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Abstract. Both artificial intelligence and additive manufacturing are excellent and revolutionary technologies. The main aim of this research 

paper is to predict surface roughness in additively manufactured processes in Poly Lactic Acid+ polymer material through different machine 

learning algorithms like support vector machine, linear regression, and two ensemble learning techniques Xtremegradient boosting and 

randomforest regressor. All machine learning is trained and tested. Predictive model of surface roughness is developed and machine learning 

behaviour is analyzed. Taguchi's Design of the Experiment was used to make L25 orthogonal array sample datasets. The machine model works 

on five parameters that influence layer geometries: layer height, infill density, printing speed, and nozzle temperature with a 0-degree raster 

angle. By applying all machine learning algorithms, random forest regression is best model, which gives 94.85% accurate results in datasets with 

minimum mean squared error of approximate 0.1255 and maximum r2 score of approximate. 0.9685. 
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1. Introduction 

According to recent studies, the implementation of machine learning (ML) methods may provide both improved speculate 

performance and increased productivity in the industrial sector. Additive manufacturing (AM) is an auspicious technology to 

manufactured components with intricate geometries. It can produce complex parts with minimum price and take time and without 

using special tooling system like molds compared to traditional manufacturing technologies.  

Nomenclature 

ML             Machine learning                                                                                       AM            Additive manufacturing     

FDM          Fused deposition modelling                                                                       3D             Three-dimensional 

PLA           Poly lactic acid                                                                                           RMSE        Root mean square Error 

Ra              Surface roughness (μm)                                                                             DoE           Design of experiments  

ASTM       American Society for Testing and Materials                                              AI              Artificial intelligence  

FFF            Fused filament fabrication                                                                         ABS        Acrylonitrile butadiene styrene 

CAD          Computer-aided design                                                                              MSE           Mean Squared Error  

 

Additive manufacturing, also referred to as AM, is the method of joining the material (layer-by-layer deposition) with the help of 

3D models. In comparison with subtractive manufacturing techniques, AM is defined by the ASTM as "a process of incorporating 

materials to create 3D objects from 3D model data, generally layer upon layer deposition [1]. FDM is “a material extrusion 

process that is used to make polymer material parts by the heating of material filaments and the deposition of material layer by 

layer and make 3d objects” [2].  

The roughness of a surface plays a significant role in machining processes because it has a direct impact on the functional 

specifications of the machined parts. [3], [4]. According to a survey, FDM is the most frequently utilized AM technology at the 

present time. One of the main areas of focus for enhancing FDM part quality has been the development of predictive models that 

link process factors (i.e., machine settings) and material qualities with the printed part properties [5]. Shaha et al [6], 

the DoE method was used to examine the impact of machine parameters on printed component surface roughness. The researcher 

determined that layer height was a significant determinant, but that there was no significant relationship between surface 

roughness and nozzle temperature. The investigation detailed in reference number [7] demonstrates how different machine 

configurations affect surface roughness. It was discovered that the height of the slice and the width of the raster have an impact on 

surface roughness. Meanwhile, P.K. Rao et al. [8], [9] conducted experiments to determine the machine settings that result in the 
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smoothest surface finish, which is associated with high temperatures, thin layers, and a high feed/flow rate ratio. Similarly, R. 

Anitha et al. [9] reports on similar research where the thickness of the deposited filament, layer height, and extrusion speed were 

found to affect surface roughness. Popescu et al.[10]  discussed that due to the various types of 3D printers, materials, and slicing 

software available, experimental methods may not be able to produce consistent results that accurately reflect the material's 

behavior in reality. To address this issue, theoretical modeling and finite element analysis were used to connect the mechanical 

properties of 3D-printed samples with material and process parameters[11]. However, the complex microstructure of 3D-printed 

parts, such as irregular pores and surface interactions, make it difficult to accurately model and simulate. Therefore, the accuracy 

and reliability of these methods are uncertain. To overcome these challenges, ML techniques, as a form of AI, can learn patterns 

between input features and output results automatically based on training data, without explicit programming [12]. In the context 

of the ME-AM process, the use of ML may provide effective solutions to the aforementioned issues [13]. The quality of parts 

produced by FFF can be impacted by variations in the thermal influence between layers during the layer-by-layer material 

deposition process. Such variations can cause issues like surface roughness, microstructural defects, and poor mechanical 

properties [14]. To address this, Boschetto et al.[15] developed a predictive modeling strategy to evaluate the surface roughness of 

FFF-printed items, and this strategy was demonstrated through a series of experiments. Boschetto and Bottini [16] also developed 

a model that can predict surface roughness of FFF-printed parts that underwent barrel finishing. Reeves and Cobb [17] created an 

analytical model that examined the effects of layer thickness, surface angle, layer profile angle, and layer composition on the 

surface roughness of stereolithography-printed parts. Meanwhile, Ahn et al. [18] developed a technique for predicting the surface 

roughness of 3D-printed parts using geometric data from an STL file. They fabricated multiple specimens on an SLA 3500 

machine and measured their surface roughness with a profilometer. 

