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Abstract: 

Chest Computed Tomography (CT) imaging has become an indispensable tool for staging and managing 

COVID-19. The current evaluation of COVID-19-associated anomalies relies mainly on visual scoring, a 

subjective and time-consuming process for clinicians. Therefore, there is a critical need for automated 

methods to quantify CT imaging anomalies for COVID-19, providing vital assistance to healthcare 

professionals. In response to this challenge, we present Anam-Net(an innovative Anamorphic depth 

embedding-based lightweight Convolutional Neural Network (CNN) ) specialized specifically for the 

segmentation of anomalies in COVID-19 chest CT images. The important factor in these images, COVID-19 

may be seen as ground-glass opacities in the lung region, which represent a threat to significant difficulties 

for manual segmentation. Anam-Net addresses this complexity by providing an efficient and accurate 

automated method for identifying and delineating these opacities, thereby aiding in diagnosis and treatment 

decisions. Anam-Net stands out for its lightweight design, displaying 7.8 times fewer parameters than 

cutting-edge UNet and its variations. This makes it well-suited for inference on mobile or resource-

constrained platforms, including point-of-care devices, without compromising performance. Our extensive 

experiments with chest CT images demonstrate that Anam-Net achieves commendable For both diseased and 

normal lung areas, dice similarity scores, reaffirming its efficacy in COVID-19 anomaly segmentation. 
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I. Introduction: 

Studies have shown that chest CT analysis uses 

RT-PCR to detect COVID-19[1],[2] with a 

sensitivity of 0.97, specificity of 0.25, and 

accuracy of 0.68 [3]. Related findings have been 

reported elsewhere, indicating the potential of 

radiological imaging in supporting early COVID-

19 screening [5], [6]. 

 

 
 

FIGURE 1: Illustration of COVID-19 Lung Infection Regions in CT Axial Slice (A) shows an illustration of 

COVID-19 infected regions in a CT axial slice. Ground-glass opacity (GGO) and consolidation, respectively, 

are represented by the red and green masks (B). These pictures were gathered from the cited source [7]. 

 

Due to its ability to provide a three-dimensional 

view of the lung and the ability to observe typical 

infection signs in CT slices, such as ground-glass 

opacity (GGO) in the early stage and pulmonary 

consolidation in the late stage, CT screening is by 

far the most popular radiological imaging 

modality [3], [8]. In the fight against COVID-19, 

qualitative analysis of infections and longitudinal 

alterations in CT slices can be very useful. 

However, manually identifying lung infections on 

CT scans is a taxing and time-consuming task that 

is frequently influenced by radiologists' clinical 

experiences and personal biases. 

 

To detect COVID-19 in radiological imaging, 

deep learning methods have recently been 

developed [4], [10]. To identify COVID-19 

instances from chest radiography pictures, for 

example, COVID-Net was developed [11]. 

Radiologists used an anomaly detection model to 

analyze a large number of chest X-ray images 

[12]. A location-attention-oriented model was 

used in CT imaging to estimate the likelihood of 

COVID-19 infection [13], and a software system 

based on weakly supervised deep learning using 

3D CT volumes was created for COVID-19 

detection [14]. Only a few studies have focused on 

infection segmentation in CT slices, even though 

many AI systems help diagnose COVID-19 in 

clinical settings [15], [16]. Several difficulties are 

addressed in the COVID-19 infection detection on 

CT slices: (1) The diagnosis of infections is 

hampered by their high variability in texture, size, 

and location, especially for minor or insignificant 

consolidations that may result in false-negative 

findings in entire CT slices. (2) GGO boundaries 

have poor contrast and fuzzy appearances, making 

it difficult to distinguish between them. Inter-class 

variance is modest. (3) Due to the COVID-19 

situation's urgency, it is difficult to gather enough 

labeled data for training deep models because it 

takes a lot of resources to obtain high-quality 

pixel-level annotation of lung infections on CT 

slices. 

