MEDIUM DOMINATION DECOMPOSITION NUMBER OF JOIN OF GRAPHS

Saranya $\mathbf{J}^{\mathbf{1}}$, Ebin Raja Merly $\mathbf{E}^{\mathbf{2}}$
${ }^{1}$ Research Scholar (Reg.No: 20113112092022), Department of Mathematics, Nesamony Memorial Christian College, Marthandam, India.
${ }^{2}$ Associate Professor and Head, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, India. (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, TamilNadu, India)
Email: ${ }^{1}$ saranyajohnrose@gmail.com, ${ }^{2}$ ebinmerly @gmail.com

Abstract

The Medium domination Number is a notation which uses neighbourhood of each pair of vertices. If any two adjacent vertices that are dominating each other, then the domination number of that vertices is atleast one. For any connected, undirected, simple graph G of order p, the Medium Domination Number $M D(G)=\frac{\operatorname{TDV}(G)}{p c_{2}}$, where $\operatorname{TDV}(G)$ is the total number of vertices that dominate every pair of vertices. A decomposition $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of a graph G is said to be Medium Domination Decomposition (MDD) if $\left[M D\left(G_{i}\right)\right]=i-1, i=1,2, \ldots, n$. The number of subgraphs of a Medium Domination Decomposition $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of a graph G is said to be Medium Domination Decomposition Number of G and is denoted by $\pi_{M D}(G)$. Here, we have investigated some new bounds on Medium Domination Decomposition Number of join of graphs.

Keywords: Join of Graphs, Central vertex join, Central edge join
DOI: 10.53555/ecb/2022.11.03.14

1. Introduction

The graph G is considered here simple, connected, undirected and finite graphs with p vertices and q edges and G_{i} be the subgraph of G with p_{i} vertices and q_{i} edges, where $l \leq i \leq n, n$ is the number of subgraphs of G. The length of a shortest $u-v$ path in a connected graph G is called the distance from a vertex u to a vertex $v . d(u, v)$ denotes the distance between u and v. Two $u-v$ paths are internally disjoint if they have no vertices in common, other than u and v. The degree of a vertex v in a graph G is the number of edges incident with v and denoted by $\mathrm{d}(v)$. The minimum degree among the vertices of a graph G is denoted by $\delta(G)$. The maximum degree among
vertices of a graph G is denoted by $\Delta(G)$. The concept of Medium Domination Number was introduced by Vargor and Dunder which finds the total number of vertices that dominate all pairs of vertices and evaluate the average of this value and call it Medium Domination Number. A graph join is a binary operation on graphs. Speacifically it is an operation that takes two graphs H_{1} and H_{2} and produces a graph G with the property that all the edges that connect the vertices of the graph H_{1} with the vertices of the graph H_{2}. It is a commutative operation. Let $C(G)$ be the central graph of G with p_{c} vertices and q_{c} edges. For basic terminologies in graph theory we refer [3], [4] and [5]. The following are the basic definitions and results needed for the main section.

Definition 1.1.[1] For $G=(V, E)$ and $\forall u, v \in V$, if u and v are adjacent they dominate each other, then atleast $\operatorname{dom}(u, v)=1$.

Definition 1.2.[1] For $G=(V, E)$ and $\forall u, v \in V$, the total number of vertices that dominate every pair of vertices is defined as $\quad \operatorname{TDV}(G)=$ $\Sigma_{\forall u, v \in V(G)} \operatorname{dom}(u, v)$.
Definition 1.3.[1] For any connected, undirected, loopless graph G of order p the Medium Domination Number of G is defined as $M D(G)=\frac{T D V(G)}{p C_{2}}$.
Theorem 1.4.[1] For G has p vertices, q edges and for $d\left(v_{i}\right) \geq 2, \operatorname{TDV}(G)=$ $q+\sum_{v_{i} \in V}\binom{d\left(v_{i}\right)}{2}$.

Definition 1.5.[5] Let H_{1} and H_{2} be any two graphs on s, t vertices and s^{\prime}, t^{\prime} edges respectively. The join $H_{1} \vee H_{2}$ of disjoint graphs H_{1} and H_{2} is the graph obtained from $H_{1}+H_{2}$ by joining each vertex of H_{1} to each vertex of H_{2}. Note that the join $H_{1} \vee H_{2}$ has $s+t$ vertices and $s^{\prime}+t^{\prime}+$ st edges.

