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Abstract: For environment monitoring without human intervention, autonomous 3D mobile robot mapping is 

widely utilized. But, poor performance has been shown by the prevailing techniques in the complex 

environment. Thus, to deal with this limitation, a novel framework named 3-Dimensional Mobile Robot 

Mapping and Motion Planning using Deep Q-Learning-based Markov Decision Model Deep Neural 

Network(DQMD-DNN) (3DMRM-MP) is proposed. Here, the primary sensors are utilized for robot navigation. 

Afterward, the point clouds are pre-processed and the similar pixels are grouped together; then, features are 

extracted. The Gazelle Optimization Algorithm(GOA) is utilized for enhancing the feature extraction phase. 

Next, the current posture of the robot is estimated by the Transformation matrix applied Single value 

decomposition Linear N-Point Camera Pose Estimation (TMSVDLCPE); also, grounded on the estimated pose, 

the desired view is captured. The captured images are then converted into 3D formats. The robot’s 3D images, 

speed, and current position are inputted to the DQMD-DNN, which efficiently plans the next optimal move of 

the robot. The experimental outcomes exhibited that the proposed technique withstands higher decision 

accuracy when contrasted with the prevailing frameworks.  

 
Keywords: Light Detection and Ranging (LIDAR); Inertial Measurement Unit (IMU); Brownian motion (BM); Bayes 

Distribution-Gazelle Optimization algorithm (BD-GOA); Deep Q-Learning-based Markov Decision Model Deep Neural 

Network (DQMD-DNN).  

 

1. INTRODUCTION 
Strong mobility, precise positioning, simple structures, and simple control are several advantages of 
an omnidirectional mobile robot (C. Wang et al., 2020). The basic problem of mobile robots is their 
navigation capability. By identifying starting point and an end target point, the optimal path is 
selected (Perminov et al., 2021). In the past few decades, autonomous robots, specifically wheeled 
mobile vehicles, have made rapid progress (G. Xue et al., 2022). In GPS-denied environments, a 
Simultaneous Localization And Mapping (SLAM) system is needed primarily for the completion of 
such tasks (W. Wang et al., 2022). Afterward, for deciding which location would be the next best 
goal, an exploration module that employs the obtained map and the localized robot is required (Zhu 
et al., 2020). 
The mapping quality has not been considered by the prevailing strategies (Yang et al., 2023). By 
identifying the paths with the maximum clearance from obstacles, fixed paths are generated by the 
Generalized Voronoi Diagram (GVD) path planner for any fixed environment, unlike the previous 
path-planning techniques (Jud et al., 2021). But, little work studied on how to establish a standard 
system for integrating and analyzing a variety of constraints that influenced robot navigation (Qi et 
al., 2022). However, this domain has 2 major limitations, namely (1) designing effective image 
features for expressing image information and (2) possible failure in cases of illumination change, 
camera parameter change, object movement, and single environments that lack texture (Xu et al., 
2021) (W. Xue et al., 2020).  
1.1. Problem Statement  

The work is motivated by, 

 While using LIDAR for mapping, the result was accurate but of poor quality; this focused on enhanced 

mapping.  

 In unknown environments, manual control is required for crawling, which may result in inaccurate 

decisions. 
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 For most of the algorithms, the exploration time was longer than usual.  

1.2. Objectives 

 The proposed technique enhanced the LIDAR-based Mapping Quality by utilizing an efficient 

preprocessing step.  

 The proposed system developed robust decision-making systems that can effectively handle crawling 

in unfamiliar or challenging terrains, ensuring accurate and reliable navigation even without human 

intervention. 

 The proposed method developed efficient exploration strategies in path planning techniques. The aim is 

to optimize the exploration time without compromising the accuracy and coverage of the mapping 

process. 

 

This paper is organized as: Section 2 surveys the related work; Section 3 elucidates the proposed system; 

Section 4 illustrates the outcomes and discussion. Lastly, the paper is winded up in section 5. 

 

2. LITERATURE SURVEY  

(Gobhinath et al., 2021) propounded SLAM and middleware concepts like open source (ROS). For the cost at 

which the presented mechanism was constructed, this distance was very higher. But, arrangement files were 

well-defined with setup limitations as well as startups so that the equipment was to be wielded.  