 

Only one public COVID-19 imaging dataset has 

segmentation labels, despite the fact that many of 

them concentrate on diagnosis [17]. In this study, 

we propose a novel COVID-19 Lung Infection 

Segmentation Deep Network (Inf-Net) to address 

the difficulties of COVID-19 infection 

segmentation in CT slices. Our approach uses 

edge constraint guidance and reverses attention to 

improve boundary identification after identifying 

coarse areas of infection. To enhance learning 

capabilities using a small number of labeled data 

and propagating information to unlabeled data, we 

also present a semi-supervised segmentation 

approach. On the recently created COVID-

SemiSeg dataset, we assess the performance of 

Inf-Net and Semi-Inf-Net, exhibiting superior 

results compared to leading-edge segmentation 

models, and furthering the state-of-the-art in 

COVID-19 lung infection segmentation. 

 

We suggest a novel COVID-19 Lung Infection 

Segmentation Deep Network (Inf-Net) in this 

study that is designed especially for CT slices. Our 

strategy is modeled after the clinical workflow, in 

which doctors first determine the general location 

of an infected area and then determine its shape 

using local indications. We claim that normal 

tissues can be distinguished from infections by 

two crucial characteristics: the area and the 
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boundary. The coarse areas of the COVID-19 

infection images are predicted by our Inf-Net 

initially. Then, it employs edge constraint 

guidance and reverses attention to implicitly 

model the borders of these regions. This improves 

the model's capacity for boundary detection. 

 

We provide a semi-supervised segmentation 

method that makes use of a small number of 

labeled images to overcome the issue of limited 

labeled data. To increase the model's capacity for 

learning, the system additionally utilizes unlabeled 

photos. To be more precise, the system propagates 

unlabeled photos chosen at random through the 

model. As a result, the performance is superior to 

certain cutting-edge models. Our three 

contributions to this study are as follows: 

 

We introduce the cutting-edge CT slice COVID-

19 Lung Infection Segmentation Deep Network 

(Inf-Net). The combined feature, which 

incorporates contextual information and produces 

a global map as the first area of guidance for 

subsequent steps, is created by using a parallel 

partial decoder (PPD) to aggregate features from 

high-level layers. Additionally, to create a strong 

connection between regions and boundary signals, 

we make use of a collection of implicitly recurring 

reverse attention (RA) modules and explicit edge-

attention direction. 

 

We introduce a semi-supervised segmented 

technique for segmenting the COVID-19 

infection, which effectively mitigates the scarcity 

of labeled data. Our semi-supervised approach, 

based on randomly selected propagation, 

significantly enhances the model's learning ability 

(refer to § IV for details). 

We compile 1600 unidentified pictures from the 

COVID-19 CT Collection dataset [9] and 100 

labeled CT slices from the COVID-19 CT 

Segmentation dataset to create the semi-

supervised COVID-19 infection segmentation 

dataset (COVID-19 SemiSeg). We demonstrate 

the superiority of our proposed Inf-Net and Semi-

Inf-Net over the majority of cutting-edge 

segmentation models through thorough 

experimentation on this dataset, pushing the state-

of-the-art performance. 

 

The code and the dataset for our research have 

been made publicly available at the following 

repositories: 

“https://github.com/DengPingFan/Inf-Net”. Our 

work contributes to the field of COVID-19 lung 

infection segmentation, providing promising 

results and potential avenues for future research 

and development. 

 

II. METHODS 

The design of Anam-Net and the suggested 

method for segmenting anomalies in COVID-19 

chest CT images are as follows. Here are the 

specifics of each of these steps: 

 

A. Extraction of the Lungs: 

Extraction of the lung region is the first step in 

segmenting anomalies in chest CT scans. The 

procedure outlined in [24] was utilized to obtain 

the lung masks used in datasets I and II (see Table 

I). These lung masks were made easily accessible 

and widely available. A pretrained U-Net 

architecture with batch normalization was used for 

the extraction process [33]. A database of 5300 

instances was used to train this architecture on 231 

examples. Comparing the U-Net (R231) technique 

to other trained models, including the chest 

imaging platform (CIP) [24] and progressive 

holistically nested networks (P-HNNs) [24], it was 

shown that the U-Net (R231) method was more 

accurate in segmenting the lungs. The lung 

pathologies and organizational patterns 

represented in the training samples for U-Net 

(R231) included fibrosis, trauma, and other 

pathologies. This made it possible to accurately 

separate the lungs from chest CT scans of 

COVID-19 patients. It is interesting that any 

method, even straightforward windowing, is 

determined to be appropriate for the proposed 

research. 