Mishra and colleagues [19], [20] conducted experiments to examine how six different process parameters affect the mechanical 

strength of parts produced by FDM). The parameters included air gap, part orientation, layer thickness, raster angle, contour 

number, and raster width. The significance of each process parameter was determined using an analysis of variance. The study's 

findings revealed that air gap, contour number, and part orientation had the most substantial impact on the parts' strength. Bharat 

and colleagues [21] examined how various process parameters, such as layer thickness, air gap, road width, build orientation, and 

model temperature, affect the surface finish of FDM-built parts. The study employed a fractional factorial design with two levels 

for each factor. The results indicated that part orientation and layer height had the main impact on surface quality, with a part 

orientation of 70° and layer thickness of 0.007" yielding the best surface finish. Model temperature, air gap, and road width had 

minimal effect on the surface finish of FDM parts. In a similar study, Garg et al. [22] investigated the effects of part orientation on 

the dimensional accuracy and surface finish of FDM ABS P430 parts at seven different angles (0°, 15°, 30°, 45°, 60°, 75°, and 90° 

about the Y-axis). They found that part orientation had a considerable influence on both dimensional accuracy and surface finish, 

with the most desirable outcomes obtained at a 45° angle. The impact of model temperature, layer thickness, and part fill style on 

the surface roughness of FDM-built parts was studied by Daniel Horvath et al. [23]. All factors were found to have a significant 

effect on surface roughness, with layer thickness having the greatest impact. Reducing the layer thickness resulted in decreased 

roughness. Peârez et al. [24] also investigated surface roughness and dimensional accuracy in ABS P400 parts, creating four 

prototypes with different slope variations. Past studies have primarily concentrated on creating different methods for estimating 

surface roughness in AM processes. However, there has been minimal research on predicting surface roughness in AM utilizing 

heterogeneous sensors and data-driven techniques. To fill this void in research, a new data-driven predictive modeling technique 

fitted in machine learning has been introduced to predict the surface roughness of AM components using FFF. 

2.1. Overview of Fused Deposition Modelling 

FDM is a 3D printing technology that works by extruding a thin strand of molten material, typically thermoplastic, through a 

heated nozzle. The nozzle is mounted on a movable arm, which moves in the X, Y, and Z directions according to the design 

specifications of the 3D model [25]. The material is deposited layer by layer, with each layer fusing to the previous one to create a 

solid object. The FDM process with the components (see Fig 1) 
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Fig. 1. FDM procedures of the 3D printing [25]. 

The process starts with the design of a 3D model using CAD software. The 3d model design is then convert into a format that can 

be read by the 3D printer, typically an STL file. The 3D printer software then analyzes the design and creates a toolpath, which is 

a set of instructions that tell the printer where and how to deposit the material to create the object. 

The material used in FDM is typically a filament, which is a long, thin strand of thermoplastic material, such as ABS or PLA. The 

filament is fed into the printer through a spool and is heated to a melting point. The melted material is then extruded through the 

nozzle in a controlled manner, forming the object layer by layer. During the printing process, the object is supported by a 

platform, which can be either fixed or movable, depending on the printer design. As each layer is deposited, the platform is 

lowered or moved, allowing the next layer to be added. FDM 3D printers can produce objects with a high level of detail and 

accuracy, making them useful for a variety of applications, from rapid prototyping to producing end-use parts. 

 

3. Experimental work 

 
3.1 Material  
 

PLA and PLA+ are two types of 3D printing filaments that are widely used. PLA is a biodegradable and environmentally friendly 

material that is typically derived from corn starch or sugarcane. On the other hand, PLA+ is an advanced version of PLA that 

boasts enhanced physical properties like increased strength, durability, and heat resistance. Numakers Company procures the 

PLA+ material for all experimental work. 