Definition 1.6. [7] The central graph $C(G)$ of a graph G of order p and size q is a graph of order $p_{c}(=p+q)$ and size $q_{c}\left(=\binom{p}{2}+q\right)$ which is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G in $C(G)$.
Definition 1.7. [6] Let H_{1} and H_{2} be any two graphs on s, t vertices and s^{\prime}, t^{\prime} edges respectively. The central vertex join of H_{1} and H_{2} is the graph $H_{1} \dot{v} H_{2}$, is obtained from $C\left(H_{1}\right)$ and H_{2} by joining each vertex of H_{1} with every vertex of H_{2}. Note that the central vertex join $H_{1} \dot{v} H_{2}$ has $s^{\prime}+s+$ t vertices and $s^{\prime}+t^{\prime}+s t+\frac{t(t-1)}{2}$ edges.
Definition 1.8. [6] Let H_{1} and H_{2} be any two graphs on s, t vertices and s^{\prime}, t^{\prime} edges respectively. Then the central edge join of two graphs H_{1} and H_{2} is the graph $H_{1} \underline{v}$ H_{2} is obtained from $C\left(H_{1}\right)$ and H_{2} by
joining each vertex corresponding to edges of H_{1} with every vertex of $V\left(\mathrm{H}_{2}\right)$. Note that the central edge join $H_{1} \underline{\vee} H_{2}$ has $s^{\prime}+s+$ t vertices and $s^{\prime}+t^{\prime}+s^{\prime} t+\frac{t(t-1)}{2}$ edges.

2. Medium Domination Decomposition of Graphs:

Definition 2.1.[2] A decomposition $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of a graph G is said to be a Medium Domination Decomposition $(M D D)$ if $\quad\left\lfloor M D\left(G_{i}\right)\right\rfloor=i-1, i=$ $1,2,3, \ldots . n$.

Example: 2.2

G_{1}

G_{2}

G_{3}

Here, $\left\lfloor M D\left(G_{1}\right)\right\rfloor=0,\left\lfloor M D\left(G_{2}\right)\right\rfloor=1$ and $M D\left(G_{3}\right)=2$
Definition 2.3. The number of subgraphs of a medium domination decomposition $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of a graph G is said to be Medium Domination Decomposition Number of G and is denoted by $\pi_{M D}(G)$. From the above example, $\pi_{M D}(G)=3$.
Theorem 2.4:[2] If a graph G admits MDD, then $p \geq 4$ and $q \geq 3$.

Theorem 2.5:[2] Star graph does not admit MDD.

Theorem 2.6:[2]The complete graph K_{4} does not admit MDD.

Theorem 2.7: For any $p \geq 5, \pi_{M D}\left(K_{p}\right) \leq$ $p-2$.

Theorem 2.8: For any $m_{1} \geq 2$ and $m_{2} \geq$ $2, \pi_{M D}\left(K_{m_{1}, m_{2}}\right) \leq \min \left\{m_{1}, m_{2}\right\}$.

3. Medium Domination Number and Medium Domination Decomposition Number of Join of Graphs:

Theorem 3.1: For any graphs H_{1} and H_{2}, then $\quad \mathrm{MD} \quad\left(H_{1} \vee H_{2}\right)=\frac{1}{p c_{2}} \quad[\quad q+$ $\left.\sum_{k=1}^{s}\left(d\left(v_{k}\right) C_{2}\right)+\sum_{k=(s+1)}^{p}\left(d\left(v_{k}\right) C_{2}\right)\right]$, where $v_{k} \in V\left(H_{1} \vee H_{2}\right)$ and $k=1,2, \ldots, p$.

Theorem 3.2: Let H_{1} be the r_{1} regular graph and H_{2} be the r_{2} regular graph. Then $\quad M D\left(H_{1} \vee H_{2}\right)=\frac{1}{p c_{2}}[q+$ $s\left(\left(t+r_{1}\right) C_{2}\right)+t\left(\left(s+r_{2}\right) C_{2}\right]$.

Corollary 3.3: For any r-regular graph H_{1} and $H_{2}, \quad M D\left(H_{1} \vee H_{2}\right)=\frac{1}{p c_{2}}[q+$ $s\left((t+r) C_{2}\right)+t\left((s+r) C_{2}\right]$.

