

Development and Evaluation of Fast-Dissolving Tablets ofFlurbiprofen-Cyclodextrin Complexes

Ritu Chauhan*, Anshika Garg, Babita Kumar, Anuradha Verma

Sanskar College of Pharmacy & Research, 201302, Ghaziabad, Uttar Pradesh, India Corresponding author: Ritu Chauhan

Email: ritu.chauhan@sanskar.org

ABSTRACT

The aim of the present study was to develop a tablet formulation based on flurbiprofencyclodextrin system that allows rapid and complete dissolution of Flurbiprofen an insoluble drug practically. For the development of tablets, three different cyclodextrins: the parent β cyclodextrin and two amorphous derivatives i.e., methyl-β-cyclodextrin and hydroxyethyl-βcyclodextrin were evaluated. Equimolar drug-cyclodextrin binary systems were prepared according to five different techniques i.e., physical mixing, kneading, sealed-heating, coevaporation, and colvophilization. All these binary systems were characterized by Differential Scanning Calorimetry, x-ray powder diffractometry, infrared spectroscopy, and optical microscopy and evaluated for solubility and dissolution rate properties. The drug solubility improvement observed in the different binary systems varied from a minimum of 2.5 times up to a maximum of 120 times, depending on the type of cyclodextrin and the preparation method employed. Tablets were prepared suing direct compression method employing the selected binary systems. Chitosan and spray-dried lactose, were used as excipients in the formulation. All formulations containing drug-cyclodextrin systems showed greater dissolution compared to the drug alone. However, the drug dissolution behavior of the drug-cyclodextrin system was strongly influenced by the formulation factors. Tablets containing the drug mixed with methyl-β-cyclodextrin or colyophilized with β-cyclodextrin and spray-dried lactose satisfied the requirements laid down by the Food and Drug Administration (FDA) for fast dissolving tablets.

Keywords: Fast dissolving, Cyclodextrins, Rapid dissolution, Solid dosage form,

Flurbiprofen

INTRODUCTION

Orally administered drugs completely absorb only when they show fair solubility in gastric medium and such drugs show good bioavailability. The solubility and dissolution properties of drugs play an important role in the process of formulation development. Solubility is the phenomenon of the dissolution of solid in a liquid phase to give a

homogenous system. Solubility is one of the important parameters to achieve the desired concentration of drug in systemic circulation for pharmacological response to be shown. Poorly water-soluble drugs often require high doses in order to reach therapeutic plasma concentrations after oral administration¹⁻². Low aqueous solubility is the major problem encountered with formulation development of new chemical entities. Hence a number of methodologies can be adapted to improve solubilization of poorly water-soluble drugs and further to improve its bioavailability³. The techniques generally employed for solubilization of drug includes micronization, chemical modification, pH adjustment, solid dispersion, complication, co-solvency, micellar solubilization, hydrotropy etc⁴⁻⁶. Solubilization of poorly soluble drugs is a frequently encountered challenge in screening studies of new chemical entities as well as in formulation design and development

For physical modifications, various excipients such as cyclodextrins, carbohydrates, hydrotropes, polyglycolized glycerides, and dendrimers are utilized⁷.

Fast dissolving tablets (FDTs) have received ever-increasing demand during the last decade, and the field has become a rapidly growing area in the pharmaceutical industry. Oral drug delivery remains the preferred route for administration of various drugs. Recent developments in the technology have prompted scientists to develop FDTs with improved patient compliance and convenience. Upon introduction into the mouth, these tablets dissolve or disintegrate in the mouth in the absence of additional water for easy administration of active pharmaceutical ingredients. FDTs or orally disintegrating tablets provide an advantage particularly for pediatric and geriatric populations who have difficulty in swallowing conventional tablets and capsules. Orally disintegrating tablets are also called as oral disperse, mouth dissolving, rapidly disintegrating, fast melt, and quick dissolve system⁸⁻¹⁰. Flurbiprofen, a propionic acid derivative, is a nonsteroidal anti-inflammatory drug (NSAIDs) with analgesic and antipyretic properties. Its elimination half-life is usually 4.7-5.7 hours. This compound belongs to the diphenyl derivatives. It is widely used for symptomatic treatment of acute and chronic rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, primary dysmenorrhea and mild to moderate pain associated with musculotendinous trauma postoperative (including dental surgery) or (sprains and strains), postpartum pain.Flurbiprofen has pharmacologic actions similar to those of other prototypical NSAIDs, which inhibit prostaglandin synthesis. The anti-inflammatory effects of Flurbiprofen are believed to be due to inhibition cylooxygenase-2 (COX-2), an enzyme involved in prostaglandin synthesis via the arachidonic acid pathway. This results in decreased levels of prostaglandins that mediate pain, fever and inflammation. Flurbiprofen is a non-specific cyclooxygenase inhibitor and inhibition of COX-1 is thought to confer some of its side

effects, such as GI upset and ulceration. Flurbiprofen is thought to have anti-bradykinin activity, as well as lysosomal membrane-stabilizing action. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation.Flurbiprofen is rapidly and well-absorbed orally, with peak plasma levels occurring within 0.5 to 2 hours¹¹⁻¹³.

The present study was aimed at developing a tablet formulation based on an effective flurbiprofen-cyclodextrin system, able to allow a rapid and complete dissolution of this practically insoluble drug. It aimed to enhance the solubility and bioavailability of Flurbiprofen by solid dispersion technique and evaluate the potential of PEG 4000, PEG 6000, Xanthan gum & Guar gum as suitable drug carrier system for delivery of Flurbiprofen.

MATERIALS AND METHODS

MATERIALS:

Flurbiprofen was obtained from Ningbo Hi-Tech Biochemicals Co., Ltd., China. PEG 4000 was procured from S.D.FinePvt.Ltd., Mumbai. Guar gum, xanthan gum and PVP K-30 were obtained from Neelkanth Chemicals, Jodhpur. Croscarmellose sodium, Sodium starch glycolate and Crospovidone XL-10 were obtained from M/s Healer's LabPvt.Ltd. Baddi. All other chemicals were of analytical grade.