 

B. Deep Learning to Segment Medical Images: 

In recent times, medical image segmentation has 

seen advancements using various approaches 

including cross-modality adaptation, knowledge 

distillation, and neural architectural search (NAS). 

Some studies have proposed NAS strategies for 

biomedical segmentation, leveraging macrolevel 

and microlevel operations for accurate organ 

segmentation during radiotherapy treatment 

planning. However, the computational complexity 

of NAS makes it less suitable for the COVID-19 

segmentation task, which demands efficiency due 

to large training times. 

 

To address the scarcity of labeled data, 

semisupervised systems have been proposed, 

combining supervised and regularized components 

for labeled and unlabeled data, respectively. 

Unsupervised strategies based on topological loss 

and knowledge transfer from heavy models 

through model pruning have also been explored. 
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User-in-the-loop strategies have been deployed for 

2-D and 3-D segmentation of fetal MRI and brain 

tumors, incorporating user interactions as hard 

constraints into back propagatable conditional 

random fields for end-to-end training. Context 

encoding networks and cross-modality adaptation 

modules have been introduced to enhance 2-D 

medical image segmentation between MR and CT 

images. 

 

Among existing architectures, UNet, SegNet, 

DeepLabV3+, ResUNet++, UNet++, Attention 

UNet,  and DoubleU-Net exhibit heavy models 

with specialized computing requirements. In 

contrast, the ENet architecture offers an efficient 

solution, designed for the segmentation of 

semantics in computer vision. ENet's engineered 

design features bottleneck layers, dilated 

convolutions, and asymmetric convolutions, 

enabling it to work with fewer parameters and 

achieve efficient segmentation. The ENet design 

consists of a large encoder and a tiny decoder, 

where the shallow decoder performs upsampling 

while the deep encoder works on images of lower 

resolution. Similarly, LEDNet presents another 

lightweight architecture, employing an encoder-

decoder module that uses ResNet as its 

foundation. The accuracy and speed of 

segmentation are further improved with the 

addition of channel-wise split and shuffle 

operations. 

 

In summary, various deep learning approaches 

have been applied to medical image segmentation, 

with ENet and LEDNet emerging as efficient and 

promising architectures for robust segmentation 

tasks, including COVID-19 chest CT image 

analysis. 

 

C. COVID-19 Anomalies Proposed Approach 

for Segmenting: 

The advantages of the symmetric encoder-decoder 

design of UNet and the efficiency with fewer 

parameters of ENet are combined in our suggested 

Anam-Net architecture. To do this, we integrate a 

novel AD block into a minisymmetric encoder-

decoder segmentation module (inspired by [31]). 

 

A 1 × 1 convolution for depthwise compression is 

used to build the AD-block, which is then 

followed by a 3 × 3 convolution and a final 1 × 1 

convolution for depthwise stretching (further 

information may be found in Table II). The 

fundamental idea behind the AD-block is to 

project or compress the depth-wise dimension of 

the feature space before performing 

computationally intensive 3 × 3 convolutions. This 

low-dimensional embedding with a 1 × 1 

projection effectively preserves key details about a 

sizable input patch [26]. Local feature extraction 

is then carried out using 3 × 3 convolutions 

without diminishing the depthwise feature space 

dimension after this low-dimensional projection. 

Finally, another 1 × 1 projection stretches the 

depthwise feature space dimension back to its 

initial state. 

 

By incorporating the AD-block within our Anam-

Net architecture, we ensure effective utilization of 

feature space and computational resources while 

maintaining accuracy in segmenting COVID-19 

anomalies in chest CT images. This novel 

approach facilitates precise local feature extraction 

and efficient depthwise processing, making 

Anam-Net an efficient and robust solution for 

COVID-19 anomaly segmentation. 