(Shin & Na, 2020) proffered an approach for displaying the elevation and temperature of a surveillance area in 

the form of a map by utilizing the Convolution Neural Network (CNN) algorithm. Outcomes displayed a better 

detection rate. Nevertheless, the reconstruction error for the primary anomaly was higher. 

(Diane et al., 2019) established multi-aspect mapping technology at the level of their semantic representation. 

The developed mapping subsystem’s inputs were a series of Red Green Blue-Depth (RGB-D) streams. 

However, while using large sets, the time extends and creates unwanted classes. 

 (Noh et al., 2020) introduced a system that could autonomously navigate an unstructured indoor environment, 

which avoided collision with static or else dynamic objects. Although it performed well in collision avoidance, 

still infer about object intentions was lower. 

(Huang et al., 2019) developed a technique of concurrent construction of 2D as well as 3D maps grounded on 

the mobile robot. For achieving the robot’s pose, the particle filter approach was wielded, which had superior 

performance. Yet, the map resolution was very low. 

 (Tang et al., 2020) presented a 3D exploration system centered on the wavefront framework. The experimental 

results demonstrated a higher efficacy. But, under the people’s direct control of the environment, mapping could 

not be completed by mobile robots. 

(Eldemiry et al., 2022) propounded an exploration technique for concurrently optimizing exploration time by 

utilizing a lower-cost RGB-D camera. Owing to low computational cost and low exploration time, feature-

centric RGB-D SLAM was wielded. Nevertheless, the online mapping quality was lower. 

3. PROPOSED METHODOLOGY FOR 3D MOBILE ROBOT MAPPING AND PATH PLANNING 

The proposed model efficiently identifies the obstacles in the robot’s path and makes optimal decisions for 

navigation, such as choosing a new path or adjusting the robot's speed and direction. Figure 1 elucidates the 

proposed system architecture.  
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Figure 1: Architecture of the proposed framework 

 

3.1. Sensor sources 

 

LIDAR: LIDARs are utilized for mapping, localization, and navigation. It creates a point map (point cloud) of 

its surroundings. 

 

Inertial Measurement Unit (IMU): It measures linear acceleration, angular velocity, and the magnetic field 

around the robot respectively. 

 

RGB cameras: The images captured by the RGB cameras aid the robot identify objects and features in its 

surroundings. 

3.2. Preprocessing  

The point clouds from the LIDARs are preprocessed for removing noise and enhance the resulting point cloud’s 

quality using a Gaussian Filter (GF). The GF is defined by, 
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Where, ba, and c are the pixel coordinates and SD  exemplifies the standard deviation. The preprocessed 

point cloud is cP .  

 

3.3. Segmentation  

 

Grounded on the pixel similarity, the pixels from cP are grouped together using the K-Means algorithm, which 

is scalable to large datasets. The grouping of pixels aids the robot to understand the environment structure in a 

better way.The initial cluster centroid )( iCn  is selected randomly. The pixels )( iPx , which have a minimum 

distance with )( iCn , are assigned to the clusters. The clustering distance )(Dist is computed by,  
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Here, i  implies iteration.     

 

3.4. Distortion correction 

 

When a robot moves through its environment, the motion can cause distortions in the point cloud, which make it 

difficult to accurately extract features. Thus, to deal with this, pre-integrated IMU outputs are wielded that 

correct the distortions and enhance the feature extraction accuracy. The pre-integrated IMU outputs represent 

the expected change in orientation and position of the robot over a while. Therefore, the minimum distortions

)( dM  are selected by BD-GOA. The GOA can avoid local optima and get a globally optimal solution. The 

GOA uses BM in the exploitation phase. However, the unequal step length in BM might lead to false 

convergence. To overcome this, Bayes Distribution (BD) is employed for the step length of BM. The steps of 

BD-GOA are defined further,  

Primarily, the gazelle population (represents the position of the robot over a time )( , jip ) is initialized by,  

 

 
jjjji LbLbUbrp ,     (3)

 

 

Where, r is a random number, jUb and jLb  are upper and lower bound, correspondingly. 

