BOUNDS ON COMPLEMENTARY 3-DOMINATION NUMBER IN GRAPHS

V.G. Bhagavathi Ammal ${ }^{1 *}$, M.K. Anushya ${ }^{2}$

Abstract

In Graph theory, a dominating set for a graph G is a subset S of its vertices such that every vertex in $V-S$ is adjacent to atleast one vertex in S. The minimum cardinality of a dominating set is called the domination number and is denoted by (G). A dominating set S of a graph G is said to be a complementary 3dominating set of G if for every vertex in S has atleast three neighbors in $V-S$. The minimum cardinality of a complementary 3-dominating set is the complementary 3-domination number γ_{3}^{\prime} of a graph G. In this paper we determine complementary 3 -domination number for some standard graphs and obtain some results concerning this parameter.

ArticleHistory: Received: 10.01.2022 \quad Revised: 14.03.2022 \quad Accepted: 05.04.2022

AMS Subject Classification: 05C69
Keywords: Domination number, chromatic number, complementary 3-domination number

${ }^{1 *}$ Assistant Professor, Department of Mathematics, S. T. Hindu College, Nagercoil, Tamil Nadu, India, Email: bhagavathianand@gmail.com
${ }^{2}$ Research Scholar, Department of Mathematics, S. T. Hindu College, Nagercoil, Tamil Nadu, India, Email: mkanushya1996@gmail.com
(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012), Tamil Nadu, India
*Corresponding Author: - V.G. Bhagavathi Ammal
*Assistant Professor, Department of Mathematics, S. T. Hindu College, Nagercoil, Tamil Nadu, India, Email: bhagavathianand@gmail.com

DOI: 10.53555/ecb/2022.11.4.030

1. Introduction:

By a graph we mean a simple, connected, finite and undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where V is the vertex set whose elements are vertices or nodes and E is the edge set. Unless otherwise stated the graph G with $|V|=n$ and $|E|=q$. Degree of a vertex v is denoted by (v). Let $\Delta(G)$ and $\delta(G)$ denotes the maximum and minimum degree of a graph respectively. We denote a complete graph on n vertices by K_{n}. A bipartite graph $\mathrm{G}=(V, E)$ with partition $V=\left(V_{1}, V_{2}\right)$ is said to be a complete bipartite graph if every vertex in V_{1} connected to every vertex of V_{2}. A gear graph G, is a wheel graph with a graph vertex added between each pair of adjacent graph vertices of the outer cycle. A Fan graph $F_{\underline{m}}$, is defined as the graph join $\bar{K}_{m}+P_{n}$, where \bar{K}_{m} is the empty graph on m nodes and P_{n} is the path graph on n nodes. The \boldsymbol{n} - Barbell graph is the simple graph obtained by connecting two copies of a complete graph K_{n} by a bridge. A graph G is connected if any two vertices of G are connected by a path. The complement G of G is the graph with vertex set V in which two vertices are connected if and only if they are not adjacent in G. A star graph $\boldsymbol{K}_{1, \boldsymbol{n}}$ is a tree on n vertices with one vertex having vertex degree $n-1$ and the other $n-1$ having vertex degree one. The friendship graph $\boldsymbol{F}_{\boldsymbol{n}}$ can be constructed by joining ${ }^{\prime} n$ copies of the cycle graph C_{3} with a common vertex which becomes a universal vertex for the graph. A wheel graph $\boldsymbol{W}_{\boldsymbol{n}}$ is a graph formed by connecting a single universal vertex to all vertices of a cycle. A graph $C(1)$ is obtained by attaching a path P_{2} to any vertex of degree C_{m}. $C_{m}+e$ is a graph obtained by adding an edge into a cycle $C_{m} . C\left(P_{n}\right)$ is a graph obtained by attaching a path P_{n} to any vertex of C_{m}. A Nordhaus Gaddum type result is a lower and upper bound on the sum or product of a parameter of a graph and its complement. A subset S of V is called a dominating set of G if every vertex In V-S is adjacent to atleast one vertex in S. The domination number (G) is the minimum cardinality of a dominating set. In this paper we introduce the concept of complementary 3-domination number and we present some basic theorems related to this parameter.

