The Upper Paired Monophonic Number of a Graph

${ }^{1}$ K.Ponselvi, ${ }^{2}$ M.Antony<br>${ }^{1}$ Research Scholar, Register Number: 19133232092001, Department of Mathematics, St.Judes College - Thoothoor, 629176, Tamil Nadu, India.<br>${ }^{2}$ Associate Professor, Department of Mathematics, St.Judes College - Thoothoor, 629176, Tamil Nadu, India.<br>Email: antony.micheal@ymail.com Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012


#### Abstract

A paired monophonic set $M$ in a connected graph $G$ is called a minimal a paired monophonic set if no proper subset of $M$ is a paired monophonic set of $G$. The upper paired monophonic $m_{p}^{+}(G)$ of $G$ is the maximum cardinality of a minimal paired monophonic set of $G$. Some general properties satisfied by this concept are studied. The paired monophonic number of some family of graphs is obtained. It is shown that for every pair of positive integers a and b with $4 \leq a \leq b$, there exists a connected graph $G$ such that $m_{p}(G)=a$ and $m_{p}^{+}(G)=a+b$, where $m_{p}(G)$ is the paired monophonic number of $G$.


Keywords: perfect matching, monophonic path , monophonic number, paired monophonic number, upper paired monophonic number.
AMS Subject Classification: 05C38

## 1 Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of $G$ are denoted by $n$ and $m$ respectively. For basic graph theoretic terminology, we refer to [1]. For the neighborhood of the vertex $v$ in $G, N(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex $v$ of a graph is $\operatorname{deg}(v)=|N(V)| . \Delta(G)$ and $\delta(G)$ are the maximum and minimum degrees of the graph respectively. A vertex $v$ is said to be a universal vertex if $\operatorname{deg}(v)=n-1$. Let $u v$ be an edge of $G$ such that $\operatorname{deg}(G)=1$. Then $G$ is called an end vertex and $u$ is the
support vertex of $G$. For $S \subseteq V(G)$, the induced subgraph $G[S]$ is the graph whose vertex set is $S$ and whose edge set consists of all of the edges in $E$ that have both endpoints in $S$. A
vertex $v$ is called an extreme vertex of a graph $G$ if $G[N(v)]$ is complete. A matching in a graph is a set of edges that do not have a set of common vertices A perfect matching $M$ of a graph $G$ is a set of disjoint edge that covers all vertices of $G$.

The distance $d(u, v)$ between two vertices $u$ and $v$ in a connected graph $G$ is the length of a shortest $u-v$ path in $G$. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. An edge that connects two non-adjacent vertices of a path $P$ is called the chord of $P$. A chordless $u-v$ path is referred to as a monophonic path. The closed interval $J[u, v]$ for two vertices $u$ and $v$ is consists of all the vertices along an $u-v$ monophonic path, including the vertices $u$ and $v$. If $u v \in E$, then $J[u, v]=$ $\{u, v\}$. For a set $M$ of vertices, let $J[M]=\cup_{u, v \in M} J[u, v]$. Then certainly $M \subseteq J[M]$. If $J[M]=V$, a set $M \subseteq V(G)$ is referred to as a monophonic set of $G$. The monophonic number $m(G)$ of $G$ is the minimum order of its monophonic sets.The monophonic number of a graph was studied in [1-15, 17].

A monophonic set $M$ in a connected graph $G$ is called a paired monophonic set if $M=V$ or the each component of $G[M]$ has perfect matching. The minimum cardinality of a paired monophonic set of $G$ is the paired monophonic number of $G$ and is denoted by $m_{p}(G)$. The paired monophonic number of $G$ is studied in [16]. Throughout the following $G$ denotes a connected graph with at least three vertices. The following theorems are used in the sequel.

Theorem 1.1. [16] Each extreme vertex of a graph $G$ belongs to every paired monophonic set of $G$. In particular, each end-vertex of $G$ belongs to every minimal paired monophonic set of $G$.