 

After that, the fitness Ft is computed grounded on the minimum distortion )(DsMin , which is referred to as, 

)(DsMinFt 
      (4)

 

 

Exploitation: When the gazelles are stalked by predators while grazing, the gazelles move in BM, this process is 

defined by,   

 

 iRiRii gBEBRkgg


1     (5)
 

Where, 1ig


and ig


 are the solution of the next iteration and current iteration, correspondingly, k  

symbolizes grazing speed, iE


implies elite, R


 is random numbers in [0, 1], and RB


is a BM value. In BM, the 

step length is determined by BD,  

 

)()(*)()( LPbStPbStLPbLStPb 
   (6) 

 

Where, )(StPb  is the prior probability of step length, )(LPb  is the total probability of overall step length. 

 

Exploration: Once the predator is spotted, the gazelle runs, and the predator chases. The sudden change of 

direction u  is, 

 

 iRiRii gLELRuKgg


1    (7)
 

 

Where, K  describes the top speed of gazelle and RL


 signifies Lévy distributions. The behaviour of the 

predator chasing the gazelle is displayed as, 
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 iRiRii gLEBcfuKgg


1     (8)
 

Where, 
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1 signifies the controlling parameter. Grounded on )( dM , the point cloud 

is corrected CS . 

 

Input: Position of the robot over a time )( , jip  

Output: Minimum distortion )( dM  

Begin 

Initialize the population )( , jip  

Compute the fitness value )(Ft
 

While )1( Maxitoi  do 

Update the gazelle’s position using, 

 iRiRii gBEBRkgg


1  

Re-compute the fitness value )(Ft
 

If )( SatifiedFt 
 

End the iteration 

Else 

Update the gazelle’s positionusing, 

 iRiRii gLELRuKgg


1  
  End if 

Ftgi 1


 

End while  

Return )( dM  

End 

 

3.5. Feature extraction 

 

From CS , important features )(F like line (detect walls, objects edge, and other straight or curved features in 

the environment), gradient (detect changes in elevation or slope in the environment), along with spatial features 

(track objects in the environment) are extracted. 

3.6. LIDAR Odometry 

Afterward, the LIDAR odometry )(OT is constructed using F , which estimates the robot's position and 

orientation. This is important for robot navigation and localization. 

 

To construct )(OT , )(F  are matched between consecutive LIDAR scans. Once the matched features are 

identified, their relative motion is estimated by, 

 

 
2

),(min YX FFDArgOT
    (9)

 

 

Where, D symbolizes Euclidean distance, XF and YF are corresponding features in the point clouds.  

 

3.7. Pose estimation  

Grounded on the estimated motions )(Es , the robot’s current posture in an environment is determined using a 

TMSVDLCPE, which is computationally efficient. In LCPE, the Projection Matrix (PM) is wielded for 
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estimating the camera pose. But, the PM can result in an incorrect estimation of the camera pose owing to 

degenerate cases. To overcome this issue, a Transformation Matrix (TM) is utilized. The steps are as follows: 

 

Step 1: Normalize the odometry image points by, 

 

aa fxxcc )( 11 
                (10) 

 

bb fxxcc )( 22 
                (11) 

 

Where, 1c and 2c are the normalized image coordinates, ax and bx are principal point coordinates, afx and bfx are 

focal lengths. 

Step 2: The measurement matrix ][M is constructed from the normalized image points and 3D coordinates of 

the known points ],[],[ BA and ][C
. 
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Step 3: The SVD of ][M is computed, this yields left )(L and right )(R singular vectors )(Sv . The SVD is, 

 

RSvLM *                (13) 

 

Step 4: After that, TM is computed by, 

 

RmTm  Im                 (14) 

 

Step 5: Lastly, the camera pose is recovered by decomposing TM into the camera extrinsic matrix )(Em  and 

the intrinsic matrix (Im) by, 

 

))3:1((Im],[ TmrqEm 
              (15)

 

 

)4(:*Im 1 TmTv 
               (16)

 

 

Where, rq is decomposition factor, Tv is translation vector, )3:1(Tm selects all rows and the first three 

columns ofTm , and )4(:Tm selects all rows and the fourth column ofTm . Therefore, the estimated pose is 

defined by Ep .  

 

3.8. Pan tilt mechanism 

 

Centered on Ep , the Pan Tilt mechanism controls the movement of the RGB to capture a desired view of the 

scene. The captured images are further processed to extract frontier and area information, which provides 

valuable insights about the environment.  