Result 3.4: For any connected graphs H_{1} and H_{2} with $s \leq 2$ and $t \leq 2, \quad H_{1} \vee H_{2}$ does not admit MDD.

Proof: Let H_{1} and H_{2} be the connected graph with $s \leq 2$ and $t \leq 2$. Let $G=$ $H_{1} \vee H_{2}$. If $s=2$ and $t=2$ then $H_{1} \vee H_{2}$ is a complete graph with four vertices. By Theorem 2.7, G does not admit $M D D$. By Theorem 2.5, the graph G does not admit $M D D$ for all the remaining cases. Hence $H_{1} \vee H_{2}$ does not admit $M D D$, for $s \leq 2$ and $t \leq 2$.

Theorem 3.5: Let H_{1} and H_{2} be null graphs.
(i) If $s=1$ and $t \geq 1$, then $H_{1} \vee H_{2}$ does not admit $M D D$.
(ii) If $s \geq 2$ and $t \geq 2$, then $\pi_{M D}\left(H_{1} \vee H_{2}\right) \leq \min \{s, t\}$.

Proof: (i) Let H_{1} be the null graph with one vertex and H_{2} be the null graph with $t \geq 1$. Let $G=H_{1} \vee H_{2}$. Then G is a star
graph $K_{1, t}$. By Theorem 2.6, G does not admit $M D D$.
(ii)Consider the null graph with $s \geq 2$ and $t \geq 2$. Then the join of H_{1} and H_{2} is a complete bipartite graph with $s+t$ vertices. By Theorem 2.9, $\pi_{M D}\left(H_{1} \vee H_{2}\right) \leq$ $\min \{s, t\}$. Hence the proof.

Result 3.6: Let H_{1} be the ($s-1$)-regular graph and H_{2} be the $(t-1)$-regular graph with $s+t=5$. Then $\pi_{M D}\left(H_{1} \vee H_{2}\right) \leq s+$ $t-2$.

Proof: Since H_{1} is the $(s-1)$-regular graph and H_{2} is the $(t-1)$-regular graph with $s+t=5, H_{1}$ and H_{2} are the complete graph with s and t vertices respectively. Therefore, $\mathrm{H}_{1} \vee \mathrm{H}_{2}$ is also a complete graph with $s+t$ vertices. Thus, by Theorem 2.8, $\pi_{M D}\left(H_{1} \vee H_{2}\right) \leq s+t-$ 2. Hence the proof.

Theorem 3.7: Let H_{1} and H_{2} be connected graphs and H_{1} and H_{2} admits $M D D$. Then $\pi_{M D}\left(H_{1}\right)+\pi_{M D}\left(H_{2}\right) \leq \pi_{M D}\left(H_{1} \vee H_{2}\right)$.

Proof: For proving this theorem we have to consider the following two cases.

Case(i): H_{1} and H_{2} are complete graphs.
Since H_{1} and H_{2} admits $M D D, H_{1}$ and H_{2} are complete graphs with s and $t \geq 5$ vertices. Then $H_{1} \vee H_{2}$ is also a complete graph with $s+t$ vertices. By Result 3.6, $\pi_{M D}\left(H_{1} \vee H_{2}\right) \leq s+t-2 \quad$.We have $\pi_{M D}\left(K_{p}\right) \leq p-2$. Therefore $\pi_{M D}\left(H_{1}\right)+$ $\pi_{M D}\left(H_{2}\right) \leq s-2+t-2$. That is, $\pi_{M D}\left(H_{1}\right)+\pi_{M D}\left(H_{2}\right) \leq s+t-4$. Thus, $\pi_{M D}\left(H_{1} \vee H_{2}\right)>\pi_{M D}\left(H_{1}\right)+\pi_{M D}\left(H_{2}\right)$.

Case(ii): H_{1} and H_{2} are non-complete.
Subcase(i): H_{1} and H_{2} are acyclic graphs.
If $s=4$ and $t=4$, then the graph H_{1} and H_{2} is a path graph with four vertices. We have $\pi_{M D}\left(P_{4}\right)=1$. Therefore, $\pi_{M D}\left(H_{1}\right)+$ $\pi_{M D}\left(H_{2}\right)=2$. Now to find the medium domination decomposition of G. Let $\left\{v_{k}: 1 \leq k \leq 8\right\}$ be the vertices of G.