METHODS:

Physical Appearance

Physical appearance of drug was examined by various organoleptic properties.

Melting Point Determination

Melting point of flurbiprofen was determined by capillary fusion method one sided closed capillary filled with drug and put into the Melting Point Apparatus. The temperature was noted at which solid drug changed into liquid.

Solubility

The solubility of flurbiprofen was determined in different solvent systems and buffers. An excess quantity of the drug was mixed with 10 ml of each solvent in screw capped glass tubes and shaken on constant water bath shaker for 24 hours at 25°C. The solutions were examined physically for the absence or presence of drug particles and also by spectrophotometrically for quantitative determination of drug in buffers.

Infrared Spectral Assignment

The pellet of approximately 0.1 mm diameter of the drug was prepared grinding 3-5 mg of sample with 100-150 mg of Potassium Bromide using hydrostatic press. The sample pellet was mounted in IR compartment and scanned at wavelength 4000 cm^{-1} to 500 cm^{-1} .

Differential Scanning Calorimetry (DSC)

DSC analysis was performed on 5 mg sample. Samples were heated in an open aluminum pan at a rate of 100 per min–1 in a 30 to 300^oC temperature range under a nitrogen flow of 40 ml/min.

Ultraviolet Absorption Maxima

Ultraviolet absorption in the range 200 to 400 nm of a 5μ g/ml solution in 5% (v/v) methanolic Sorenson's Buffer (pH 6.8) was measured.

Preparation of Calibration Curve

Preparation of Sorenson's Buffer (pH 6.8):

24.5 ml of 0.2 M dibasic sodium phosphate and 25.5 ml of 0.2 M monobasic sodium phosphate was placed in 100 ml volumetric flask and make up the volume 100 ml with water.

Calibration Curve:

50 mg of flurbiprofen was weighed accurately and dissolved in 5 ml of methanol in a 100 ml of volumetric flask and volume was made up to 100 ml with the Sorenson's buffer (pH 6.8). 10 ml of this solution was diluted with 100 ml Sorenson's buffer (pH 6.8) to obtain a stock solution of 50μ g/ml. From this stock solution, aliquots of 1 ml, 2 ml, 3 ml, 4 ml and 5 ml were taken transferred to 10 ml volumetric flask and volume was made up to 10 ml with Sorenson's buffer (pH 6.8). The absorbance of these solutions was measured at 260 nm against a blank Sorenson's buffer (pH 6.8). The calibration curve was plotted between concentration and absorbance¹⁴.

DRUG- EXCIPIENT COMPATIBILITY STUDY

Drug-excipient compatibility study was carried out using mixture of drug and excipients. Selected excipients and drug were taken in appropriate ratio 1:1. The prepared mixture are placed in glass vials, sealed and stored in an oven at a temperature of 50 $^{0}C \pm 1^{0}C$ for 15 days.

At the end of 7 and 15 days compatibility was evaluated by observing physical changes and chemical changes. Physical changes: such as discoloration, caking, and liquifaction. Chemical changes: evaluated by λ_{max} determination (UV spectrophotometer).

PREPARATION OF PHYSICAL MIXTURES OF FLURBIPROFEN

Physical mixtures of Flurbiprofen were prepared using PEG-4000, Guar Gum, Xanthan Gum & PVP K-30 as a carrier in a weight ratio. First drug and carrier were passed through a 40 mesh screen and then weighed and mixed by using a motor and pestle. The composition of the physical mixture is given in Table 1.

S NO	Drug Corrior	Drug: carrier	Solid dispersion
5.110.	Drug + Carrier	weight ratio	code
1	Flurbiprofen + PEG 4000	1:1	KPEG4-1
2	Flurbiprofen+ PEG 4000	1:2	KPEG4-2
3	Flurbiprofen + PEG 4000	1:3	KPEG4-3
4	Flurbiprofen+ Guar Gum	1:1	KGG-1
5	Flurbiprofen + Guar Gum	1:2	KGG-2
6	Flurbiprofen + Guar Gum	1:3	KGG-3
7	Flurbiprofen + Xanthan Gum	1:1	KXG-1
8	Flurbiprofen+ Xanthan Gum	1:2	KXG-2
9	Flurbiprofen+ Xanthan Gum	1:3	KXG-3
10	Flurbiprofen + PVP K-30	1:1	KPVP-1
11	Flurbiprofen+ PVP K-30	1:2	KPVP-2
12	Flurbiprofen+ PVP K-30	1:3	KPVP-3

Table 1: Composition of Physical Mixture

EVALUATION OF PHYSICAL MIXTURES AND SOLID DISPERSIONS

The prepared physical mixtures and solid dispersions were evaluated for solubility studies; percent drug content, in-vitro drug release.

Determination of Solubility of Solid Dispersions

Flurbiprofen, physical mixtures or solid dispersions equivalent to 10 mg of Flurbiprofenwere added to 10 ml of Sorenson's buffer pH 6.8 in a 10 ml volumetric flask. The volumetric flasks were capped properly and shaken at 25 and 37^{0} C in a temperature-controlled water bath (Shaking water bath) for 48 h. Resultant samples containing undissolved solid

dispersions suspended in the volumetric flask were filtered through 0.45µm filters, suitably diluted with Sorenson's buffer pH 6.8 and analyzed by UV spectrophotometer at 260 nm¹⁵⁻¹⁶.

Determination of Drug Content

Drug content was calculated by dissolving solid dispersions equivalent to 100 mg Flurbiprofen in 10 ml of methanol, filtered using0.45µm Whatman filter paper, suitably diluted with Sorenson's buffer (pH 6.8) and analyzed by using UV spectrophotometer against Sorenson's buffer as blank.