To enable conspicuous and robust feature 

learning, the proposed Anam-Net architecture has 

a total of six AD-blocks, three of which are found 

in the encoder and three of which are found in the 

decoder. Rectified Linear Unit (ReLU) activation 

[28], batch normalization [33], and convolution 

operation are the steps that each convolution layer 

in Anam-Net takes after each other. 

 

For a comprehensive overview a module for the 

encoder-decoder and AD-block specifications. 

These tables provide detailed information about 

the specific layers and operations used in the 

Anam-Net architecture, ensuring transparency and 

clarity in understanding the design and 

functionality of the proposed model. 

Our architecture was then used to split each pixel 

of unseen test samples into three different 

categories: background, abnormal-lung region, 

and normal-lung region. This was done after 

undergoing end-to-end training. The model 

produces a probabilistic map with the same spatial 

dimensions as the input and three distinct maps, 

one for each category (background, abnormal, and 

normal). 

 

We calculated the maximum probabilistic score 

across the three categories for each pixel to give 

labels to specific pixels. The pixel was assigned to 

one of the three categories following this score. A 

noteworthy finding was the identification of the 

background (non-lung region), as described in 

Section II-A, ensuring accurate segmentation and 

delineation of lung abnormalities in the COVID-

19 chest CT images during our research. 
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III. EXPERIMENTS AND 

IMPLEMENTATION 

In this study, we carried out three tests to evaluate 

the performance of the discussed models using 

various datasets. A summary of the datasets 

utilized is presented in Table III, and the details of 

the experiments are as follows: 

Experiment 1: For this study, we used 929 axial 

chest CT scans from around 49 COVID-19 

patients that were made available for public 

viewing by Radiopedia [30] and the Italian 

Society of Medical and Interventional Radiology 

[29]. 

 

TABLE I: An Overview Of The Datasets Used In This Study 

Dataset No.  Reference  Patients  Total Slices  

I   [24] >40 100 

II [24] 9 829 

III [27] 20 3410 

 

The data was divided into two sets: Data Set I and 

Data Set II. Data set I, consisting of 100 slices 

from >40 patients, was utilized for training, with 

90 slices chosen for this purpose. We augmented 

the training data by performing horizontal and 

vertical flips, resulting in a training set of 270 

samples. Data set II, comprising 829 slices from 

nine patient CT volumes, was used exclusively for 

testing, with 704 slices selected for this purpose. 

All images in both datasets were annotated for 

abnormalities, and masks for ground-glass 

opacities (GGO), consolidations, and pleural 

effusion were provided. A single anomalous mask 

was created using all of these annotations 

combined. All 704 chest CT images taken into 

account in this experiment, including dice 

similarity scores for the anomalous region and 

inference analysis on resource-constrained 

platforms, were shown and averaged (see Tables 

V, VI, and VII). 

 

Experiment 2: We used a collection of 3410 axial 

chest CT images from 20 COVID-19 patients in 

this investigation (Data set III in Table I). There 

are four equal folds in the dataset: F1, F2, F3, and 

F4. Explicit testing was conducted using fold F4, 

which contains 545 CT images, and the deep 

models were trained using threefold cross-

validation on folds F1, F2, and F3. Table V shows 

the averaged merit scores for the three cross folds 

across all 545 chest CT images used in this 

experiment.  

 

Experiment 3: In this cross-data set study, the 

models created in Experiment 2 were tested using 

the test cases from Experiment 1. This evaluation's 

goal was to ascertain how successfully the deep 

models could be used in practical application 

scenarios. The average merit ratings for the 704 

chest CT scans used in this trial are shown in 

Table VI. 

These experiments enabled us to thoroughly 

assess the performance and generalization 

capabilities of the proposed Anam-Net 

architecture and other deep models in segmenting 

COVID-19 anomalies, providing valuable insights 

for potential practical applications in medical 

imaging. 