Since, there exists a subgraph of G with medium domination number three, we can decompose the graph G into four subgraphs with medium domination number zero, one, two and three. Construct a subgraph G_{1} from G with vertex set $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, v_{7}, v_{8}\right\}$ and edge set $E(G)=\left\{v_{7} v_{1}, v_{1} v_{8}, v_{8} v_{2}\right\}$. Construct the subgraph G_{2} with vertex set $V\left(G_{2}\right)=$ $\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ and edge set $E\left(G_{2}\right)=\left\{v_{3} v_{4}, v_{3} v_{5}, v_{3} v_{8}\right\} \cup\left\{v_{4} v_{i}: 5 \leq\right.$ $i \leq 8\} \cup\left\{v_{7} v_{8}\right\}$. Construct the subgraph G_{3} with vertex set $V\left(G_{3}\right)=\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$ and edge set $E\left(G_{3}\right)=$ $\left\{v_{2} v_{3}, v_{2} v_{3}, v_{3} v_{6}, v_{3} v_{7}, v_{6} v_{7}\right\}$. Construct the subgraph G_{4} with vertex $\operatorname{set} V\left(G_{4}\right)=$ $\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\} \quad$ and $E\left(G_{4}\right)=$ $\left\{v_{1} v_{5}, v_{1} v_{2}, v_{1} v_{6}, v_{2} v_{5}, v_{2} v_{6}, v_{5} v_{6}\right\}$. The graphical representation of G_{1}, G_{2}, G_{3} and G_{4} are given in figure.

Here, $\left\lfloor M D\left(G_{1}\right)\right\rfloor=0,\left\lfloor M D\left(G_{2}\right)\right\rfloor=1$, $\left\lfloor M D\left(G_{3}\right)\right\rfloor=2$ and $\left\lfloor M D\left(G_{4}\right)\right\rfloor=3$. Thus $\pi_{M D}(G)=4$. Therefore $\pi_{M D}\left(H_{1}\right)+$ $\pi_{M D}\left(H_{2}\right)<\pi_{M D}\left(H_{1} \vee H_{2}\right)$.

If $s>4$ and $t>4$, then $\pi_{M D}\left(H_{1}\right)=2$ and $\pi_{M D}\left(H_{2}\right)=2$. We have $\pi_{M D}\left(H_{1} \vee H_{2}\right)$ is atleast four, since by case(i). Thus $\pi_{M D}\left(H_{1}\right)+\pi_{M D}\left(H_{2}\right) \leq \pi_{M D}\left(H_{1} \vee H_{2}\right)$ whenever H_{1} and H_{2} are acyclic graphs.
subcase(ii): H_{1} and H_{2} contains atleast one cycle.

Then we have $\pi_{M D}\left(H_{1}\right)$ and $\pi_{M D}\left(H_{2}\right)$ are atleast two. But $\pi_{M D}\left(H_{1} \vee H_{2}\right)$ is atleast four. Thus, $\pi_{M D}\left(H_{1}\right)+\pi_{M D}\left(H_{2}\right) \leq$ $\pi_{M D}\left(H_{1} \vee H_{2}\right)$. Hence the proof.

Theorem 3.8: For any positive integers a and b with $a \geq 4$ and $=\sum_{i=1}^{a-2} i$, there exists a graph G such that $\pi_{M D}(G)=a$.

Proof: Let P_{a} be the path graph with $a \geq$ 4 vertices, where $\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ are the vertices of P_{a}. Let $K_{b}, b \geq 1$ be the complete graph with b vertices. Thus, the graph H_{1} is formed by connecting the $\left\{x_{2}, x_{3}, \ldots, x_{a-1}\right\}$ vertices of P_{a} to $K_{1}, K_{2}, \ldots, K_{a-2}$ respectively by an edge. Let $G=H_{1} \vee K_{1}$. The graphical representation of G is given below:

Now to find the medium domination decomposition number of G.