Definition:1.1 A dominating set S in a graph G is said to be a complementary 3-dominating set of G if any vertex in S has atleast three neighbours in V-S. The complentary 3-domination number $\gamma_{3}^{\prime}(G)$ of a graph G is the minimum cardinality of a complementary 3-dominating set.

Example: 1.2

Fig: 1
For the above example the dominating set is $\left\{v_{1}, v_{7}\right\}$ and the complementary 3-dominating set is $\left\{v_{1}, v_{2}, v_{3}\right\}$ and hence $\gamma_{3}^{\prime}(G)=3$

2. $\boldsymbol{\gamma}_{3}^{\prime}$ number for some standard graphs

${\underset{\gamma}{3}}_{\prime}^{\prime}\left(K_{n}\right)=1$
$\underset{m}{2} \underset{\sim}{\geq} \underset{2}{\text { For }}, n \geq 3$ any complete bipartite graph $\gamma_{3} K_{m, n}\left(K_{m, n}\right)=$
2 if $m=2, n=3$ and $m \geq 4, n \geq 4$
$\{3$ if $m=n=3$ and $m=3, m=4$
3. For any wheel graph of order $n \geq 4, \gamma^{\prime}\left(W_{n}\right)=$ 1
4. For any Friendship graph $F_{n}, \gamma_{3}^{\prime}(G)=1$ where $n \geq 5$
5. For any prism graph $C L_{p}$ of order $p \geq$ $6, \gamma_{3}^{\prime}\left(C L_{p}\right)=\left\{\begin{array}{l}-1 \text { when } n \text { is odd } \\ n-2 \text { when } n \text { is even }\end{array}\right.$
where $p=2 n, n \geq 3$
6 . For any gear graph of order $p \geq 7, \gamma_{3}^{\prime}\left(G_{p}\right)=n$ where $p=2 n+1, n \geq 3$
7. For any star graph $K_{1, n}$ of order $n \geq$
$3, \gamma_{3}^{\prime}\left(K_{1}\right)=1$
8. For a Petersen graph G, $\gamma_{3}(G)=3$

Observation:2.1 Illustrative example for which domination number equals the complementary 3dominaion number.

Fig: 2
Graph for which $\gamma_{3}^{\prime}(G)=(G)$
For the figure: $2, S=\left\{v_{3} v_{7}\right\}$ forms $\gamma_{3}^{\prime}-$ set and hence $\gamma_{3}^{\prime}(G)=\gamma(G)=3$

Observation: 2.2 The complement of a complementary 3-dominating set need not be a complementary 3 -dominating set.

Fig: 3
Example for which complement of $\gamma_{3}^{\prime}-$ set need not be a $\gamma_{3}^{\prime}-$ set. In figure: 3^{\prime} the set. $S=\left\{v_{4}, v_{6}\right\}$ forms a $\gamma_{3}^{\prime}-$ set and hence $\gamma_{3}^{\prime}(G)=2$ but not a complementary 3 dominating set.

Observation: 2.3 Every complementary 3dominating set is a dominating set but the converse need not be true.
Consider $C_{4}+e$. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the vertices of $C_{4}+e$. Now the set $S=\left\{v_{2}\right\}$ is the complementary 3-dominating set and dominating set.
Consider C_{5}. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be the vertices of C_{5}. Now thw set $S=\left\{v_{3}, v_{5}\right\}$ for the dominating set but not $\gamma_{3}^{\prime}-$ set.

Observation: 2.4 Let Ge a connected graph and h be a spanning subgraph of G. H has $\gamma_{3}^{\prime}-$ set then $\gamma_{3}^{\prime}(G) \leq \gamma_{3}^{\prime}(H)$ and the bound is sharp.