PLA is crafted from natural and renewable resources such as sugarcane or cornstarch. To enhance its strength and 

durability, PLA+ is created by adding substances like carbon fiber, metal particles, or other polymers. The result is a stronger and 

more durable material that can withstand higher stresses without breaking or cracking. PLA+ is particularly useful for printing 

objects that require more strength, durability, and resilience, and it retains its shape and physical properties even at temperatures 

up to 90 degrees Celsius. Its improved adhesion properties make it less prone to warping and ideal for printing large objects. 

Additionally, PLA+ has best layer sticking and less shrinkage with less warpage than PLA, which change to a printed object that 

is closer to the same size and shape, with less warping or distortion during the 3D printing. Finally, PLA+ has a matte finish due 

to the natural additives in the material [26]–[28].Both PLA and PLA+ are great options for 3D printing. PLA is suitable for 

general-purpose printing, whereas PLA+ is more appropriate for printing objects that require greater strength, durability, and 

resistance to heat. PLA+ has enhanced properties compared to PLA, such as improved strength, durability, and heat resistance, 

making it the preferred material for printing high-performance objects. However, it is slightly more difficult to print with than 

PLA, and it is also more expensive due to the added additives. PLA+ is a thermoplastic polymer that is commonly utilized in 

fused deposition modeling. It is an eco-friendly material that is fully biodegradable and produced from renewable resources 

obtained from corn starch fermentation. Additionally, it is cost-effective and offered in a range of colors. [29], [30] provides 

information on the properties of PLA. In FDM, the print quality can be impacted by several process parameters, including layer 

thickness, nozzle temperature, ,print speed, infill density, print orientation, shell thickness, and printing pattern. Only the 

parameters that directly affect surface roughness and mechanical properties are considered, which includes layer thickness, infill 

density, and nozzle temperature. These parameters, along with their corresponding levels for an FDM 3D printer with a 0.4 mm 

nozzle diameter, are chosen using trial-and-error models. Table 1 presents the selected process parameters. 
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Fig 2. Schematic Diagram of 3D sample parts with Geometry 25x20x3.2 mm³. 

 
The experiment keeps all other parameters at a constant value while focusing on layer thickness, infill density, and nozzle 

temperature as the main process parameters. The printing speed, traveling speed, printing pattern, and shell thickness are also set 

to predetermined values. No supports are needed for printing the CAD models, so they are disabled. An orthogonal array (OA) is 

generated using MINITAB L25 software, which uses a 5-level Taguchi design with 5 factors. The L25 design is selected, resulting 

in a 5x5 array presented in Table 1. The specimens developed in a SolidWorks CAD model have dimensions of 25*20*3.2 mm³. 

(see in fig 2) 

3.2 Taguchi Method 

 

Genichi Taguchi developed the Taguchi method, which aims to reduce process variation through a robust design of experiment 

and produce very high-quality products at a low cost for manufacturers. The method involves using a taguchi orthogonal array to 

organize the parameters that affect the process and the dimensions at which they are varied. The Taguchi method differs from the 

factorial design in that it only tests pairs of combinations, rather than all possible combinations. This approach is useful for 

identifying which factors have an impact on product quality while minimizing the amount of experimentation required, thereby 

saving time and resources. The proposed experimental design by Taguchi is discussed in reference [31]. 

The Taguchi Orthogonal Array (OA) design is a fractional-factorial model that ensures all levels and factors are equally 

considered. This allows for independent evaluation of factors, despite the functionality of the design. The Taguchi orthogonal 

array design L25 chosen in Table 1 shows the orthogonal array selected for the parameters and levels.  

Table1: Control factors and different levels used for the Experiments 

 
Parameters  L1  L2 L3 L4 L5 

Printing Speed 50  60 70 80 90 

Nozzle Temperature 200 207.5 215 222.5 230 

Infill Density % 35 40 45 50 55 

Layer Height  0.12 0.14 0.16 0.18 0.20 

 
3.3 Fabrication and experimental setup 

 

A total of 25 samples were printed according to the Taguchi L25 orthogonal array, as illustrated in Figure 4. These 

samples were printed using an Ender 3 3D printer, which is see in Figure 3. The specifications of this 3D printer are provided in 

Table 2. To test the surface roughness of the PLA+ material printed part, the Taylor Hobson surface roughness tester equipment 

was used. The components that were fabricated underwent testing using the Taylor Hobson machine shown in Figure 5, which has 

a range of approximately 0.05 to 12.25 um and is used in battery connectivity operations. Before testing the fabricated parts, it 

was necessary to check whether the diamond tip connected to the stylus was straight or not. Additionally, the surface roughness of 

the given sample base plate, which measured 6 um, was examined. Surface roughness was tested in three different positions of the 

sample parts, and the average of all three positions was taken to determine the final surface roughness (Avg), as shown in Table 3. 
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Fig 3.  Ender-3 3D printer machine 

 

 
 

Fig 4. 3d Printed sample parts 

 

 
 

Fig 5. Taylor Hobson surface roughness tester with printed sample parts 
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Table 2: Specification of Ender-3 3D printer. 

