dominating set. Suppose if u_2 adjacent to u_5 , then adjacent to u_5 then $\{x, u_4\}$ is not a u₄is complementary 3-dominating set. If u_4 adjacent to u_3 then u_5 adjacent to u_1 and hence $\{u_3, u_5\}$ is not a complementary 3-dominating set. If u_1 adjacent to u_4 then 3 adjacent to u_5 which implies $G \cong G_1$.

Subcase:(ii) Two vertices if N(z) is adjacent to y, say u_1 and u_2

For this case, let us assume that y is adjacent to u_4 . Now z ix adjacent to u_1 (or equivalently u_2) or non adjacent to u_1 (or equivalently u_2).

If z is adjacent to u_1 , then u_2 is adjacent to u_3 (or equivalently u_5) or z or u_4 . If u_2 is adjacent to u_3 then z is non adjacent to u_3 and u_4 . Also z is non adjacent to u_3 and u_5 . If z adjacent to u_4 and u_5 then u_5 adjacent to u_4 and u_3 and so $S = \{x, u_4\}$ is not a complementary 3-dominating set. If u_2 adjacent to z and since G is cubic, z is non adjacent to u_4 (or equivalently u_3). Therefore z must be adjacent to u_5 . Now u_5 adjacent to u_3 and u_4 and then u_3 adjacent to u_4 which implies $G \cong G_2$.

Suppose if u_2 adjacent to u_5 , then z adjacent to u_3 and u_4 or u_5 and u_3 (or equivalently u_5 and u_4). If z adjacent to u_4 and u_3 then u_5 adjacent to

 u_4 and u_3 and so $\{x, u_4\}$ is not a complementary 3dominating set. If z adjacent to u_3 and u_5 then u_4 adjacent to u_3 and u_5 then u_4 adjacent to u_3 and u_5 then

Suppose if z is non adjacent to u_1 then let us assume that z be adjacent to u_4 or u_3 and u_5 . Now u_5 adjacent to u_3 and u_4 or u_1 and u_2 or u_1 and u_4 (or equivalently u_2 and u_3). If u_5 adjacent to u_3 and u_4 then u_1 adjacent to u_2 and so $\{u_2, x\}$ is not a complementary 3-dominating set. If u_5 adjacent to u_1 and u_4 then u_2 adjacent to u_3 , if u_5 adjacent to u_1 and u_2 then u_3 adjacent to u_4 which implies $G \cong$ G_1 . **Subcase:**(iii) All the vertices of N(x) are adjacent to *y*, say u_1 , u_2 , u_3

For this case, u_2 adjacent to u_1 (or equivalently u_3) or z (or equivalently u_4 or u_5). Since G is cubic, u_2 will not be adjacent to u_1 (or equivalently u_3). Therefore u_2 must be adjacent to z, then z adjacent to u_1 and u_2 or u_4 and u_5 . Since G is cubic, z will not be adjacent to u_1 and also z will not be adjacent to u_1 and u_5 . Therefore z must adjacent to u_4 and u_5 . Suppose if z adjacent to u_4 and u_5 , then u_1 will not be adjacent to u_3 . Therefore u_1 must be adjacent to u_4 (or equivalently u_5) and so u_5 adjacent to u_3 and u_4 which implies $G \cong G_1$.

Case:(2) < $S >= P_1 \cup P_2$

Let xy be an edge. With no loss of generality, let us assume that x be adjacent to u_1 and u_3 . Now zadjacent to u_1 and u_2 and adjacent to u_3 or u_4 or zadjacent to u_1 (or equivalently u_2) and adjacent to any two of { u_3 , u_4 , u_5 }.

Suppose if z adjacent to u_1, u_2, u_3 , then u_4 adjacent to u_1 (or equivalently u_2) or not adjacent to u_1 (or equivalently to u_2). If u_4 not adjacent to u_1 (or equivalent to u_2u_2) then u_4 adjacent to u_3 , z and u_5 and so $S = \{x, z, u_4\}$ such that $\langle S \rangle = \overline{K_3}$ which will fall under the case (1). If u_4 adjacent to u_1 then u_5 is adjacent or non adjacent to u_4 , If u_5 non adjacent to u_4 , then u_5 adjacent to u_2, u_3 and y and so $S = \{u_1, u_5\}$ which is not a complementary 3-dominating set. If u_5 adjacent to u_4 then $S = \{x, z, u_5\}$ and so $\langle S \rangle = \overline{K_3}$ which will fall under the case (1).