In-vitro Drug Release

Accurately weighed preparations equivalent to 100 mg of Flurbiprofenwere added to 900 ml of dissolution medium in USP II Paddle type apparatus and stirred at speed of 50 rpm at $37 \pm 0.5^{\circ}$ C. 5 ml aliquots were withdrawn at 5, 10, 15, 30, 45, 60 minutes and replaced by 5 ml of fresh dissolution media. The collected samples were analyzed after filtration and dilution at 260 nm using UV-visible spectrophotometer against the blank. Drug release studies were carried out in triplicate. The dissolution of pure flurbiprofenwas done similarly. The release profile data was analyzed for cumulative percent dissolved at different time intervals.

FORMULATION OF FAST DISSOLVING TABLETS

Fast dissolving tablets containing selected solid dispersion were prepared by direct compression method using single punch tablet machine to produce convex faced tablets weighing 500 mg each with a diameter of 11 mm. A minimum of 100 tablets were prepared for each batch. The formulations were developed by addition of super disintegrants.

The superdisintegrants (Croscarmallose sodium, Sodium starch glycolate and Crospovidone XL-10) in varying concentration (2-5%) were used to develop the tablets (by Margret Chandira R 2010). All the ingredients were passed through sieve no. 60 and were cogrounded in a glass pestle motor. These blends were evaluated for mass-volume relationship (Bulk Density, Tapped Density, Hausners Ratio, Compressibility Index) and flow properties (Angle of Repose). The mixed blend of excipients was compressed using a single punch tablet machine (Cadmach, Ahmedabad) to produce convex faced tablets weighing 500 mg each with a diameter of 11 mm. Various compositions of fast dissolving tablets have been mentioned in Table 2.

Table 2: Various compositions of Fast Dissolving Tablets

KPVP-3	200	200	200	200	200	200	200	200	200	200	200	200
Croscarmellose sodium	10	15	20	25	-	-	-	-	-	-	-	-
Sodium starch glycolate	-	-	-	-	10	15	20	25	-	-	-	-
Crospovidone XL-10	-	-	-	-	-	-	-	-	10	15	20	25
Dextrose	70	70	70	70	70	70	70	70	70	70	70	70
Lactose	70	70	70	70	70	70	70	70	70	70	70	70
Avicel PH 102	130	125	120	115	125	115	105	95	105	95	85	75
Purified Talc	10	10	10	10	10	10	10	10	10	10	10	10
Magnesium Stearate	10	10	10	10	10	10	10	10	10	10	10	10
β (beta)- cyclodextrin	0	0	0	0	5	10	15	20	25	30	35	40
Cardamom (Flavour)	qs											

Development and Evaluation of Fast-Dissolving Tablets of Flurbiprofen-Cyclodextrin Complexes Section A-Research paper

CHARACTERIZATION OF BLENDS

The quality of tablet, once formulated by rule, is generally dictated by the quality of physicochemical properties of blends. There are many formulations and process variables involved in mixing step and all these can affect the characteristics of blend produced. The characterization of mixed blend done for the flow properties of powder that are bulk density, tapped density, Hausner's ratio, Compressibility index, and angle of repose¹⁷⁻¹⁸.

Bulk density

It is the ratio of total weight of powder to the bulk volume of powder. 10g of granules were weighed separately and transferred into a graduated measuring cylinder via a large funnel and measure the volume of the powder. The bulk density of the prepared granules was calculated by given formula:

Bulk density = Weight of powder/ Bulk volume

Tapped density

It is the ratio of total weight of powder to the tapped volume of powder. After measuring the bulk density, tapped density was measured by tapping the powder for 500 times. Then the tapping was done for 750 times and the tapped volume was noted (the difference between bulk volume and tapped volumes should be less than 2%). The tapped density was calculated by the following formula:

Tapped density = <u>Weight of powder</u> Tapped volume

FLOW PROPERTIES

Hausner's ratio

It is measurement of frictional resistance of the granules. The ideal range should be 1.2 - 1.5, Hausner's ratio is an important character to determine the flow property of powder and granules. This can be calculated by the following formula:

Hausner's ratio = <u>Tapped density</u> Bulk density

Value < 1.25 indicate good flow (=20% CI)

Value > 1.50 indicate poor flow (=35% CI)

Carr's index (Compressibility index)

The flowability of powder can be evaluated by comparing the bulk density and tapped density. It can be calculated from the following equation.

Carr's index = <u>(Tapped density- bulk density)</u> X 100 Tapped density

Angle of repose

The angle of repose is defined as the maximum angle possible between the surface of piles of powder and the horizontal plane. Angle of repose of granules is done by fixed funnel method and is calculated by using following formula.

Where, h= height of the pile; r= radius of the pile

The tangent of the angle is equal to the coefficient of friction (M) between the particles.the value of angle of repose indicates the type of flow of granules as mentioned in Table 3.

S.No	Angle of repose	Type of flow
1	<25	Excellent
2	25-30	Good
3	30-40	Passable
4	>40	Very poor

Table 3: Angle of repose as an indication of granule flow property

CHARACTERIZATION OF FAST DISSOLVING TABLETS

After compression of powder, the tablets were evaluated for organoleptic characteristics like color, odor, taste, diameter, thickness and physical characteristics like hardness, friability, disintegration time, wetting time, dispersion time and dissolution studies.

General Appearance

Visual identification and over all 'elegance' were performed such as color, presence or absence of an odour, taste, surface texture and physical flaws.

Tablet Thickness

Tablet thickness is an important characteristic in reproducing appearance and also in counting by suing filling equipment. Some filling equipment utilizes the uniform thickness of the tablets as a counting mechanism. Ten tablets were taken and their thickness was recorded using micrometer.