 

S.No. Parameter Type/Size 

1 Bed size 235 * 235 

2 Bed type Heated 

3 Max travel X= 235, Y = 235. Z = 250 

4 Nozzle size 0.4 mm 

5 File supported G code 

6 Material Supported PLA, PLA+, ABS 

7 Display size 2.5 Inch 

8 Max speed 120 mm/s 

9 Power supply 220 – volt AC, 240Watt 

 

 
Table 3: Experimental Result of surface roughness in different Parameters 

Taguchi L25 orthogonal array. 

Exp 

No. 

Printing 

Speed 

Nozzle 

Temperature 

Infill 

Density 

Layer 

height 

SR (Ra1) SR (Ra2) SR (Ra2) SR Average 

1 50 200 35 0.12 4.24 4.3 4.08 4.20 

2 50 207.5 40 0.14 5.72 5.86 5.25 5.61 

3 50 215 45 0.16 6.50 6.31 6.21 6.34 

4 50 222.5 50 0.18 7.21 7.88 7.46 7.51 

5 50 230 55 0.2 9.54 9.36 8.94 9.28 

6 60 200 40 0.16 6.44 7.1 6.32 6.62 

7 60 207.5 45 0.18 7.31 7.84 8.44 7.86 

8 60 215 50 0.2 8.41 8.19 8.75 8.45 

9 60 222.5 55 0.12 4.12 4.365 4.62 4.4 

10 60 230 35 0.14 5.84 5.7 5.81 5.78 

11 70 200 45 0.2 8.89 9.12 9.4 9.13 

12 70 207.5 50 0.12 4.14 4.68 4.84 4.55 

13 70 215 55 0.14 5.94 5.34 6.24 5.84 

14 70 222.5 35 0.16 6.34 6.84 6.94 6.70 

15 70 230 40 0.18 8.154 8.54 8.21 8.30 

16 80 200 50 0.14 6.25 6.32 6.05 6.20 

17 80 207.5 55 0.16 7.45 7.64 6.84 7.31 

18 80 215 35 0.18 8.54 8.89 8.24 8.55 

19 80 222.5 40 0.2 7.55 7.3 7.95 7.6 

20 80 230 45 0.12 5.15 5.89 5.25 5.43 

21 90 200 55 0.18 9.32 9.75 8.95 9.34 

22 90 207.5 35 0.2 10.25 9.98 9.84 10.02 

23 90 215 40 0.12 7.1 6.84 6.35 6.76 

24 90 222.5 45 0.14 6.65 6.9 6.25 6.6 

25 90 230 50 0.16 8.21 8.75 8.1 8.35 

 

3. Result and discussion 
 

The generated machine learning model considers a total of four input parameters, with surface roughness measurement 

serving as the output. The input data or features consist of the following printing parameters: printing speed, Infill Pattern (IP), 

nozzle temperature, and Layer Thickness (LT), with a raster angle of 0 degrees. These parameters were obtained through the 

experimental procedure outlined in the experimental work, which was then used to calculate the surface roughness output of the 

3D printed sample parts. Figure 6 displays the correlation between the input and output variables of the experimental datasets, 

while Figure 7 shows the Heatmap correlation created using Python programming. 

 

 

3.1 Effect of printing parameter in surface roughness 
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Layer height. Printing speed, nozzle temperature and Infill density all the four parameters shown different impact on the surface 

roughness which is shown in the figure 6. 

 
Fig. 6. show variation of different parameters with surface roughness (Ra) 

 
 

 
 

Fig. 7. Heatmap of correlation with surface roughness with other parameters 
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This heatmap gives the percentage of correlation of input features to the output features(Surface Roughness). This heatmap gives 

the correlation in percentage which is given below 

1. Printing speed is 31% corr. With Ra  

2. Nozzle temperature is 2.7% corr. with Ra 

3. Infill density is 3.5% corr. with Ra 

4. Layer height is 89% corr. With Ra 

The correlation analysis reveals that layer height has a very strong correlation with surface roughness, at approximately 89%. 