 

3.9. 3D mapping 

To navigate to a destination point, the captured images are converted into 3D maps along with the goal 

coordinates. 3D mapping allows robots to better understand their environment by creating a detailed map in 

three dimensions. With a 3D map of the environment, robots can more easily navigate to a destination point by 

calculating the most efficient path and avoiding obstacles. Moreover, the 3D map can provide valuable 

information about the terrain, such as the height of objects and the depth of water, which can be utilized for 

making more informed decisions about how to move through the environment. 

 

3.10. Wheel velocity 
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From 3D mapping, the information, such as the method of movement, track deviation from the landmark, and 

desired landmark are inputted to the Proportional-Integral-Derivative, 

(PID) controller, which adjusts the wheel velocity to attain desired motion. The PID controller is expressed as,  

 

dttdeGdttEGtEGT DIP )(*)(*)(*  
             (17) 

 

Where, the control parameter is notated asT , proportional, integral, and derivative gains are exemplified as

PG , 
IG  and

DG , correspondingly, the error rate at the time t  is specified as )(tE , the error over time’s 

integral is signified as dttE )( , and the derivative of the error at t  is elucidated as dttde )( .  

 

3.11. Decision making 

The robot’s current position, current velocity, and 3D maps are inputted to the DQMD-DNN, which efficiently 

makes decisions about the optimal action to take, namely normal run, enhanced search, and avoidance run.  

 

Reinforcement learning is used by the DQMD-DNN to train the DNN by iteratively adjusting the Q-values 

grounded on feedback from the environment. To maximize the reward function, this work uses MD. The MD 

explores the complex environment and adapts to change the environment over time, allowing it to continue 

learning and updating the optimal rewards. Hence, the algorithm makes better decisions about how to navigate 

the environment over time. Figure 2 displays the DQMD-DNN architecture. 

 

 
Figure 2: DQMD-DNN architecture 

 

Afterward, the Q-values for each possible action are computed. The expected reward to take a specific action in 

the current state is represented by the Q-values. 

 

)],([),(),( asQMaxasRwasQ  
             (18)         

 

 

Where, the Q-value of the current state )(s -action pair )(a  is notated as ),( asQ ,    defines discount factor, 

)],([ asQMax  is the maximum Q-value over all possible actions a  in the next state s , and )(sRw is the 

reward obtained MD, this is given by, 

][)( 1 sRwRwexsRw t                  (19)
 

 

Where, ][ 1 sRwRwex t   is the expected reward for the next state, and the reward received for taking 

action in the state )(s  is represented as 1tRw .  

 

Then, the best action is selected grounded on the Q-values by,  
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)),((max* asQBArgB 
               (20) 

 

Where, 
*B  is the best action, BArg max  symbolizes the action, which maximizes the Q-value. 

 

The Q-value is updated for 
*B  using the Q-learning update rule, 

 

)),(),((),(),( asQasMaxQOrasQasQ  
            (21)

 

 

Where, the learning rate is exemplified as  , the observed reward is implied as Or , the discount factor for 

future rewards is notated as  . 

 

Lastly, the loss function )(Ls  is determined by, 

 
2)),(( yasQL 

               (22)
 

 

Where, y  is the target Q-value; the parameters are adjusted through back-propagation to minimize )(Ls . 

 

4. RESULTS AND DISCUSSION 

Here, the experiments conducted in the working platform of MATLAB are presented. 

4.1. Dataset description 

Toronto-3D, which is obtained by a Mobile Laser Scanning (MLS) system in Toronto, Canada for semantic 

segmentation, is a large-scale urban outdoor point cloud dataset. It approximately covers 1 km of road and 

comprises about 78.3 million points. 

 

4.2 Performance Analysis 

Here, the proposed 3DMRM-MP’s performance is validated. 

 

      (a) 
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(b) 

Figure 3 (a): Trajectory computation (b) Autonomous exploration of robot 

The trajectory computed by the robot and the ground truth trajectory is compared in Figure3 (a), whereas the 

robot’s autonomous exploration ability is displayed in Figure 3 (b). From the analysis, it is clear that the 

proposed system efficiently aids the robot in avoiding obstacles and passing safely in the exploration. 