Theorem 1.2. [16] Each support vertex of a graph $G$ belongs to every paired monophonic
set of G.
Theorem 1.3. [16]] For the complete graph $G=K_{n}(n \geq 2), m_{p}(G)=n$

## 2 The Upper Paired Monophonic Number of a Graph

Definition 2.1. A paired monophonic set $M$ in a connected graph $G$ is called a minimal a paired monophonic set if no proper subset of $M$ is a monophonic geodetic set of $G$. The upper paired monophonic $m_{p}^{+}(G)$ of $G$ is the maximum cardinality of a minimal paired monophonic set of $G$.

Example2.2. For the graph $G$ given in Figure 2.1, $M_{1}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, \quad M_{2}=$ $\left\{v_{1}, v_{4}, v_{5}, v_{7}\right\}, M_{3}=\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}$,
$M_{4}=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}, M_{5}=\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$ and $M_{6}=\left\{v_{2}, v_{3}, v_{6}, v_{8}\right\}$, are minimum paired monophonic sets of $G$ so that $m_{p}(G)=4$. Also $W=\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, v_{8}\right\}$ is a minimal paired monophonic set of $G$ and so $m_{p}^{+}(G) \geq 6$. It is easily verified that no 7 -element subset of $V$ is a minimal paired monophonic set of $G$, and thus $m_{p}^{+}(G)=6$.


Figure 2.1

Remark 2.3. Every minimum monophonic set of $G$ is a minimal paired monophonic set of $G$, but the converse is not true. For the graph $G$ given in Figure 2.1, $W=$ $\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, v_{8}\right\}$ is a minimal paired monophonic set but not a minimum paired monophonic set of $G$.

Theorem 2.4. For a connected graph $G, 2 \leq m_{p}(G) \leq m_{p}^{+}(G) \leq n$.
Proof. Since any paired monophonic set needs at least two vertices, $m_{p}(G) \geq 2$. Let $S$ be a minimum paired monophonic set of $G$ so that $m_{p}(G)=|W|$. Since $S$ is also
minimal paired monophonic set of $G$, it is clear that $m_{p}^{+}(G) \geq m_{p}(G)=|W|$. Hence $m_{p}(G) \leq m_{p}^{+}(G)$. Since the vertex set $V(G)$ is a paired monophonic set, $m_{p}^{+}(G) \leq n$. Thus $2 \leq m_{p}(G) \leq m_{p}^{+}(G) \leq n$.

Remark 2.5. By Theorem 1.3, for $G=K_{2}$, the set of all end-vertices of $G$ is the unique minimum paired monophonic set of $G$ and so $m_{p}(G)=m_{p}^{+}(G)$. Also, for the graph given in Figure 2.1, $m_{p}(G)=4$ and $m_{p}^{+}(G)=6$ so that strict inequality can hold in Theorem 2.4.

Theorem 2.6. Each extreme vertex of a graph $G$ belongs to every minimal paired monophonic set of $G$. In particular, each end-vertex of $G$ belongs to every minimal paired monophonic set of $G$.

Proof. Since every minimal paired monophonic set is a paired geodetic set of $G$, the theorem follows from Theorem 1.1.

Theorem 2.7. Each supportive vertex of a graph $G$ belongs to every minimal paired monophonic set of $G$.

Proof. Since every minimal paired monophonic set is a paired monophonic set of $G$, the theorem follows from Theorem 1.2.

Theorem 2.8. Let $G$ be a connected graph with $v$ a cut-vertex of $G$ and let $M$ be a minimal paired monophonic set of $G$. Then every component of $G-v$ contains an element of $M$.