For $a=4$, there exists a subgraph of G with medium domination number three, Therefore, we can decompose the graph G into four subgraphs with medium domination number zero, one, two and three. Construct the subgraph G_{1} from G with vertex set $V\left(G_{1}\right)=\left\{x_{i}: 1 \leq i \leq 4\right\} \cup$ $\left\{y_{1}\right\}$ and the edge set $E\left(G_{1}\right)=$ $\left\{x_{i} x_{i+1}: 1 \leq i \leq 3\right\} \cup\left\{x_{4} y_{1}\right\}$. Construct the subgraph G_{2} from G with vertex set $V\left(G_{2}\right)=\left\{x_{1}, y_{1}\right\}$ and edge set $E\left(G_{2}\right)=$ $\left\{x_{1} y_{1}\right\}$.Construct the subgraph G_{3} from G with vertex set $V\left(G_{3}\right)=\left\{x_{2}, z_{1}, y_{1}\right\}$ and edge set $E\left(G_{3}\right)=\left\{x_{2} z_{1}, x_{2} y_{1}, z_{1} y_{1}\right\}$. Construct the subgraph G_{4} from G with vertex set $V\left(G_{4}\right)=\left\{x_{3}, z_{2}, z_{3}, y_{1}\right\}$ and
edge set $E\left(G_{4}\right)=$ $\left\{x_{3} z_{2}, x_{3} z_{3}, x_{3} y_{1}, z_{2} z_{3}, z_{2} y_{1}, z_{3} y_{1}\right\}$. Here $\operatorname{LMD}\left(G_{1}\right)=0, M D\left(G_{2}\right)=1, M D\left(G_{3}\right)=2$ and $M D\left(G_{4}\right)=3$. Thus $\pi_{M D}(G)=4$.

For $a=5$, there exists a subgraph of G with medium domination number four, Therefore, we can decompose the graph G into five subgraphs with medium domination number zero, one, two, three and four. Construct the subgraph G_{1} from G with vertex set $V\left(G_{1}\right)=\left\{x_{i}: 1 \leq i \leq\right.$ $5\} \cup\left\{y_{1}\right\}$ and edge set $E\left(G_{1}\right)=$ $\left\{x_{i} x_{i+1}: 1 \leq i \leq 4\right\} \cup\left\{x_{5} y_{1}\right\}$. The vertex set and edge set of G_{2}, G_{3} and G_{4} are same as in the above part. Construct the subgraph G_{5} from G with vertex set $V\left(G_{5}\right)=\left\{x_{4}, z_{4}, z_{5}, z_{6}, y_{4}\right\} \quad$ and edge set $E\left(G_{5}\right)=$ $\left\{x_{4} z_{4}, x_{4} z_{5}, x_{4} z_{6}, x_{4} y_{1}, z_{4} z_{5}, z_{4} z_{6}, z_{4} y_{1}\right.$,
$\left.z_{5} z_{6}, z_{5} y_{1}, z_{6} y_{1}\right\}$. Here $M D\left(G_{1}\right)=0$, $M D\left(G_{2}\right)=1, M D\left(G_{3}\right)=2, M D\left(G_{4}\right)=$ $3, M D\left(G_{5}\right)=4$. Thus $\pi_{M D}(G)=5$.

Continuing in this way, for any a, there exists a subgraph of G with medium domination number $a-1$, Therefore, we can decompose the graph G into a subgraphs with medium domination number $0,1,2, \ldots, a-1$. Construct the subgraph G_{1} from G with vertex set $V\left(G_{1}\right)=\left\{x_{i}: 1 \leq i \leq a\right\} \cup\left\{y_{1}\right\}$ and edge set $\quad E\left(G_{1}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq a_{1}\right\} \cup$ $\left\{x_{a} y_{1}\right\}$. The remaining subgraphs are $G_{2}=$ $K_{2}, G_{3}=K_{3}, \ldots, G_{a}=K_{a}$. Thus the medium domination number of $G_{1}, G_{2}, \ldots, G_{a} \quad$ is $\quad 0,1,2, \ldots, a-1$ respectively. Thus $\pi_{M D}(G)=a$. Hence the proof.

4. Medium Domination Number and

Medium Domination Decomposition Number of Central Vertex Join and Central edge Join of Graphs:

Theorem 4.1:For any graphs H_{1} and H_{2}, then $M D\left(H_{1} \dot{\vee} H_{2}\right)=\frac{1}{p C_{2}}\left[q+s^{\prime}+\right.$ $\left.\sum_{k=1}^{s}\left(d\left(v_{k}\right) C_{2}\right)+\sum_{k=(s+1)}^{p}\left(d\left(v_{k}\right) C_{2}\right)\right]$.