Uniformity of Weight

As per IP, twenty tablets were taken and weighted individually and collectively using digital balance. The average weight of one tablet was calculated. The weight variation test would be

satisfactory method of determining the drug content uniformity. The weight variation limits of tablets as per IP in mentioned in Table 4.

Average of tablet (mg)	Maximum % difference allowed
130 or less	10
130-324	7.5
More than 324	5

Table 4: Weight variation limit of tablet as per IP

Hardness

Hardness of the tablet of each formulation was determined using Pfizer hardness tester.

Friability

Friability of the tablets was determined using Roche friabilator. This device subjects the tablets to the combined effect of abrasions and shock in a plastic chamber revolving at 25 rpm and dropping the tablets at a height of 6 inch in each revolution. Pre weighed sample of tablets was placed in the friabilator and were subjected to 100 revolutions. Tablets were dedusted using a soft muslin cloth and reweighed.

Disintegration Test

Disintegration of fast disintegrating tablets is achieved by saliva in the mouth, however amount of saliva in mouth is limited and no tablet disintegration test was found inUSP and IP to simulate in vivoconditions. A modified was used to determine disintegration time of the tablets. A cylindrical vessel was used in which 10-meshscreen was placed in such way that only 2 ml of disintegrating ordissolution medium would be placed below the sieve. Todetermine disintegration time, 6 ml of Sorenson's buffer (pH 6.8), was placed inside the vessel in such way that 4 ml of the mediawas below the sieve and 2 ml above the sieve. Tablet was placed on the sieve and the whole assembly was then placed on a shaker. The time at which all the particles pass through the sieve wastaken as a disintegration time of the tablet. Six tablets were chosenrandomly from the composite samples and the average value wasdetermined.

Wetting Time

The method was followed to measure tablet wetting time. A piece of tissue paper (12 cm X 10.75 cm) folded twice was placed in a small Petri dish (ID = 65 cm) containing 6 ml of

Sorenson's buffer (pH 6.8), A tablet was put on the paper, and the time for the complete wetting was measured. Three trials for each batch were performed and the standard deviation was also determined.

In-vitro Dispersion Time

In-vitro dispersion time was measured by dropping a tablet in a glass cylinder containing 6 ml of Sorenson's buffer (pH 6.8). Three tablets from each formulation were randomly selected and in-vitro dispersion time was performed.

Content Uniformity

Ten randomly selected tablets were weighed and powdered in a glass mortar pestle. The weight equivalent to 10 mg Flurbiprofen was weighed and dissolved in 5 ml of methanol in volumetric flask using magnetic stirrer, the volume was adjusted to 100 ml with Sorenson's buffer (pH 6.8) and the solution was filtered. An aliquot of 1.0 ml of solution were diluted to 10 ml Sorenson's buffer (pH 6.8) in separate volumetric flask. The content in was determined spectrophotometrically at 260 nm.

In-Vitro Dissolution Studies

In-vitro dissolution studies of formulation were carried out using USP paddle method at 50 rpm in 900 ml of Sorenson's buffer (pH 6.8) as dissolution media, maintained at 37±0.5°C. 5 ml of aliquot was withdrawn at the specified time intervals, filtered through whatmann filter paper and analysedspectorphotometrically at 260 nm. An equal volume of fresh medium, which was prewarmed at same condition, was replaced into the dissolution media after each sampling to maintain the constant volume throughout the test.

STABILITY STUDIES

Deterioration of drug may take several forms arising from changes in the chemical, physical and microbiological properties. These changes may affect therapeutic value of dosage form or increases toxicity. Such a study is important to prevent economic repercussion of marketing an unstable product. Consideration must be taken to the relevant legal requirements concerned with the identity, strength, purity, and quality of the drug.

Prediction of shelf-life

Shelf-life is a period during which a dosage form keeps it qualities. The prediction of shelflife is based on applying the Arrhenius equation, which gives the effect of temperature on rate

constant, K of a chemical reaction. Considering a preparation whose instability is measured in terms of color disappearance when subjected to different elevated temperatures and a plot is drawn with absorbance v/s time.

The reaction velocity constant K for the decomposition at each of the elevated temperature can be calculated from the slope of line. The most satisfactory method for expressing the influence of temperature on reaction velocity is the quantitative relation proposed by Arrhenius:

$$K = A e - E a / RT$$

Where,

K = Specific rate constant,

R= Gas constant (1.987cals/day/mol)

T= Absolute temperature,

Ea=Energy of activation.

Types of Stability Studies

Long term, intermediate and accelerated studies are the main types of stability

studiesconducted.

The storage conditions according to ICH guidelines are given in Table 5.

Study	Storage condition	Minimum time	
Study	Temperature	Relative humidity	
Long term	25±2°C	60±5% RH	12 months
Intermediate	30±2°C	65±5% RH	6 months
Accelerated	40±2°C	75±5% RH	3 months

Table5: Storage conditions according to ICH guidelines

Stability study was carried out at 39°C / 76% RH for the optimized formulations. The procedure was divided into two parts,

Part I:

Achieving of 60% RH:

26.66 gm. of sodium hydroxide was weighed and dissolved in 100 ml of distilled water to get 26.66% sodium hydroxide solution. The solution was placed in the desiccator over which a wire mesh was placed, over which the dosage form was placed and the desiccator was sealed.

The desiccator was placed in the oven maintained at 25° C to create the Relative Humidity of 60%.

Achieving of 76% RH:

Saturated solution of sodium chloride was prepared and placed in the desiccators over which a wire mesh was placed, over which the dosage form was placed and the desiccator was sealed. The desiccator was kept in oven maintained at

39°C to create the relative humidity of 78%.

Part II

The sealed formulation were placed in amber colored bottles, tightly plugged with cotton and capped. They were then stored at 25°C /60% RH and 39°C / 76% RH for two months and evaluated for their physical appearance and drug content.