 

Implementation: PyTorch [31] was used to 

implement the suggested Anam-Net, with a 

minibatch size of 5. We used the Adam optimizer 

[32] to optimize the cost function, with an initial 

learning rate of 5e4 that subsequently decreased 

by a factor of 0.1 after every 33 epochs. On a 

Linux workstation with an i9 9900X CPU, 128 

GB of RAM, and an NVIDIA Quadro RTX 8000 

GPU card, all calculations—including the training 

of the CNN—were carried out. 

 

We trained cutting-edge techniques including 

UNet [18], ENet [17], LEDNet [22], UNet++ [19], 

SegNet [20], Attention UNet [21], and 

DeepLabV3+ [23] using the same training data 

and evaluated them using the same test data across 

all experiments to ensure a fair comparison. We 

used these practiced models in place of the Anam-

Net throughout testing. A brief comparison of 

each model's parameters, size, typical training 

time, and inference time is shown in Table IV. 

We determined figures of merit, such as 

specificity, accuracy, sensitivity, and the Dice 
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TABLE II: Comparative Analysis of Deep Learning Models Used For COVID-19 Anomaly Segmentation. 

Four crucial factors were compared: the number of training parameters, the size of the model, the training 

time (for 100 epochs in exp. 1), and the inference time. 

Model  Parameters Model Size  Training time  Inference time  

UNet  31.07M  118.24MB  51min  531 ms  

ENet  343.7K  1.33MB  15min  248 ms  

UNet ++ 9.16M  34.95MB  58min  551 ms  

SegNet  29.44M  112.31MB  37min  528 ms  

Attention UNet  34.87M  133.05MB  63min  569 ms  

LEDNet  0.91M  3.8MB  16min  298 ms  

DeepLabV3 + 54.70M  208.66MB  42min  895 ms  

Anam -Net   4.47M 17.21MB 27min  362 ms  

 

score, for both abnormal and normal classes to 

statistically assess the segmentation performance 

of all models. The figures of merit are computed 

within the range of 0 to 1, with a higher value 

(close to 1) indicating better model performance. 

This rigorous evaluation approach enabled us to 

assess and compare the effectiveness of each 

model in accurately segmenting COVID-19 

anomalies in chest CT images. 

 

IV. HARDWARE DEPLOYMENT 

For our research, we explored the hardware 

deployment of the Anam-Net model on two 

different platforms. The first platform is the 

Raspberry Pi 4 Model B, it provides enhanced its 

features with better processor speed, memory size, 

and networking than its predecessor. We 

successfully from PyTorch to TensorFlow Lite, 

and the learned Anam-Net model was 

transformed. to enable its deployment on the 

Raspberry Pi. The Tensorflow Lite version 

significantly reduced inference time, with the 

Anam-Net performing 23.3 seconds, while the 

UNet model took 43.3 seconds. Despite the 

conversion challenges using third-party tools, the 

Anam-Net showed promising results on this low-

cost embedded system. 

 

Next, we deployed the NVIDIA Jetson AGX 

Xavier developer kit's Anam-Net model, which is 

a powerful deep-learning model accelerator. 

Jetson AGX Xavier boasts impressive 

performance and energy efficiency compared to 

its predecessor, Jetson TX2. Inference for the 

Anam-Net model on the Jetson AGX Xavier was 

completed in 2.9 seconds as opposed to 5.2 

seconds for the UNet model. The Jetson AGX 

Xavier platform was used to train both the Anam-

Net and UNet models, with Anam-Net 

demonstrating a faster training time (1.49 minutes 

per epoch) than UNet (3.19 minutes). To extend 

the applicability to mobile platforms, we 

developed the CovSeg Android Application using 

the PyTorch Lite version. The application allows 

segmenting of COVID-19 anomalies on mobile 

devices. Both the

 

 
 

The hardware tools used to deploy the intended 

COVID-19 abnormalities will be segmented by 

Anam-Net at the point of care. systems are shown 

in Figure 2. The part of the lung that is healthy is 

depicted in green, and the abnormal lung region is 

depicted in red. Sample Segmented Slice #676 

from the Raspberry Pi 4 and experiment 1 test 

scenarios are shown in Figure (a). The test's 
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sample segmented slice #676 and the NVIDIA 

Jetson Xavier scenarios are shown in (b). For form 

factor comparison, a single Euro coin is shown in 

these photographs. (c) gives an example slice 

#676 from the test cases, segmented (Exp. 1) from 

the Android application (CovSeg) that was 

developed. The findings of the inference analysis 

are shown in Table V. 