Proof: Let H_{1} be the (s, t) graph and H_{2} be the $\left(s^{\prime}, t^{\prime}\right)$ graph. Let $V\left(H_{1}\right)=\left\{x_{i}: 1 \leq\right.$ $i \leq s\}$ and $V\left(H_{2}\right)=\left\{y_{j}: 1 \leq j \leq t\right\}$. Let $C\left(H_{1}\right)$ be the central graph of H_{1} with $s+$ s^{\prime} vertices and $\binom{s}{2}+s^{\prime}$ edges. Let $V\left(C\left(H_{1}\right)\right)=\left\{x_{i}: 1 \leq i \leq s\right\} \cup\left\{c_{k}: 1 \leq\right.$ $\left.k \leq s^{\prime}\right\}$. Let $H_{1} \vee H_{2}$ be the central vertex join of the graphs H_{1} and H_{2} with $p(=s+$ $\left.s^{\prime}+t\right)$ vertices and $q\left(=s^{\prime}+t^{\prime}+s t+\right.$ $\left.\frac{t(t-1)}{2}\right)$ edges, where $\left\{v_{k}: 1 \leq k \leq p\right\}$ are the vertices in $H_{1} \dot{v} H_{2}$. Since the graph $H_{1} \dot{\vee} H_{2}$ is obtained from $C\left(H_{1}\right)$ and H_{2} by joining each vertex of H_{1} with every vertex of H_{2}, each vertex of H_{1} have degree $t+\operatorname{deg} x_{i}, \quad$ for each $i=$ $1,2, \ldots, s$, each vertex of H_{2} have degree $s+\operatorname{deg} y_{j}$, for each $j=1,2, \ldots, t$ and s^{\prime} vertices have degree two. Therefore, $T D V\left(H_{1} \dot{v} H_{2}\right)=q+s^{\prime}\left(2 C_{2}\right)+$ $\sum_{i=1}^{s}\left(\left(t+\operatorname{deg} x_{i}\right) C_{2}\right)+\sum_{i=1}^{t}((s+$
$\left.\left.\operatorname{deg} y_{j}\right) C_{2}\right)$. That is, $T D V\left(H_{1} \dot{\vee} H_{2}\right)=q+$ $s^{\prime}+\sum_{k=1}^{S}\left(d\left(v_{k}\right) C_{2}\right)+$
$\sum_{k=(s+1)}^{p}\left(d\left(v_{k}\right) C_{2}\right)$, where $\sum_{i=1}^{s}(t+$ $\left.\operatorname{deg} x_{i}\right)=\sum_{k=1}^{S}\left(d\left(v_{k}\right) C_{2}\right), \quad \sum_{i=1}^{t}(s+$ $\left.\operatorname{deg} y_{j}\right)=\sum_{k=(s+1)}^{p}\left(d\left(v_{k}\right)\right) . \quad$ Hence $M D\left(H_{1} \dot{v} H_{2}\right)=\frac{1}{p C_{2}}\left[q+s^{\prime}+\right.$
$\left.\sum_{k=1}^{s}\left(d\left(v_{k}\right) C_{2}\right)+\sum_{k=(s+1)}^{p}\left(d\left(v_{k}\right) C_{2}\right)\right]$.
Hence the proof.
Theorem 4.2: For any graphs H_{1} and H_{2}, then
$M D\left(H_{1} \underline{v} H_{2}\right)=\frac{1}{p C_{2}}[q+$ $\left.\sum_{k=1}^{s}\left(d\left(v_{k}\right) C_{2}\right)+\sum_{k=(s+1)}^{p}\left(d\left(v_{k}\right) C_{2}\right)\right)+$ $\left.s^{\prime}\left((t+2) C_{2}\right)\right]$.

Proof: The proof is similar to Theorem 4.1.

Result 4.3:(i) Let H_{1} be the null graph with $s=2$ and H_{2} be the connected graph with $t=2$, then $H_{1} \dot{v} H_{2}$ does not admit $M D D$. (ii)Let H_{1} be the connected graph with $s=2$ and H_{2} be the null graph with $t=2$, then $H_{1} \underline{\vee} H_{2}$ does not admit $M D D$.

Theorem 4.4: For any connected graphs H_{1} and H_{2} with $s \geq 2$ and $t \geq 2, H_{1} \dot{v} H_{2}$ and $H_{1} \underline{\vee} H_{2}$ admits MDD.