Table 1: Performance of the proposed 3DMRM-MP in terms of Frontier detection, Obstacle detection, and 

decision accuracy  

Techniques 

Performance metrics 

Frontier 

detection 

Obstacle 

detection 

Decision 

accuracy 

Proposed 3DMRM-MP 97.26 97.96 98.32 

 

The proposed technique’s performance is demonstrated in Table 1. The proposed 3DMRM-MP efficiently 

handles the distortions caused by the LIDARs. Furthermore, the proposed. 3DMRM-MP uses TMSVDLCPE for 

pose estimation and adjusts the RGB cameras as per the estimated results. Owing to this, the proposed 

3DMRM-MP achieves 97.26% of frontier detection, 97.96% of Obstacle detection, and 98.32% of decision 

accuracy.  

Table 2: Performance of the proposed 3DMRM-MP in terms of error rates 

Techniques Performance metrics 

RMSE Localisation error Loss value 

Proposed DQMD-

DNN 

1.76 2.36 1.68 

DNN 6.78 7.34 4.87 

RNN 9.38 10.58 6.74 

LSTM 13.06 15.69 9.38 

 

The proposed DQMD-DNN’s performance is demonstrated in Table 2. The proposed DQMD-DNN is 

efficiently learned by the Deep Q-Learning method. Further, better rewards are selected by employing the MD 

technique. Hence, the RMSE, Localisation error, and Loss value of the proposed DQMD-DNN are 1.76%, 

2.36%, and 1.68%, correspondingly. Therefore, the proposed DQMD-DNN is capable to make decisions with a 

limited error rate.  



ENHANCING 3D MOBILE ROBOT NAVIGATION: DQMD-DNN-BASED MOTION 

PLANNING WITH 3D MAPPING 

     Section A-Research paper 

2703 

Eur. Chem. Bull. 2023,12(10), 2694-2706 

 

 

Figure 4: Efficiency comparison 

Figure 4 displays the efficiency of the proposed 3DMRM-MP and the conventional mechanisms. The proposed 

3DMRM-MP efficiently corrects the distortion rates and maintains the RGB cameras to capture the desired 

location. As a result of this, the proposed technique’s navigation efficiency is higher than the prevailing research 

works.  

Figure 5: Performance comparison 

The proposed 3DMRM-MP and the conventional techniques’ performance are exhibited in Figure 5. The 

proposed 3DMRM-MP efficiently selects the reward. Thus, the proposed 3DMRM-MP achieves precision, 

recall, F-measure, and Estimation accuracy of 97.8%, 97.5%, 97%, and 99%, correspondingly, whereas the 

existing techniques obtain lower performance rates. Hence, the proposed E-RS-GRU classifies the attacked and 

non-attacked data efficiently.  
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Figure 6: Fitness vs. Iteration Comparison  

Figure 6 compares the proposed BD-GOA’s optimization ability with Particle Swarm Optimization (PSO), 

Butterfly Optimization Algorithm (BOA), GOA, along with Ant Colony Optimization (ACO). The proposed 

BD-GOA improves the exploration phase with the BD technique. Thus, the proposed BD-GOA renders the 

optimum outcome with a minimum number of iterations; however, to attain convergence, more iterations are 

required by the conventional mechanisms. 

5. CONCLUSION 

 

This paper proposed 3-dimensional mobile robot mapping and motion planning using DQMD-DNN. The system 

undergoes several operations like preprocessing, segmentation, Distortion correction, Feature extraction, 

Odometry creation, 3D mapping, and Decision making. Afterward, the experimental assessment is conducted, 

where the proposed system’s performance, as well as comparative evaluation, is executed for validating the 

technique’s efficacy. The presented framework could handle several uncertainties and renders more promising 

outcomes. For the assessment, the point cloud LIDAR (Toronto 3D) dataset is wielded, where the proposed 

system attains 98.32% of decision accuracy. This work mainly concentrated on 3D mobile robot mapping in an 

unknown environment with autonomous control; however, there are some undefined problems in real-time 

environments like sudden climatic changes, unpredictable holes in the ground, et cetera. In the future, the work 

could be focused to make decisions grounded on these sudden undefined changes also. 
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