RESULT AND DISCUSSION

Identification Tests:

Physical Appearance

Physical appearance of drug was examined by various organoleptic properties are given in Table 6 below:

S.NO.	CHARACTERISTICS	RESULT
1	Color	White or almost white
2	Odor	Odorless
3	Taste	Tasteless
4	State	Fine to granular powder

 Table 6: Physical appearance of Flurbiprofen

Result: Results were satisfactory according to their specification

Melting Point

Melting point of the Flurbiprofen was determined by capillary fusion method; one sided closed capillary filled with drug and put into the Melting Point Apparatus. Temperature was noted at which solid drug changed into liquid. It was found to be 95°C. The melting point of Flurbiprofen has been mentioned in Table 7.

Table 7: Melting point of Flurbiprofen

	Observed Value			
Standard Value	CAPILLARY FUSION METHOD	DIFFERENTIAL SCANNING CALORIMETRY		
94-97°C	95	95.54		

Infrared Spectrum

The pellet of approximately 01 mm diameter of the drug was prepared grinding 3-5 mg of sample with 100-150 mg of Potassium Bromide using hydrostatic press. The sample pellet was mounted in IR compartment and scanned at wavelength 4000 cm⁻¹ to 500 cm⁻¹. On analysis of the IR spectra of the reference spectra given in Indian Pharmacopoeia (2014) and pure drug, no major differences were observed in the characteristic absorption peak (1696, 1655) pattern. The IR spectra obtained has been shown in Figure 1.

Figure 1: IR Spectra Sample of Flurbiprofen

Differential Scanning Calorimetry (DSC)

DSC analysis was performed on 5 mg sample. Samples were heated in an open aluminum pan at a rate of 100 per min⁻¹ in a 30 to 300°C temperature range under a nitrogen flow of 40

ml/min. It shows endothermic peak at about 95.54°C. The DSC of flurbiprofen has been shown in Figure 2.

Figure 2: DSC of Flurbiprofen

UV- Visible spectroscopy

Ultraviolet absorption in the rage 200 to 400 nm of a 5µg/ml solution in 5% (v/v) methanolic Sorenson's Buffer (pH 6.8) was measured. The absorption maxima (λ max) of Flurbiprofen (5 µg/ml) in this solution was found to be 260 nm which is concordant with the Indian Pharmacopoeia (2014). The UV curve has been shown in Figure 3.

Figure 3: λ- Max of Flurbiprofen

Preformulation Studies Solubility

The solubility of Flurbiprofen was determined in different solvent systems and buffers. An excess quantity of the drug was mixed with 10 ml of each solvent in screw capped glass tubes and shaken on constant water bath shaker for 24 hours at 25°C. The solutions were examined physically for the absence or presence of drug particles and also by spectrophometrically for quantitative determination of drug in buffers. The Solubility of Flurbiprofen in Different Solvents and buffers are given in Table 8 and 9.

S.No.	Solvents	Solubility
1	Distilled water	-
2	Sorenson's buffer pH 6.8	-
3	0.1N HCl	+
4	0.1N NaOH	+
5	Ethanol	++
6	Methanol	++

 Table 8: Solubility of Flurbiprofen in Different Solvents

Practically insoluble (-) slightly soluble (+) soluble (++)

Table9: Solubility of Flurbiprofen in	Various Buffer Solutions
---------------------------------------	--------------------------

S.No.	Buffer (pH)	Solubility (mg/ml)
1	6.8 (Sorenson's buffer)	0.014±0.002
2	7.0 (Water)	0.016±0.003
3	7.4 (Buffer)	0.016±0.002

Data are expressed as mean \pm S.D. (n = 3)

Result of calibration curve data

The calibration curve of Flurbiprofen was prepared in Sorenson's buffer (pH 6.8). The plot of different concentrations of Flurbiprofen versus absorbance was found to be linear in the concentration range of 5-25 μ g/ml at 260 nm. The absorbance at different concentrations was shown below. The data of standard curve were linearly regressed. The Calibration curve data of Flurbiprofen is given in Table 10 and the calibration curve is shown in Figure 4.

S.No.	Concentration (µg/ml)	Absorbance
1	Blank	0
2	10	0.312
3	15	0.467
4	20	0.624

 Table 10: Calibration curve data of Flurbiprofen

5	25	0.777
6	30	0.932

Figure 4: Calibration curve of Flurbiprofen

Drug excipients compatibility study

The Physical and Chemical Changes during Drug-Carrier Compatibility Screening are summarized in Table 11.

Table 11: Observation Table for	Physical and	Chemical	Changes	During I	Drug-Carrier
Compatibility Screening					

Mixture	lixture 7days			15days					
I	Physical c	hanges	Chemical changes	Physical changes		Physical changes		nges	Chemical changes
D	С	L	λmax.	D	С	L	λmax.		
_	_	_	260 nm	_	_	_	260 nm		

$\mathbf{D} = \text{Discoloration}$

- $\mathbf{C} = \mathbf{Caking}$
- $\mathbf{L} = Liquification$

Determination of solubility of solid dispersion

The solubility data of Flurbiprofen, physical mixture and solid dispersion in Sorenson's buffer pH 6.8 at 25°C and 37°C has been summarized in Table 12.

Table 12: Solubility data of Flurbiprofen, physical mixture and solid dispersion in Sorenson's buffer pH 6.8 at 25°C and 37°C.