In the above figure, Let the set $S=\left\{v_{1}\right\}$ forms γ_{3} - set and hence $\gamma_{3}^{\prime}(G)=1$. Let H_{1} and H_{2} be the spanning subgraphs of C_{6}
forms γ_{3} Now $S_{1}=\left\{v_{1} v_{5}\right\}$
$v_{2}=$ forms γ_{3}^{\prime} set and hence $\gamma_{3}\left(H_{1}\right)=2$. Let $S_{2}=$ $\left\{\begin{array}{l}\left.v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6} v_{7}\right\} \\ \text { hence } \gamma_{3}\left(H_{2}\right)\end{array}=\begin{array}{l}\text { forms }\end{array} \gamma_{3}^{\prime}-\right.$ set and Remark: $2.5 \quad$ For $\quad C_{4}+e \quad$ with vertices $\left\{, v, v, v^{v}\right\}$ with $e \in v{ }^{v} q^{2}\{v\}$ forms $\gamma_{3}-\operatorname{set}^{\prime \prime}$ and hence $\gamma_{3}(G)=1$. Let ${ }^{3} H \cong{ }^{1} C_{4}$ be a $\stackrel{\text { spanning }}{\gamma_{3}(H)} 4$ subgraph of of $C_{4}+e e^{\prime}$ which implies the spanning subgraph of C_{n} which implies

Observation: 2.6 For any connected graph G, $\gamma(G) \leq \gamma_{c}(G) \leq \gamma_{3}^{\prime}(G)$

Fig:5 Graph for which $\gamma(G) \leq \gamma_{c}(G) \leq \gamma_{3}^{\prime}(G)$

In the above figure, $\left\{v_{1}, v_{5}\right\}$ forms a dominating set $\left\{v_{1}, v_{3}, v_{4}\right\}$ forms a connected dominating set and $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ forms a cpmplementary
3-dominating set and hence

$$
\gamma_{3}^{\prime}(G) \leq \gamma_{3}^{\prime}(H)
$$

Theorem:2.7 If G is any connected graph then $1 \leq \gamma^{\prime}(G) \leq n$
Proof: If G is any non-trivial connected graph containing degree $\Delta(G)=n-1$ or graphs with diam $=r a d=1$, then $\gamma_{3}^{\prime}(G)=1$, the lower bounds holds. Let $\Delta\left(G \gamma^{\prime} \Varangle \sigma_{3}\right)-4 \cdot \gamma \mathrm{~F}\left(0 P_{3^{2}}\right) \mathrm{g}=\mathrm{ranph}$ not having two or more vertices of degree two continuously then $1<\gamma_{3}^{1}(G)<n$. Let S be the dominating set of G. For some vertex $u \in S$, $(u)=1$ or 2 then S is not a complementary

Theorem: 2.8 For any connected graph G of order $n \geq 4$, every $\gamma_{3}^{\prime}(G)-$ dominating set of G contains its support vertices.
Proof: Let G be a connected graph of order $n \geq 4$ and S be a $\gamma_{3}^{\prime}-$ dominating set of G. Let u be a support vertex of G. Then there exists a pendant vertex v which is adjacent to u in G. Suppose u does not belongs to S . Then v is not dominated by any vertex in S implies $v \in S$. But
$\operatorname{deg}(v)=1$ shows that S is not a $\gamma^{\prime}{ }_{3}-$ dominating set of G , which is a contradiction. Hence, $u \in S$.

Theorem: 2.9 If G is a graph without isolated vertices $d e(G) \geq 3$ and S is a minimal
Proof: Let G be a graph without isolated vertices with $\Delta(G) \geq 3$ and S be a minimal
To prove: u is dominated by some vertex in $V(G)-S$
Suppose is not dominated by any vertex in $V(G)-S$. Since G has no isolated vertices and S is a $\gamma_{3}^{\prime}-$ dominating set of G, each vertex in (G) $-S$ has atleast three neighbours in $S-\{u\}$. This contradicts the fact that S is a minimal dominating set of G.
Note: 2.10 If G is connected graph with $d e(G) \geq 3$ and S is a $\gamma_{3}^{\prime}-$ dominating set of G then the complement $V-S$ need not be a $\gamma_{3}^{\prime}-$ dominating set.

Theorem: 2.11 For any connected cubic graph of order $8 \gamma_{3}^{\prime}(G)=\chi(G)=3$ if and only if $G \cong$ G_{1} or G_{2}.