Proof. Suppose that there is a component $G_{1}$ of $G-v$ such that $G_{1}$ contains no vertex of $S$. By Theorem 2.3, $G_{1}$ does not contain any end-vertex of $G$. Thus $G_{1}$ contains at least one vertex, say $u$. Since $M$ is a monophonic set, there exists vertices $x, y \in M$ such that $u$ lies on the $x-y$ monophonic $P: x=u_{0}, u_{1}, u_{2}, \ldots, u, . ., u_{t}=y$ in $G$. Let $P_{1}$ be a $x-u$ sub path of $P$ and $P_{2}$ be a $u-y$ subpath of $P$. Since $v$ is a cut-vertex of $G$, both $P_{1}$ and $P_{2}$ contain $v$ so that $P$ is not a path, which is a contradiction. Thus every
component of $G-v$ contains an element of $M$.

Corollary 2.9. For any star $G=K_{1, n-1}(p \geq 3), m_{p}(G)=m_{p}^{+}(G)=n$.
Proof: This follows from Theorems 2.6 and 2.7
Corollary 2.10. For any path $P_{n}, m_{p}(G)=m_{p}^{+}(G)=4$.
Proof: This follows from Theorems 2,6 and 2.7
Theorem 2.11. For any cycle $C_{n}(n \geq 4), g_{p}^{+}(G)=4$.
Proof. Let $n$ be even. Let $\{u, v\}$ be a set of antipodal vertices in $G$ and $u x, v y \in E(G)$ such that $x \neq y$. Then $M=\{u, v, x, y\}$ is a minimal paired monophonic set of $G$ and so $m_{p}^{+}(G) \geq 4$. Now, we show that there is no minimal paired monophonic set $X$ of $G$ with $|X| \geq 5$. Suppose that there exists a minimal monophonic set $X$ of $G$ such that $|X| \geq 5$. Then, it follows that $X$ contains two antipodal vertices, say $u$ and $v$. Then $u x, v y \in$ $E(G)$ such that $x \neq y$. Hence $M=\{u, v, x, y\}$ with $S \subset X$, which is a contradiction to $X$ a minimal minimal paired monophonic set of $G$. Therefore $m_{p}^{+}(G)=4$. Let $n$ be odd. Let $u$ and $v$ be any two vertices of $G$. Then it is clear that $\{u, v\}$ is not a monophonic set of $C_{n}$. For any vertex $u$, let $v, w$ be the antipodal vertices of $u$. Then clearly $M=\{u, v$, $w, x\}$ is a minimal paired monophonic set of $G$ so that $m_{p}^{+}(G) \geq 4$, where $u x \in E(G)$. By similar argument in first part of this theorem, we prove that $m_{p}^{+}(G)=4$.

Theorem 2.12. For the complete bipartite graph $G=K_{r, s}$,
$m_{p}^{+}(G)=\left\{\begin{array}{c}r+s ; r=1, s \geq 1 \\ 4 ; \quad r \geq 2, s \geq 2\end{array}\right.$
Proof. If $r=1, s \geq 2$, then $G$ is a star. Hence the result follows from Corollary 2.9. So let $r \geq 2, s \geq 2$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n s}\right\}$ be a bipartition of $G$. Let $W=\left\{x_{i}, x_{j}, y_{l}, y_{m}\right\}$, where $i \neq j$ and $l \neq m$. Then $W$ is a minimal paired monophonic set of $G$. Hence $m_{p}^{+}(G) \geq 4$. Now, we show that there is no minimal paired geodetic set $M$ of $G$ with $|M| \geq 5$. Suppose that there exists a minimal monophonic set $M$ of $G$ such that $|M| \geq 5$. Then, it follows that $M$ contains at least
two vertices of $X$ and at least two vertices of $Y$. Then $W \subset M$, which is a contradiction to $M$ a minimal minimal paired monophonic set of $G$. Therefore $m_{p}^{+}(G)=4$.

Theorem 2.13. For a connected graph $G, m_{p}(G)=n$ if and only if $m_{p}^{+}(G)=n$.
Proof. Let $m_{p}^{+}(G)=n$. Then $M=V(G)$ is the unique minimal paired monophonic set of of $G$. Since no proper subset of $M$ is a paired monophonic set, it is clear that $M$ is the unique minimum paired monophonic set of $G$ and so $m_{p}(G)=n$. The converse follows from Theorem 2.4.