Solid dispersion Code	Flurbiprofen Solubility mg/ml at 25°C	Flurbiprofen Solubility mg/ml at 37°C
KPEG4-1	0.014333±0.003086	0.018417±0.001809
KPEG4-2	0.28825±0.002883	0.316167±0.00527
KPEG4-3	0.383333±0.002765	0.0438917±0.001665
KGG-1	0.2275±0.002537	0.251833±0.001507
KGG-2	0.331±0.002634	0.38833±0.001127
KGG-3	0.415±0.006589	0.426±0.0488
KXG-1	0.526±0.00369	0.526±0.00369
KXG-2	0.658±0.111	0.613±0.00786
KXG-3	0.589±0.00569	0.575±0.00321
KPVP-1	0.533083±0.002126	0.603833±0.001258
KPVP-2	0.6775±0.002537	0.751±0.001146
KPVP-3	0.803833±0.003263	0.894417±0.000878

Data are expressed as mean \pm S.D. (n=3

Estimation of drug content

Percent drug content of solid dispersions has been given in Table 13.

 Table 13: Percent drug content of solid dispersions

S.No.	Solid dispersion Code	% Drug content	
1	KPEG4-1	96.25±0.543	
2	KPEG4-2	96.90±0.245	
3	KPEG4-3	96.99±0.554	
4	KGG-1	96.99±0.589	
5	KGG-2	97.03±0.012	
6	KGG-3	97.00±0.02	

7	KXG-1	97.11±0.146
8	KXG-2	97.28±0.003
9	KXG-3	97.36±0.986
10	KPVP-1	97.95±0.236
11	KPVP-2	98.02±0.545
12	KPVP-3	98.96±0.726

Data are expressed as mean \pm S.D. (n=3)

In-vitro dissolution studies

The In-vitro dissolution release profiles of flurbiprofen from physical mixture is given in Table 14.

	Drug: polymer	Time (min)							
	ratio	0	5	10	15	30	45	60	
-	Pure Drug	0	1.89±0.20	3.70±0.25	6.02±0.23	13.92±0.23	24.35±0.23	34.28±0.22	
− SD	KPEG4-1	0	5.26±0.24	12.73±0.22	20.18±0.22	34.43±0.43	44.66±0.23	52.37±0.24	
6DR	KPEG4-2	0	10.2±0.22	19.52±0.21	26.68±0.22	42.73±0.29	53.42±0.36	61.87±0.45	
SD %	KPEG4-3	0	14.10±0.10	26.19±0.35	34.46±0.98	50.85±0.48	62.36±0.21	70.82±0.87	
DR±(KGG-1	0	4.38±0.21	12.27±0.54	20.53±0.36	37.80±0.54	49.23±0.36	54.94±0.48	
1%I	KGG-2	0	8.87±0.59	17.46±0.48	29.07±0.78	43.16±0.12	54.54±0.12	62.32±0.48	
nean	KGG-3	0	12.03±0.68	25.08±0.89	33.82±0.48	50.43±0.96	61.44±0.55	67.83±0.88	
ive n	KXG-1	0	9.93±0.33	23.62±0.96	34.35±0.54	54.52±0.44	68.02±0.98	74.58±0.55	
ulat	KXG-2	0	16.59±0.48	30.94±0.64	43.74±0.88	66.06±0.65	75.34±0.48	82.78±0.64	
Cum	KXG-3	0	25.02±0.48	45.32±0.56	60.93±0.48	78.79±0.34	88.33±0.44	94.59±0.98	
•	KPVP-1	0	7.29±0.22	18.61±0.22	28.70±0.20	49.23±0.24	61.69±0.21	70.81±0.22	
	KPVP-2	0	23.27±0.20	38.98±0.98	54.93±0.20	75.75±0.17	85.75±0.75	93.16±0.22	
	KPVP-3	0	36.46±0.21	57.04±0.24	74.11±0.23	90.71±0.71	99.81±0.17	99.95±0.73	

Table 14: Dissolution Release Profile of Flurbiprofen from Physical Mixture

The percentage drug release of pure drug and various excipients of PEG 4000, guar gum, xanthan gum and PVP K-30 have been shown in Figure 5-8 respectively.

Development and Evaluation of Fast-Dissolving Tablets of Flurbiprofen-Cyclodextrin Complexes Section A-Research paper

Figure 5: Graph of % DR comparison of pure drug & Ratio of PEG 4000

Figure 6: Graph of % DR comparison of pure drug & Ratio of Guar Gum

Figure 8: Graph of % DR comparison of pure drug & Ratio of PVP K-30

Characterization of Blends for Fast Dissolving Tablets

The various characterization parameters of blends for fast dissolving tablets have been summarized in Table 15-19. The dissolution profile curve is shown in Figure 9.

Table 15: Characterization of Blends.

Formulation	Bulk Density	Tapped density	Hausners ratio	Compressibility y Index	Angle repose
F 1	0.681±0.0010	0.783±0.0018	1.150±0.009	13.047±0.070	23.999±0.520
F 2	0.591±0.0024	0.673±0.0013	1.138±0.002	12.179±0.220	23.149±0.506
F 3	0.615±0.0021	0.704±0.0020	1.146±0.0004	12.751±0.031	23.243±0.485
F 4	0.670±0.0026	0.758±0.0023	1.132±0.0011	11.661±0.087	23.828±0.837
F 5	0.598±0.0018	0.680±0.0024	1.136±0.0010	12.001±0.081	22.401±0.719
F 6	0.677±0.0009	0.755±0.0011	1.114±0.0027	10.297±0.222	23.734±0.591
F 7	0.567±0.0064	0.641±0.0008	1.130±0.0001	11.577±0.013	23.709±0.491
F 8	0.615±0.0023	0.697±0.0036	1.132±0.0016	11.718±0.128	23.057±0.747
F 9	0.553±0.0016	0.630±0.0024	1.139±0.0011	12.242±0.091	24.262±0.744
F 10	0.608±0.0011	0.699±0.0019	1.150±0.0011	13.052±0.089	25.663±0.456
F 11	0.594±0.0010	0.691±0.0069	1.163±0.0096	14.060±0.710	25.015±0.541

	F 12	0.666±0.0013	0.755±0.0017	1.134±0.0003	11.856±0.241	23.785±0.471
--	------	--------------	--------------	--------------	--------------	--------------