Conversely, infill density and nozzle temperature have the least correlation with surface roughness. Infill density primarily affects 

tensile strength rather than surface roughness, as it fills the inside of the material in 3D printed parts. Nozzle temperature also has 

minimal correlation, as the melting temperature of the PLA+ polymer used in the experiment is around 200-230 degrees Celsius, 

as indicated on the filament coils purchased from the Numkers company. Given these findings, we eliminated the two least 

correlated parameters, nozzle temperature and infill density, and focused on the highly correlated layer height parameter. The 

dataset was then split into training and testing sets, with 75% allocated for training and 25% for testing. The machine learning 

model was applied to the datasets. 

 
3.2 ML modelling  

The specimens were manufactured with FDM 3D printing and tested for surface roughness on a Taylor Hobson surface roughness 

tester. Different machine learning is used to predict the surface roughness of the 3D printed parts, which show different results in 

the training and testing datasets . Working procedure of the ML is shown by the flow chart in the figure 8. 

 

 
Fig 8. Working procedure of different ML created by flow chart 

 
Table 5. Training and testing result in different Ml algorithm  

Machine Learning algorithm Training score (%) Testing score 

Linear regression 85.0 84.29 
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Support vector machine 3.08 -3.099 

Random forest repressor 94.45 95.45 

Gradient Boosting regression 98.871 36.67 

  
Random forest regression shows a better-fitted algorithm on training and testing datasets, which is shown in the above 

table 5 all over the machine learning I am also checking the evaluation of all 4 algorithms. To determine whether a machine 

learning regression model is good or not, you can use various evaluation metrics, such as MSE: which measures the average 

squared difference between the predicted and actual values. A lower value of MSE indicates a better model. R-squared (R2) score: 

It represents the proportion of variance in the target variable that is explained by the independent variables. A higher value of R2 

indicates a better model. RMSE: It is the square root of MSE and represents the average distance between the predicted and actual 

values. A lower value of RMSE indicates a better model. 

Random forest regressor is minimum mse 0.1255 and maximum r2_Score with 0.9685 as compared to the linear 

regression and the other two algorithms give more error as compared to the random forest, the overall best algorithm is random 

forest regressor because it has better training accuracy, testing accuracy, less mean squared error and also great r2_score of all the 

ML algorithm. After applying the best ML model make a user interface to predict the surface roughness by using the saved model.  

 

All the actual and predicted data are shown by the graph in Figure 9 in different machine learning algorithms. This graph shows a 

graphical representation of all detailed understanding of the actual and predicted data. 

 

Fig 9. Graphical representation of actual data and predicted data of different machine learning algorithm 
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Random forest regression algorithm gives the prediction result of the experimental data with minimize error, overall all the 4 

machine learning algorithm. All the code of the machine learning is written in jupyter notebook and fig. 9 is coding generated 

graphical representation of all machine learning 
 

5. Conclusions and future works 
 

The surface roughness was measured and 3D samples were fabricated successfully using the L25 orthogonal array. The 

study proposed a data-driven framework that utilized machine learning to predict surface roughness and dimensional accuracy, 

and obtain optimal process parameters. Verification experiments showed that the optimized results were consistent with 

experimental results, indicating the effectiveness and feasibility of the proposed method. The study concluded that using machine 

learning to study process parameters and obtain optimal settings for surface roughness is a viable approach. 

1. Surface roughness is directly depend on the parameters of layer height and printing speed, With the increase of layer 

height, Printing speed, that directly effect to increase the surface roughness of the 3d printing parts. Layer height is 89% 

positive correlation with the surface roughness and printing speed is 30% correlation with the surface roughness. Surface 

roughness is minimum gives less wear  with the meshing parts  

2. Infill density and nozzle temperature gives constant relation between the surface roughness’s does not gives any type of 

effect in the surface roughness. Its approx. 0.030 % correlation with the surface roughness. 

3. An ensemble machine learning algorithm random forest repressor is less MSE approx. 0.1255 and maximum r2_Score 

approx. 0.9685 in all the used machine learning algorithm, with training accuracy is  94.45 and testing  accuracy 0.9685 

which is also shown in the visualization graph in the figure number 9. 

Upcoming work involves collecting more data to increase the robustness of the models. Furthermore, new input parameters 

such as nozzle diameter will be incorporated. Additionally, experimental data will also be utilized in conjunction with or in lieu of 

numerically generated data to enhance the predictive models.  
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