If z is adjacent to u_1 , u_2 and u_3 then u_5 is adjacent or non adjacent to u_1 . If u_5 adjacent to u_1 then for $S = \{x, z, u_5\}$ and so $\langle S \rangle = \overline{K_3}$ which will come under the case (1). If u_5 adjacent to u_1 then u_5 adjacent to any three of $\{y, u_2, u_3, u_4\}$. Let u_5 adjacent to u_3 , u_4 and y. Hence for $S = \{x, z, u_5\}$ and so $\langle S \rangle = \overline{K}$ which will fall under the case (1).

Case:(3) $< S >= P_3$

Let us assume that *y* adjacent to *x* and *z*. Then with no loss of generality, let *y* adjacent to u_1 . Now u_2 adjacent to *x*, and one of $\{u_3, u_4, u_5\}$ or *z* and two of $\{u_3, u_4, u_5\}$. Supposs if u_2 adjacent to *x*, *z* and u_3 , then u_4 adjacent or non adjacent to *z* (or equivalently *x*). If u_4 non adjacent to *z*, then u_4 adjacent to u_1 , u_5 and u_3 and so S={y, u_2, u_4 } such that $\langle S \rangle = \bar{K}_3$ which will fall under the case (1). If u_4 adjacent to *z*, then u_5 adjacent or non adjacent to u_4 . If u_5 non adjacent to u_4 then u_5 adjacent to *x*, u_1 and u_3 and hence $S = \{z, u_5\}$ is not a complementary 3-dominating set. If u_5 adjacent to u_4 then for $S = \{y, u_2, u_5\}$ and so $\langle S \rangle = \overline{K}_3$ which will fall under the case (1). Suppose if u_2 adjacent to z, u_3 and u_4 then u_5 is adjacent or non adjacent to z. If u_5 adjacent to z, then for $S = \{y, u_2, u_5\}$, $\langle S \rangle = \overline{K}_3$ which will come under the case (1). If u_5 non adjacent to z, then u_5 adjacent to three of $\{x, u_1, u_3, u_4\}$. Let us assume that u_5 adjacent to x, u_1 and u_3 . Hence $S = \{y, u_2, u_5\}$ and so $\langle S \rangle = \overline{K}_3$ which will come under the case (1). Therefore $\gamma'_3(G) = (G) = 3$ if and only if $G \cong G_1$ or G_2 .

Conclusion: In this paper we successfully described the complementary 3-domination number of some graphs, bounds and γ'_3 number for cubic gaphs.

References:

- Bhagavathi ammal V G and Louisa Dickfania R "Accurate Certified Domination Of Graphs", International Journal of Mathematics Trends and Technology"(IJMTT)-Volume 66, Issue 5-May2020
- [2] DuraiRaj S, Shiji Kumari S G and Anto A M,"On the Certified Domination of Graphs", Journal of Information and Computational Science, 10(2020), [331-339]
- [3] Harary F, "Graph Theory", Addison-Wesley, Reading MA (1969)
- [4] Kulli V R, "Theory of Domination in Graphs", Vishwa International Publications, Gulburga, India (2010)
- [5] Mahadevan G, Selvam Avadayappan A, Bhagavathi Ammal V G and Subramanian T "Restrained Triple Connected Domination Number of a Graph", International Journal of Engineering Research and Applications(IJERA) ISSN: 2248-9622 www.ijera.com Vol.2, Issue 6,November-December 2012,pp[225-229]
- [6] Mahadevan G, Selvam Avadayappan A and Mydeenbibi A, "Cubic graphs with equal Two Domination number and Chromatic Number", International Journal of Information Technology and Knowledge Management, July-December 2011,volume 4,No.2,pp.[379-383]
- [7] Mahadevan G, Selvan Avadayappan A and Mydeenbibi A,"Characterization of Complementary connected Domination number of a Graph",International Journal of Mathematics and Soft Computing,Vol.2,No.1(2012),[119-129]
- [8] Mehry A and Safakish R,"Three Domination number and Connectivity in Graphs:,arXiv:1502.04458v1[math.CO]16 Feb2015

[9] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, "Fundamentals of Dominaion in Graphs", Marcel Dekker, Newyork (1998)