Table 16:Characterization	of fast	dissolving	tablet
---------------------------	---------	------------	--------

Formulation	Thickness (mm)	Weight (mg)	Friability (%)	Hardness (kg/cm ²)
F 1	6.325±0.014	500.666±1.527	0.478±0.0002	3.0
F 2	6.342±0.026	496.667±3.785	0.440±0.0002	3.0
F 3	6.343±0.034	497.333±0.577	0.639±0.0002	3.0
F 4	6.325±0.004	501.333±2.081	0.781±0.045	3.0
F 5	6.349±0.037	496.666±1.527	0.8765±0.0005	3.0
F 6	6.342±0.029	502.666±1.527	0.719±0.0006	3.0
F 7	6.348±0.043	500.333±1.527	0.519±0.0004	3.5
F 8	6.349±0.021	500.333±2.309	0.800±0.0010	3.0
F 9	6.334±0.034	499.333±1.527	0.638±0.0003	3.0
F 10	6.346±0.034	501.666±2.081	0.761±0.0004	3.0
F 11	6.335±0.031	499.333±1.527	0.519±0.002	3.0
F 12	6.348±0.031	500.123±0.001	0.478±0.0003	3.0

Formulation	Disintegration time (Seconds)	Wetting time (Seconds)	Dispersion time (Seconds)
F 1	95.533±1.507	87.37±1.770	114.346±3.381
F 2	86.503±2.360	80.13±3.928	101.443±2.408
F 3	70.256±3.769	65.34±3.674	84.76±4.265
F 4	60.65±1.856	55.04±3.125	71.81±3.404
F 5	51.94±3.344	49.223±3.511	64.706±4.265
F 6	1345.223±5.162	125.663±5.760	142.713±4.838
F 7	119.93±4.994	110.273±3.544	124.903±4.639
F 8	59.48±1.509	80.093±4.400	86.233±2.717
F 9	45.113±2.155	62.69±2.507	69.723±1.804
F 10	29.023±1.708	31.836±2.848	42.836±1.180

F 11	27.710±1.141	29.670±1.477	33.696±2.080
F 12	25.680±1.411	27.446±1.404	30.910±1.681

Table 18:Drug content in fast dissolving tablet of Flurbiprofen:

Formulation	Drug Content (mg)	Drug Content (%)
F 1	49.341±0.339	98.683±0.678
F 2	48.883±0.440	97.766±0.880
F 3	49.466±0.398	98.933±0.797
F 4	48.658±0.146	97.316±0.292
F 5	49.591±0.177	99.183±0.354
F 6	49.066±0.330	98.133±0.660
F 7	49.65±0.139	99.30±0.278
F 8	49.108±0.473	98.216±0.946
F 9	49.225±0.229	98.450±0.458
F 10	49.191±0.357	98.383±0.714
F 11	49.716±0.177	99.433±0.354
F 12	50.366±0.028	100.733±0.057

Table 19: Dissolution release Profile:

Ti	Cumulative mean nercentage drug release $+$ SD											
me	Cumulativ	e mean pere	cittage urug		•							
(Mi					1							
n)	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12

0	0	0	0	0	0	0	0	0	0	0	0	0
4	38.655	44.565	50.34	54.78	59.655	27.855	32.085	41.805	54.195	54.345	59.91	63.54
4	±0.311	±0.340	±0.432	±0.578	±0.343	±0.324	±0.384	±0.450	±0.687	±0.936	±0.687	±0.54
Q	48.087	52.324	60.610	68.925	73.491	35.295	41.720	53.626	70.935	67.425	72.126	82.345
0	±0.289	±0.289	±0.332	±0.579	±0.375	±0.595	±0.306	±0.382	±0.663	±0.708	±0.688	±0.473
12	55.446	59.672	65.388	73.142	81.162	46.585	51.666	67.110	81.048	76.545	81.101	91.692
12	±0.254	±0.290	±0.350	±0.268	±0.426	±0.375	±0.350	±0.450	±0.451	±0.901	±0.451	±0.708
16	61.087	68.648	78.090	82.088	86.862	52.756	56.434	76.665	84.993	84.325	87.101	94.793
10	±0.239	±0.364	±0.325	±0.580	±0.358	±0.344	±0.325	±0.687	±0.342	±0.452	±0.689	±0.768
20	64.350	73.314	83.382	86.304	90.559	56.4003	61.011	82.945	88.268	94.138	93.858	99.548
20	±0.275	±0.458	±0.389	±0.327	±0.477	±0.307	±0.474	±0.676	±0.483	±0.633	±0.475	±0.452

Development and Evaluation of Fast-Dissolving Tablets of Flurbiprofen-Cyclodextrin Complexes Section A-Research paper

Figure 9: Graph of Dissolution release Profile

STABILITY STUDY:

The effect of various storage conditions on various parameters of Tablet F12 is given in Table 20-21.

Table 20: Effect of Storage Condition (39°C/76%RH) of Trial of Tablet F-12

Stability	Weight (mg)	Friability (%)	Hardness (kg/cm ²)
Initial	500.123±0.001	0.478±0.0003	3.0
1 month	500.001±0.012	0.478±0.0012	3.0
2 month	499.983±0.036	0.476±0.0056	3.0
3 month	499.663±0.008	0.475±0.0023	2.9

Table 21: Effect of Storage Condition (39°C/76%RH) of Trial of Tablet F-12

	Disintegration time	Drug Content	Drug release (%)
	(Second)	(mg)	
Stability			
Initial	25.680±1.411	50.366±0.028	100.733±0.057
1 month	24.966±0.329	50.152±0.015	100.316±0.152
2 month	23.190±0.621	49.933±0.011	99.866±0.062
3 month	21.512±551	49.541±0.089	99.083±0.112

The cumulative percent drug release from the formulation is given in Table 22. The drug release curve after stability study of Tablet F12 is shown in Figure 10.