 

TABLE III: Cost, Memory Space, and Inference Time (in seconds) comparison of the hardware used to 

deploy the proposed Anam-Net 

Device  Inference  Available Memory  Cost  

Raspberry Pi 4 

Anam -Net:23.3s  

UNet:43.3s  4GB RAM  $50 

NVIDIA Jetson  

Anam -Net 2.9s : 

UNet:5.2s  

512-core Volta GPU  

32GB RAM  $700 

Nokia 5.1Plus  

Anam -Net 6.5s  

UNet:11.3s  3GB RAM  $95 

 

the front and rear ends of the CovSeg application 

were developed using Android Studio. Inference 

analysis on a Nokia 5.1 Plus mobile phone 

demonstrated the successful performance of the 

Anam-Net model within the application. 

 

Overall, our hardware deployment experiments 

confirmed the Anam-Net's effectiveness in 

resource-constrained environments and real-world 

scenarios, showcasing its potential for point-of-

care applications and mobile usage. 

V. RESULTS 

In the results section, the proposed Anam-Net's 

performance in segmenting COVID-19 anomalies 

was evaluated and compared to other models. The 

method effectively segmented abnormalities in all 

chest CT images and provided null results when 

no abnormality was present. Fig. 4 showed 

example results, and Table VI displayed the Dice 

scores for the abnormal class. 

 

 
Figure 3 shows the representative segmentation results of the Experiment. The top row displayed slices of 

input (test cases) that were randomly chosen. The second row displays the annotations (ground truth). The 

normal lung area is shown in green, and the lung area with anomalies is shown in red. Table VI displays the 

aberrant lung areas' dice similarity ratings for these test instances. 

 

In terms of sensitivity, accuracy, specificity, and 

Dice score, the proposed Anam-Net performed 

better than expected. UNet++ also performed well 

due to its hierarchical encoder-decoder design 

with extensive dense connections. 

Overall, Anam-Net outperformed other networks 

with its lightweight design and anamorphic depth 

embeddings. Despite containing just 4.47 million 

(third fewest) parameters surpassed other models 

in all figures of merit. Heavy networks like Table 

V presented the averaged results from Experiment 

1, while Tables VI showed results DeepLabV3+ 

(Experiment 3), with results that were comparable 

to those of Attention UNet.performed quite well 
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even in the cross-data set had an inferior performance.

TABLE IV Scores On A Dice Comparison For The Abnormal Lung Region Average Results Are 

Represented By The Last Row For The Test Case Listed. The Best Results Were In Bold. 
Model  

Slice No.  UNet   

Attention 

UNet   

ENet 

  SegNet   UNet ++  

DeepLab 

V3 +  

LEDNet 

  Anam -Net   
50 0.36 0.33 0.30 0.35 0.44 0.26 0.37 0.38 

122 0.16 0.16 0.28 0.12 0.19 0.13 0.14 0.80 

292 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 

676 0.90 0.89 0.81 0.86 0.90 0.86 0.84 0.89 

Average  0.36 0.60 0.35 0.33 0.39 0.31 0.34 0.77 

 

TABLE V Contains The Averaged Merit Figures For Experiment 1 Used 704 Chest CT Images (Test Cases), 