Theorem 2.14. If $G$ is a connected graph of order $p$ with $m_{p}(G)=n-1$, then $m_{p}^{+}(G)=$
$n-1$.
Proof. Since $m_{p}(G)=n-1$, it follows from Theorem 2.4 that $m_{p}^{+}(G)=n$ or $n-1$. If $m_{p}^{+}(G)=n$, then by Theorem 2.13, $m_{p}(G)=n$, which is a contradiction. Hence $m_{p}^{+}(G)=n-1$.

Remark 2.15. The converse of Theorem 2.15 need not be true. For the graph $G$ given in Figure 2.2, $M=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ is a minimal paired monophonic set of $G$ and so $m_{p}^{+}(G)=6=n-1$. Also $M_{1}=\left\{v_{1}, v_{5}, v_{6}, v_{7}\right\}$ is a $g_{p}$-set of $G$ so that $m_{p}(G)=$ $4<n-1$.


Figure 2.2

Theorem 2.16. For any positive integers $a$ and $b$ with $4 \leq a<b$, there exists a connected graph $G$ such that $m_{p}(G)=a$ and $m_{p}^{+}(G)=a+b$.

Proof: For $a=b$, let $P: x, y, z$ be a path on three vertices and $R_{i}: y_{i}, z_{i}(1 \leq i \leq$ $a-1$ ) be copy of path on two vertices. Let $G$ be te graph obtained from $P$ and $\operatorname{Ri}(1 \leq i \leq a-1)$ by joining each $y_{i}(1 \leq i \leq a-1)$. The graph $G$ is shown in Figure 2.3.


Figure 2.3

Let $Z=\left\{x, y, y_{1}, y_{2}, \ldots, y_{a}, z_{1}, z_{2}, \ldots, z_{a-1}\right\}$ be the set end vertices and support vertices of $G$. By Theorem $Z$ is a subset of paired monophonic set of $G$ and so $g_{p}(G) \geq$ $2 a$. Now $I[Z]=V$ and each components of $G[Z]$ has perfect matching and so $Z$ is a paired monophonic set of $G$. Therefore $m_{p}(G)=2 a=n-1$. By Theorem 2.14, $g_{p}^{+}(G)=2 a$. So,let $4 \leq a \leq b$. Let $P: x, y, z$ be a path on three vertices. Let $P_{i}: y_{i}, z_{i}(1 \leq i \leq a-1)$ be a copy of path on two vertices and $Q_{i}: u_{i}, v_{i}(1 \leq$ $i \leq b-a)$ be a copy of path on two vertices. Let $G$ be the graph obtained from $P_{i}(1 \leq i \leq a-1), Q_{i}(1 \leq i \leq b-a)$ and $P$ by joining each $y_{i}(1 \leq i \leq$ $a-1)$ with $z$ and joining each $u i$ and $v i(1 \leq i \leq b-a)$ with $x$ and $y$ respectively. The graph $G$ is given in Figure 2.4. Let $Z=\left\{y_{1}, y_{2}, \ldots, y_{a-1}, z_{1}, z_{2}, \ldots, z_{a-1}\right\}$ be the set of end and supportive vertices of $G$. Then by Theorems 1.1 and $1.2, Z$ is a subset of every paired monophonic set of $G$ and so $m_{p}(G) \geq 2 a-2$. It is easily observed that $Z \cup\{v\}$, where $v \notin Z$ is not a paired monophonic set of $G$ and so $m_{p}(G) \geq 2 a$. Let $M=Z \cup\{x, y\}$. Then $M$ is a paired monophonic set of $G$ so that $m_{p}(G)=2 a$.