 Table 22: Cumulative % drug release

Time (Min)	Cumulative percentage drug release						
	Initial	1 Month	2 Month	3 Month			
0	0	0	0	0			
4	63.54	63.360	62.505	62.505			
+	±0.54	±0.54	±0.433	±0.433			
8	82.345	82.165	81.264	81.264			
0	±0.473	±0.473	±0.468	±0.468			
12	91.692	91.346	90.234	90.234			

	±0.708	±0.708	±0.522	±0.522
16	94.793	94.357	92.839	92.839
10	±0.768	±0.768	±0.6454	±0.644
20	99.548	99.202	98.837	98.837
20	±0.452	± 0.452	±0.314	±0.314

Development and Evaluation of Fast-Dissolving Tablets of Flurbiprofen-Cyclodextrin Complexes Section A-Research paper

Figure 10: Graph of Dissolution release Profile

Result: Stability studies were conducted for the formulations F12. The reasons for selection is, this formulation has shown best results in term of weight, hardness, friability, in-vitro disintegration, drug content, in-vitro drug release studies. Stability studies of the prepared fast dissolving tablets were performed at different temperatures (39°C/76%RH). The tablets were analyzed for weight, hardness, friability, in-vitro disintegration time, and for drug content in each formulation at a time interval of one month for the period of three months shown better result.

CONCLUSION

For improving the solubility of Flurbiprofen solid dispersion was prepared by using PEG 4000, Guar Gum, Xanthan Gum and PVP K-30 by using ratio(1:1 to 1:3) by physical mixture

method, in which PVP K-30 ratio 1:3 given better solubility results in all solid dispersion ratios. The characterization of mixed blend was carried out for all formulations, all having value between specified limit.Fast dissolving tablet F12 having Flurbiprofen and PVP K-30 in ratio 1:3 have better results, and contain 5% Crospovidone XL-10 shown most satisfactory results in all formulations. On the basis of in-vitro release of dispersion KPVP-3 was chosen for Fast dissolving tablet.Stability study for F12 (Cyclodextrin)was performed at temperature (39°C/76%RH). The formulation did not show any significant variation in all parameters evaluated under the test period conditions.From the above study it was concluded that the F12 is best formulation for Fast dissolving tablet of flurbiprofen.

Conflict of Interest: None

Acknowledgement: The authors are highly thankful to the management of Sanskar Educational Group for their constant support.

REFERENCES

- 1. Vemula VR, Lagishetty V, Lingala S. Solubility enhancement techniques. International journal of pharmaceutical sciences review and research. 2010 Nov;5(1):41-51.
- Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL, Partapur MU. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J Adv Pharm Educ Res. 2012;2(1):32-67.
- 3. Kesharwani A, Maqbool MA, Pathak S, Mishra MK. Solubilization enhancement techniques: an overview. TPCJ. 2017;4(6):121-30.
- 4. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. International Scholarly Research Notices. 2012;2012.
- Kumar A, Sahoo SK, Padhee K, Kochar PS, Sathapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. PharmacieGlobale. 2011;3(3):001-7.
- 6. Argade PS, Magar DD, Saudagar RB. Solid dispersion: solubility enhancement technique for poorly water soluble drugs. Journal of Advanced Pharmacy Education & Research. 2013 Oct;3(4).
- Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharmaceutical Journal. 2015 Sep 1;23(4):352-65.
- 8. Masih A, Kumar A, Singh S, Tiwari AK. Fast dissolving tablets: A review. Int J Curr Pharm Res. 2017;9(2):8-18.
- 9. Siddiqui MN, Garg G, Sharma PK. Fast dissolving tablets: preparation, characterization and evaluation: an overview. International Journal of Pharmaceutical Sciences Review and Research. 2010 Sep;4(2):87-96.

- 10. Yadav G, Kapoor A, Bhargava S. Fast dissolving tablets recent advantages: A review. International journal of pharmaceutical sciences and research. 2012 Mar 1;3(3):728.
- 11. Davies NM. Clinical pharmacokinetics of flurbiprofen and its enantiomers. Clinical pharmacokinetics. 1995 Feb;28(2):100-14.
- 12. Brogden RN, Heel RC, Speight TM, Avery GS. Flurbiprofen: a review of its pharmacological properties and therapeutic use in rheumatic diseases. Drugs. 1979 Dec;18:417-38.
- 13. Mettu SR, Veerareddy PR. Formulation, evaluation and pharmacokinetics of flurbiprofen fast dissolving tablets. Brit J Pharm Res. 2013 Jun 15;3(4):617-31.
- 14. Sajeev C, Jadhav PR, RaviShankar D, Saha RN. Determination of flurbiprofen in pharmaceutical formulations by UV spectrophotometry and liquid chromatography. Analytica Chimica Acta. 2002 Jul 22;463(2):207-17.
- 15. Bobe KR, Subrahmanya CR, Suresh S, Gaikwad DT, Patil MD, Khade TS, Gavitre BB, Kulkarni VS, Gaikwad UT. Formulation and evaluation of solid dispersion of atorvastatin with various carriers. International journal of comprehensive pharmacy. 2011;2(1):1-6.
- 16. Narang AS, Srivastava AK. Evaluation of solid dispersions of clofazimine. Drug development and industrial pharmacy. 2002 Jan 1;28(8):1001-13.
- 17. Sharma S, Gupta GD. Formulation and characterization of fast-dissolving tablet of promethazine theoclate. Asian Journal of Pharmaceutics (AJP). 2008;2(1).
- Siddiqui MN, Garg G, Sharma PK. Fast dissolving tablets: preparation, characterization and evaluation: an overview. International Journal of Pharmaceutical Sciences Review and Research. 2010 Sep;4(2):87-96.