And The Boldest Findings Were The Best 

Model  Class  Dice Score  Specificity  Sensitivity  Accuracy  

UNet  

  

abnormal  0.608 0.983 0.932 0.982 

normal  0.943 0.997 0.902 0.981 

SegNet  

  

abnormal  0.587 0.981 0.936 0.980 

normal  0.935 0.995 0.897 0.978 

Attention UNet  

  

abnormal  0.695 0.988 0.951 0.987 

normal  0.960 0.997 0.932 0.986 

DeepLabV3 + 

  

abnormal  0.366 0.958 0.850 0.956 

normal  0.850 0.993 0.762 0.954 

ENet  

  

abnormal  0.694 0.990 0.857 0.988 

normal  0.956 0.991 0.954 0.985 

UNet ++ 

  

abnormal  0.674 0.986 0.954 0.986 

normal  0.955 0.997 0.924 0.985 

LEDNet  

  

abnormal  0.597 0.983 0.907 0.981 

normal  0.929 0.991 0.901 0.976 

Anam-Net   

abnormal  0.755 0.993 0.900 0.991 

normal  0.972 0.997 0.959 0.990 

 

from Experiment 2. The proposed Anam-Net, with 

fewer parameters, provided accurate segmentation 

compared to existing models. Anam-Net analysis  

In conclusion, the proposed Anam-Net proved to 

be highly effective in segmenting COVID-19 

anomalies, 

 

TABLE VI  Averaged The Merit Figures Over The 545 Chest CT Scans Included In Experiment 2 Are Test 

Cases Across Three Cross Folds. The Boldest Results Are The Best 

Model  Class  Dice Score  Specificity  Sensitivity  Accuracy  

UNet  

  

Abnormal  0.791 0.990 0.907 0.988 

Normal  0.938 0.995 0.913 0.987 

SegNet  

  

Abnormal  0.612 0.988 0.657 0.980 

Normal  0.885 0.987 0.888 0.977 

DeepLabV3 + 

  

Abnormal  0.563 0.992 0.521 0.981 

Normal  0.895 0.983 0.930 0.978 

ENet  

  

Abnormal  0.686 0.989 0.736 0.984 

Normal  0.911 0.989 0.914 0.912 

Attention UNet  

  

Abnormal  0.783 0.987 0.966 0.987 

Normal  0.930 0.997 0.884 0.986 

LEDNet  

  

Abnormal  0.707 0.989 0.782 0.984 

Normal  0.899 0.987 0.912 0.979 

UNet ++ 

  

Abnormal  0.805 0.990 0.951 0.988 

Normal  0.937 0.995 0.906 0.987 

Anam -Net   

Abnormal  0.798 0.990 0.918 0.988 

Normal  0.941 0.997 0.911 0.988 

making it suitable for effective in segmenting 

COVID-19 anomalies, making it suitable for 

point-of-care platforms, while maintaining 

accuracy and quick inference. 
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]VI. CONCLUSION 

In conclusion, this research introduced Anam-Net, 

a lightweight CNN based on anamorphic depth 

embeddings, designed to identify anomalies in 

chest CT scans using COVID-19. Given the 

significance of chest CT imaging in COVID-19 

continues to increase management, this 

methodology is highly relevant. 

The results from the three experiments 

demonstrated that Anam-Net achieved favorable 

scores on the dice for similarity to both abnormal 

and normal regions in chest CT images. 

Additionally, when compared to state-of-the-art 

lightweight and heavy networks like UNet, 

LEDNet, ENet, Attention UNet, UNet++, SegNet, 

DeepLabV3+, Anam-Net outperformed in terms 

of specificity, accuracy, and Dice score across all 

experiments. 

 

Anam-Net's key advantage lies in its low 

computational complexity, requiring only 50% of 

the training time compared to the next best-

performing network and having seven times fewer 

parameters. This makes it well-suited for 

deployment in clinical settings. The model size, 

being 17.2 MB, allows easy deployment on 

mobile platforms, facilitating rapid evaluation of 

anomalies in chest CT images from COVID-19.  

In real-world deployment on hardware platforms 

for mobile and embedded, Anam-Net has proven 

to be highly suitable for point-of-care settings. Its 

effectiveness and efficiency make it a valuable 

tool for healthcare practitioners in managing 

COVID-19 cases according to chest CT imaging. 
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