Proof: If $G \cong G_{1}$ or G_{2} then obviously $\gamma_{3}^{\prime}(G)=$ $(G)=3$. Conversely let us assume that $\gamma^{\prime}(G G)=$
$(G)=3$. Let us assume that $S=\{x, y, z\}$ be a minimum complementary 3 -dominating set of G and $V-S=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. Clearly $\langle S\rangle$ is not equal to K_{3}. Therefore we consider three cases.

Case: (1) $\langle\mathrm{S}\rangle=K_{3}^{-}$
With no loss of generality, let $(x)=$ $\left\{u_{1}, u_{2}, u_{3}\right\}$. Then atleast one of the vertices of $(x)=\left\{u_{1}, u_{2}, u_{3}\right\}$ is adjacent to y.

Subcase:(i) One vertex of $N(x)$ adjacent to y, say u_{1}.
For this case u_{4} and u_{5} are adjacent to y. Suppose now z is adjacent or non adjacent to u_{1}.
Suppose if z is adjacent to u_{1} then z is adjacent to u_{2} and u_{3} (or equivalently u_{4} and u_{5}) or u_{2} (or equivalently u_{3}) and u_{4} (or equivalently u_{5}). If z is adjacent to u_{2} and u_{3}, then u_{2} is non adjacent to u_{3}. Therefore u_{2} must be adjacent to u_{4} (or equivalently u_{5}) and then u_{5} is adjacent to u_{3} and
u_{4} which implies $G \cong G_{1}$. Suppose if z is adjacent to u_{2} and u_{4} then u_{2} is non adjacent to u_{4} and so u_{2} is adjacent to u_{3} or u_{5}. If u_{2} is adjacent to u_{3}, then $\left\{y, u_{2}\right\}$ is not a complementary 3 -dominating
 cubic, u_{3} is adjacent to u_{4} and u_{5} which implies $G \cong G_{2} . \quad \gamma_{3}^{\prime}$ dominating set of G. Let $u \in(G)$.
Suppose z is non adjacent to u_{1} then with no loss of generality, let $(z)=\left\{u_{2}, u_{3}, u_{4}\right\}$. Then u_{2} is adjacent to u_{1} or u_{3} or u_{5} or u_{4}. If u_{2} is adjacent to u_{3} then $\left\{u_{2}, y\right\}$ is not a complementary 3dominating set. Suppose if u_{2} is adjacent to u_{1} and since G is cubic, u_{5} is adjacent to u_{4} and u_{3} and so $\left\{x, u_{4}\right\}$ is not a complementary 3 -dominating set. If u_{2} is adjacent to u_{4}, then u_{5} adjacent to u_{1} and u_{3} and so $\left\{z, u_{1}\right\}$ is not a complementary 3dominating set. Suppose if u_{2} adjacent to u_{5}, then u_{4} is adjacent to u_{5} then $\left\{x, u_{4}\right\}$ is not a complementary 3 -dominating set. If u_{4} adjacent to u_{3} then u_{5} adjacent to u_{1} and hence $\left\{u_{3}, u_{5}\right\}$ is not a complementary

3-dominating set. If u_{1} adjacent to u_{4} then 3 adjacent to u_{5} which implies $G \cong G_{1}$.