Proof: Since H_{1} and H_{2} are connected graphs with $s \geq 2$ and $t \geq 2, H_{1} \dot{\vee} H_{2}$ and $H_{1} \underline{\vee} H_{2}$ are also a connected graph with $p \geq 4$ and $q \geq 4$. Thus, by Theorem 2.5, $H_{1} \vee H_{2}$ and $H_{1} \underline{\vee} H_{2}$ and admits MDD.

Theorem 4.5: Let H_{1} and H_{2} be null graphs with $s \geq 2$ and $t \geq 2$. Then $\pi_{M D}\left(H_{1} \dot{v} H_{2}\right) \leq s-1+\min \{s, t-1\}$.

Proof:Let H_{1} and H_{2} be null graphs with $s \geq 2$ and $t \geq 2$. Let $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ be the vertices in H_{1} and $\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$ be the vertices in H_{2}. Let $C\left(H_{1}\right)$ be the central graph of H_{1}. By the definition of central graph, we join all the non-adjacent vertices in H_{1}. Therefore $C\left(H_{1}\right)$ is a complete graph with S vertices. Consider $H_{1} \dot{\vee} H_{2}$. Since we join all the vertices in H_{1} to all the vertices in $H_{2},\left\{x_{1}, x_{2}, \ldots, x_{s}\right\} \cup$ $\left\{y_{1}\right\}$ form a complete graph K_{s+1} and the remaining graph form a complete bipartite graph $K_{s, t-1}$. We have $\pi_{M D}\left(K_{s, t-1}\right) \leq$ $\min \left\{p_{1}, p_{2}-1\right\}$. Thus $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq$ $s-1+\min \{s, t-1\}$. Hence the proof.

Remark 4.6: The bound in Theorem 4.5 is sharp. For the graphs H_{1} and H_{2} with $p_{1}=$ 2 and $p_{2}=2, \pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right)=2$.

Corollary 4.7: Let H_{1} and H_{2} be null graphs with $s \geq 4$ and $t=1$. Then $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq s-1$.

Proof: By Theorem 4.5, the vertices in H_{1} and H_{2} form a complete graph with $s+1$ vertices. We have $\pi_{M D}\left(K_{s+1}\right) \leq s+1-$ 2. Thus $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq s-1$. Hence the proof.

Theorem 4.8: Let H_{1} be the null graph and H_{2} be the complete graph with $s+t \geq$ 5. Then $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq s+t-2$.

Proof: Let $\left\{x_{i}: 1 \leq i \leq s\right\}$ be the vertices of H_{1} and let $\left\{y_{j}: 1 \leq j \leq t\right\}$ be the vertices of H_{2}. Since H_{1} is a null graph
with s vertices, $C\left(H_{1}\right)$ is a complete graph with s vertices. Consider the graph $H_{1} \dot{\mathrm{v}} \mathrm{H}_{2}$. Then $H_{1} \dot{\mathrm{v}} \mathrm{H}_{2}$ form a complete graph K_{s+t} with $s+t \geq 5$. Therefore, $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq s+t-2$. Hence the proof.

Theorem 4.9: Let H_{1} be the r - regular graph with $s \geq 3$ and H_{2} be the null graph with $t \geq 1$. Then

$$
\begin{align*}
& \pi_{M D}\left(H_{1} \dot{v} H_{2}\right) \leq\left\lfloor\frac{s}{2}\right\rfloor+\min \{s, t\} \tag{i}\\
& \pi_{M D}\left(H_{1} \underline{\vee} H_{2}\right) \leq\left\lfloor\frac{s}{2}\right\rfloor+\min \left\{s^{\prime}, t\right\} \tag{ii}
\end{align*}
$$

Proof:(i) Since H_{1} is the r - regular graph, $\pi_{M D}\left(C\left(H_{1}\right)\right) \leq\left\lfloor\frac{s}{2}\right\rfloor$. Also since by the definition of $H_{1} \dot{v} H_{2}$, we join all the s vertices in H_{1} to all the vertices in H_{2}. Let $G=H_{1} \dot{v} H_{2} \quad$ and \quad let $\quad H=G \backslash E\left(C\left(H_{1}\right)\right.$. Consider the graph H. Then H is a complete bipartite graph with $s+t$ vertices. We have $\pi_{M D}(H) \leq \min \{s, t\}$. Therefore, $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq\left\lfloor\frac{s}{2}\right\rfloor+\min \{s, t\}$.
(ii) The proof is similar to (i).