Next we prove that $m_{p}^{+}(G)=a+b$. Let $M^{\prime}=Z \cup\left\{u_{1}, u_{2}, \ldots, u_{b-a}\right.$,
$\left.v_{1}, v_{2}, \ldots, v_{b-a}\right\} \cup\{y, z\}$. Then $M^{\prime}$ is a paired monophonic set of $G$. We prove that $M^{\prime}$ is a minimal paired monophonic set of $G$. On the contrary suppose that $M^{\prime}$ is not a minimal paired set of $G$. Then there exists a paired monophonic set $M^{\prime \prime}$ of $G$ such that $M^{\prime \prime} \subset M^{\prime}$ such that $u \in S^{\prime}$. Then by Theorems 1.1 and $1.2, u \neq y_{i}$ and $u \neq z_{i}(1 \leq$ $i \leq a-1)$. If $u$ is either $u_{i}$ or $v_{i}$ for some $i(1 \leq i \leq b-a)$ or $u$ is either $y$ or $z$, then $G\left[M^{\prime \prime}\right]$ has no perfect matching, which is a contradiction. Therefore $M^{\prime \prime}$ is not a paired monophonic set of $G$, which is a contradiction. Therefore $M^{\prime}$ is a minimal paired monophonic set of $G$ so that $m_{p}^{+}(G) \geq b-a+2 a-2+2=a=b$. We prove that $m_{p}^{+}(G)=a+b$. Since $\quad|V(G)|=a+b+1$, by Theorem2.13, $m_{p}^{+}(G)=a+b$.


Figure 2.4

## References

[1] F. Buckley, and F. Harary, Distance in graphs, Addison-Wesley, Redwood City, CA, (1990).
[2] M. C. Dourado, F. Protti, and J. L. Szwarcfiter, Complexity results related to monophonicconvexity, Discrete Applied Mathematics, 158, (2010), 1268-1274.
[3] J. John and S. Panchali, The upper monophonic number of a graph, Int. J. Math. Combin. 4, (2010), 46-52.
[4] J. John and S. Panchali, The forcing monophonic number of a graph, International Journal of Mathemametical Archive, (3)(3),(2012), 935-938.
[5] J. John and P.Arul Paul Sudhahar, The monophonic domination number of a graph, Proceeding of the International conference on Mathematics and Business Management, 1, (2012), 142-145.
[6] J. John and P. Arul Paul Sudhahar and A. Vijayan, The connected edge monophonic number of a graph, 3(2), (2012), 132-136.
[7] J. John,P.Arul Paul Sudhahar, and A.Vijayan, The connected monophonic number of a graph, International Journal of Combinatorial graph theory and applications.5(1), (2012), 41-48.
[8] J. John and P. Arul Paul Sudhahar, The upper connected monophonic number and forcing connected monophonic number of a graph, International Journal of Mathematics Trends and Technology 3 (1), (2012), 29-33.
[9] J. John and P. Arul Paul Sudhahar, The upper edge vertex monophonic number of a graph, International Journal of Mathematics and Computer Applications Research 3 (1),(2013), 291- 296.
[10] J John and K. Uma Samundesvari, Total and forcing total edge-to-vertex monophonic number of a graph, Journal of Combinatorial Optimization 35, (2018), 134-147.
[11] J. John, P. Arul Paul Sudhahar, and D. Stalin, On the (M.D) Number of a graph Proyecciones Journal of Mathematics ,38(2), (2019), 255-266.
[12] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2) (2020) 114-125.
[13] J. John and M.S. Malchijah, The forcing non-split domination number of a graph, Korean journal of mathematics, 29(1), (2021), 1-12.
[14] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian-European Journal of Mathematics 14 (10), (2021), 2150171
[15] E. M. Paluga, and S. R. Canoy Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics, 307, (2007), 1146 -1154.
[16] K. Ponselvi and M. Antony, The paired monophonic number of a graph, (Communicated).
[17] K. Uma Samundesvari and J. John, The edge fixing edge-to-vertex monophonic number of a graph, Applied Mathematics E-Notes 15, (2015), 261-275.