Subcase:(ii) Two vertices if $N(z)$ is adjacent to y, say u_{1} and u_{2}
For this case, let us assume that y is adjacent to u_{4}. Now z ix adjacent to u_{1} (or equivalently u_{2}) or non adjacent to u_{1} (or equivalently u_{2}).
If z is adjacent to u_{1}, then u_{2} is adjacent to u_{3} (or equivalently u_{5}) or z or u_{4}. If u_{2} is adjacent to u_{3} then z is non adjacent to u_{3} and u_{4}. Also z is non adjacent to u_{3} and u_{5}. If z adjacent to u_{4} and u_{5} then u_{5} adjacent to u_{4} and u_{3} and so $S=\left\{x, u_{4}\right\}$ is not a complementary 3 -dominating set. If u_{2} adjacent to z and since G is cubic, z is non adjacent to u_{4} (or equivqlently u_{3}). Therefore z must be adjacent to u_{5}. Now u_{5} adjacent to u_{3} and u_{4} and then u_{3} adjacent to u_{4} which implies $G \cong G_{2}$.
Suppose if u_{2} adjacent to u_{5}, then z adjacent to u_{3} and u_{4} or u_{5} and u_{3} (or equivalently u_{5} and u_{4}).
If z adjacent to u_{4} and u_{3} then u_{5} adjacent to u_{4} and u_{3} and so $\left\{x, u_{4}\right\}$ is not a complementary 3dominating set. If z adjacent to u_{3} and u_{5} then u_{4} adjacent to u_{3} and u_{5} which implies $G \cong G_{2}$.
Suppose if z is non adjacent to u_{1} then let us assume that z be adjacent to u_{4} or u_{3} and u_{5}. Now u_{5} adjacent to u_{3} and u_{4} or u_{1} and u_{2} or u_{1} and u_{4} (or equivalently u_{2} and u_{3}). If u_{5} adjacent to u_{3} and u_{4} then u_{1} adjacent to u_{2} and so $\left\{u_{2}, x\right\}$ is not a complementary 3 -dominating set. If u_{5} adjacent to u_{1} and u_{4} then u_{2} adjacent to u_{3}, if u_{5} adjacent to u_{1} and u_{2} then u_{3} adjacent to u_{4} which implies $G \cong$ G_{1}.

Subcase:(iii) All the vertices of $N(x)$ are adjacent to y, say u_{1}, u_{2}, u_{3}
For this case, u_{2} adjacent to u_{1} (or equivalently u_{3}) or z (or equivalently u_{4} or u_{5}). Since G is cubic, u_{2} will not be adjacent to u_{1} (or equivalently u_{3}). Therefore u_{2} must be adjacent to z, then z adjacent to u_{1} and u_{2} or u_{4} and u_{5}. Since G is cubic, z will not be adjacent to u_{1} and also Z will not be adjacent to u_{1} and u_{5}. Therefore z must adjacent to u_{4} and u_{5}. Suppose if z adjacent to u_{4} and u_{5}, then u_{1} will not be adjacent to u_{3}. Therefore u_{1} must be adjacent to u_{4} (or equivalently u_{5}) and so u_{5} adjacent to u_{3} and u_{4} which implies $G \cong G_{1}$.

Case: (2) $<S>=P_{1} \cup P_{2}$
Let $x y$ be an edge. With no loss of generality, let us assume that x be adjacent to u_{1} and u_{3}. Now Z adjacent to u_{1} and u_{2} and adjacent to u_{3} or u_{4} or Z adjacent to u_{1} (or equivalently u_{2}) and adjacent to any two of $\left\{u_{3}, u_{4}, u_{5}\right\}$.
Suppose if z adjacent to u_{1}, u_{2}, u_{3}, then u_{4} adjacent to u_{1} (or equivalently u_{2}) or not adjacent to u_{1} (or equivalently to u_{2}). If u_{4} not adjacent to u_{1} (or equivalent to $u_{2} u_{2}$) then u_{4} adjacent to u_{3}, z and u_{5} and so $S=\left\{x, z, u_{4}\right\}$ such that $\langle S\rangle=\bar{K}_{3}$ which will fall under the case (1). If u_{4} adjacent to u_{1} then u_{5} is adjacent or non adjacent to to u_{4}, If u_{5} non adjacent to u_{4}, then u_{5} adjacent to u_{2}, u_{3} and y and so $S=$ $\left\{u_{1}, u_{5}\right\}$ which is not a complementary 3dominating set. If u_{5} adjacent to u_{4} then $S=$ $\left\{x, z, u_{5}\right\}$ and so $<S>={ }^{-} K_{3}^{-}$which will fall under the case (1).
If z is adjacent to u_{1}, u_{2} and u_{3} then u_{5} is adjacent or non adjacent to u_{1}. If u_{5} adjacent to u_{1} then for $S=\left\{x, z, u_{5}\right\}$ and so $\langle S\rangle=K_{3}^{-}$which will come under the case (1). If u_{5} adjacent to u_{1} then u_{5} adjacent to any three of $\left\{y, u_{2}, u_{3}, u_{4}\right\}$. Let u_{5} adjacent to u_{3}, u_{4} and y. Hence for $S=$ $\left\{x, z, u_{5}\right\}$ and so $\langle S\rangle=\bar{K}_{3}$ which will fall under the case (1).