Corollary 4.10: Let H_{1} be the $(s-1)$ regular graph with $s \geq 2$ and H_{2} be the null graph with $t=1$. Then $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right)=\pi_{M D}\left(H_{1} \vee H_{2}\right)=2$.

Proof: Since H_{1} is the $(s-1)$ - regular graph, $\left\lfloor M D\left(C\left(H_{1}\right)\right)=0\right\rfloor$. Consider $G=H_{1} \dot{v} H_{2} \quad$ and \quad let $\quad H=G \backslash E\left(C\left(H_{1}\right)\right.$. Then it is a star graph with s end vertices. We have $M D(H)=1$. Thus, we can decompose the graph G in to two subgraphs G_{1} and G_{2} with medium domination number 0 and 1 respectively. Hence $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right)=2$. Similarly, we can prove that $\pi_{M D}\left(H_{1} \underline{\vee} H_{2}\right)=2$. Hence the proof.

Theorem 4.11: Let H_{1} be the star graph $K_{1, m}$ with $m \geq 2$ end vertices. Let H_{2} be the null graph with $t \geq 1$. Then

$$
\begin{align*}
& \pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq m+1 \tag{i}\\
& \pi_{M D}\left(H_{1} \underline{\vee} H_{2}\right) \leq m
\end{align*}
$$

Proof: Let H_{1} be the star graph $K_{1, m}$ with $m \geq 2$ end vertices, where $\left\{x_{i}: 1 \leq i \leq s\right\}$ are the vertices in H_{1} and $\left\{x_{i}: 2 \leq i \leq s\right\}$ are the m end vertices in H_{1}. Let H_{2} be the null graph with $t \geq 1$, where $\left\{y_{j}: 1 \leq j \leq\right.$ $t\}$ are the vertices in H_{2}.
(i) Consider $H_{1} \dot{\vee} H_{2}$. Here m end vertices from H_{1} and one vertex from H_{2} form a complete graph with $m+1$ vertices. Therefore, $\quad \pi_{M D}\left(K_{m+1}\right) \leq m+1-2=$ $m+1$. Also the medium domination decomposition number of remaining graph is two. Therefore $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq m-$ $1+2=m+1$. Hence $\pi_{M D}\left(H_{1} \dot{\vee} H_{2}\right) \leq$ $m+1$.
(ii) Consider $H_{1} \underline{\vee} H_{2}$. Here m end vertices form a complete graph with m vertices. Therefore $\pi_{M D}\left(K_{m}\right) \leq m-2$. Also the medium domination decomposition number of remaining graph is two. Therefore $\pi_{M D}\left(H_{1} \underline{\vee} H_{2}\right) \leq m-2+2=$ m. Hence $\pi_{M D}\left(H_{1} \underline{\vee} H_{2}\right) \leq m$. Hence the proof.

5. Conclusion

In this paper, we calculated the number of vertices that are capable of dominating both of u and v. The total number of vertices that dominate every pair of vertices is examined and the average of this value is calculated which is called "the medium domination number" of graph. Some theorems and bounds on the Medium Domination Decomposition Number of join of graphs, central vertex join of graphs and central edge join of
graphs are given. Also a realization theorem for such decomposition is obtained. Further this concept can be extended to product of graphs.

6. References

[1] Duygu Vargor and Pinar Dundar, The Medium Domination Number of a Graph, International Journal of Pure and Applied Mathematics, Volume(3), 2011,297-306.
[2] E.Ebin Raja Merly and J.Saranya, Medium Domination Decomposition of Zig-Zag Triangle Graphs, Design Engineering 2011, Issue 8, 1407014074.
[3] Fairouz Beggas, Decomposition and Decomposition of Some Graphs.
[4] F. Harary, Graph Theory, Narosa Publishing House, New Delhi, (1988).
[5] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, American Elsevier, New York.
[6] Jahfar T. K and Chithra A.V, Central Vertex Join and Edge Join of Two Graphs, AIMS Mathematics, 5(6): 7214-7233.
[7] N.Nithyadevi and D.Vijayalakshmi, On Achromatic Number of Central Graph of Some Graphs, Communications Faculty of Sciences University of AnkaraSeries A1 Mathematics and Statistics, Volume 68, Number 2, Pages 1265-6470.