Case:(3) $<S>=P_{3}$
Let us assume that y adjacent to x and z. Then with no loss of generality, let y adjacent to u_{1}. Now u_{2} adjacent to x, and one of $\left\{u_{3}, u_{4}, u_{5}\right\}$ or z and two of $\left\{u_{3}, u_{4}, u_{5}\right\}$. Supposs if u_{2} adjacent to x, z and u_{3}, then u_{4} adjacent or non adjacent to z (or equivalently x). If u_{4} non adjacent to z, then u_{4} adjacent to u_{1}, u_{5} and u_{3} and so $\mathrm{S}=\left\{\mathrm{y}, u_{2}, u_{4}\right\}$ such that $\langle S\rangle=\bar{K}_{3}$ which will fall under the case (1). If u_{4} adjacent to z, then u_{5} adjacent or non adjacent to u_{4}. If u_{5} non adjacent to u_{4} then u_{5} adjacent to x, u_{1} and u_{3} and hence $S=\left\{z, u_{5}\right\}$ is not a complementary

3 -dominating set. If
u_{5} adjacent to u_{4} then for $S=\left\{y, u_{2}, u_{5}\right\}$ and so $<$ $S>=\bar{K}_{3}$ which will fall under the case (1).
Suppose if u_{2} adjacent to z, u_{3} and u_{4} then u_{5} is adjacent or non adjacent to z. If u_{5} adjacent to z, then for $S=\left\{y, u_{2}, u_{5}\right\},\langle S\rangle=\bar{K}_{3}$ which will come under the case (1). If u_{5} non adjacent to z, then u_{5} adjacent to three of $\left\{x, u_{1}, u_{3}, u_{4}\right\}$. Let us assume that u_{5} adjacent to x, u_{1} and u_{3}. Hence $S=$ $\left\{y, u_{2}, u_{5}\right\}$ and so $<S>=\bar{K}_{3}$ which will come under the case (1). Therefore $\gamma_{3}^{\prime}(G)=(G)=3$ if and only if $G \cong G_{1}$ or G_{2}.

Conclusion: In this paper we successfully described the complementary 3-domination number of some graphs, bounds and γ_{3}^{\prime} number for cubic gaphs.

References:

[1] Bhagavathi ammal V G and Louisa Dickfania R "Accurate Certified Domination Of Graphs", International Journal of Mathematics Trends and Technology"(IJMTT)-Volume 66, Issue 5May2020
[2]DuraiRaj S, Shiji Kumari S G and Anto A M,'On the Certified Domination of Graphs",Journal of Information and Computational Science,10(2020),[331-339]
[3] Harary F, "Graph Theory", Addison-Wesley, Reading MA (1969)
[4] Kulli V R, "Theory of Domination in Graphs", Vishwa International Publications, Gulburga, India (2010)
[5] Mahadevan G, Selvam Avadayappan A, Bhagavathi Ammal V G and Subramanian T "Restrained Triple Connected Domination Number of a Graph", International Journal of Engineering Research and Applications(IJERA) ISSN: 2248-9622 www.ijera.com Vol.2, Issue 6,NovemberDecember 2012,pp[225-229]
[6] Mahadevan G, Selvam Avadayappan A and Mydeenbibi A, "Cubic graphs with equal Two Domination number and Chromatic Number", International Journal of Information Technology and Knowledge Management, July-December 2011,volume 4,No.2,pp.[379383]
[7]Mahadevan G, Selvan Avadayappan A and Mydeenbibi A,"Characterization of Complementary connected Domination number of a Graph", International Journal of Mathematics and Soft Computing,Vol.2,No.1(2012),[119-129]
[8]Mehry A and Safakish R,'Three Domination number and Connectivity in Graphs:,arXiv:1502.04458v1[math.CO]16 Feb2015
[9] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, "Fundamentals of Dominaion in Graphs", Marcel Dekker, Newyork (1998)

