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Abstract.  

Much of the recent studies concerned with coupled oscillator systems is focused on introducing the amplitude 

death phenomenon in oscillators whose equilibrium points are otherwise unstable in uncoupled state resulting 

in limit cycle oscillations. This article presents a review on a recent research work that induces amplitude death 

in coupled Van der Pol oscillators. The coupling is through diffusive flow of conjugate dynamical variables. 

Further exploration is done to understand the variation of amplitude death regime or range of values of coupling 

strength with that of the characteristic parameters of the oscillators, namely nonlinearity parameter and natural 

frequency. We also establish the condition between the characteristic parameters for which such type of 

conjugate coupling fails to instigate amplitude death regime. Oscillators showing amplitude death have been 

used extensively in many microscopic physical and biological applications. Finally, a rigorous discussion on 

the output characteristics of such coupled VdP oscillator pairs for different ranges of values of coupling strength 

is also furnished. Such knowledge of output characteristics will be of importance for a scientific personnel in 

the domain of applied physics who wish to use this type of conjugate coupled VdP oscillator in their specific 

applications. 
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1.   Introduction 

The Van der Pol Oscillator named after the Dutch 

physicist Balthasar Van der Pol who conceived it 

incipiently, is a self sustained, non linear oscillating 

system [1]. The popularity of the oscillator can be 

attributed to its immense applications in the various 

branches of sciences. For example, it can be found 

in electrical systems that utilise vacuum tubes as 

one of its components. The oscillator has been 

implemented extensively in modelling several 

naturally occurring phenomenon. For instance, it 

has been used: to model two plates at the location 

of geological faults in seismology [2, 3], to model 

vocal fold oscillations in phonation studies [4], to 

model action potential of neurons in biological 

studies [5].         

   

The dynamical equation that represents the Van der 

Pol oscillator (VdP) is given by the differential 

equation,  

                       (1) 

 

where x represents the dynamical variable and ω 

designates the natural frequency of the oscillator 

[6]. It can be seen that the oscillator is non-linear 

with, ε (>0) representing a measure of non-linearity 

and is hence known as the non-linearity parameter. 

It is a well known fact that the oscillator has a single 

equilibrium state which is unstable corresponding 

to the point 𝑥 =  �̇� = 0 in phase space [7]. Further 

close inspection reveals that the oscillator can be 

conceived as a perturbation of a simple harmonic 

oscillator. Thus for weak nonlinearities (ε ≪ 1) the 

oscillator is seen to have sinusoidal output which is 

characteristic of simple harmonic oscillations 

whereas, there is a significant departure from this 

characteristic for stronger nonlinearities (ε ≫ 1). 

Figure 1 is indicative of the preceding statements.  

Majority of recent studies pertaining to the study of 

coupled oscillator systems (any in general) is 

focused on converting this unstable equilibrium 

point to a stable equilibrium point. This would 

mean the oscillation of the oscillators in coupled  

state would die down and such an effect is formally 

known as amplitude death phenomenon [8, 9, 10]. 

The most commonly used type of coupling is the 

conjugate coupling, which can successfully 

introduce amplitude death phenomenon in the 

majority of the oscillator systems. In other words, 

conjugate coupling is mainly used as a tool to 

convert the unstable fixed point to stable 

equilibrium creating an amplitude death regime. 

For instance, conjugate coupling has been 

employed to introduce amplitude death in coupled 

Landau-Stuart oscillators and Lorenz oscillators 

[11]. The same phenomenon can be perceived in a 

pair of conjugate coupled Chua oscillators [12]. An 

extensive study of such phenomena has been 

carried out in Rössler chaotic systems as well [13]. 

Mathematically, conjugate coupling implies 

coupling via diffusive row of ‘dissimilar’ variables 

or ‘conjugate’ variables, namely x and �̇� [14, 15, 

16].  

 

The case of VdP oscillators is no different and has 

been imposed with similar treatments. This article 

reviews a recent study, which attempts to introduce 

amplitude death phenomenon in VdP oscillator 

pairs via conjugate coupling [17]. The amplitude 

death is prevalent only for a certain range of values 

of the coupling strength, familiarly known as 

amplitude death regime [15, 18]. The review shall 

be made more rigorous by exploring the variation 

of amplitude death range (values of coupling 

strength) with the parameters that characterise the 

VdP oscillator pair, namely the nonlinearity 

parameter and the natural frequency. A more 

comprehensive knowledge is also gained by 

understanding the amplitude death characteristics 

(damped or under-damped) and the output 

characteristics (outside the amplitude death range) 

depending on the coupling strength values. Such 

understanding will be of immense importance in 

the domain applied science where a particular type 

of output for an oscillator is desirable.  
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Figure 1: Limit cycle oscillations of VdP oscillator for weak (ε ≪ 1) and strong nonlinearities (ε ≫ 1). 

 

2.   Amplitude death phenomenon in conjugate 

coupled Van der Pol Oscillator  

It has been made aware already that the Van der Pol 

oscillator has a single unstable equilibrium point at 

𝑥 =  �̇� = 0 [19, 20]. In simpler terms this basically 

means that the oscillations will evolve into some 

kind of limit cycle depending on the values of its 

characteristic parameters, namely non-linearity 

parameter and natural frequency. We focus on a 

recent study of coupled VdP oscillators which aims 

to introduce the amplitude death via conjugate 

coupling as a result of which the unstable 

equilibrium point of the individual oscillators can 

be converted into stable fixed point, creating an 

amplitude death regime. The ensuing paragraphs of 

this section will present a very brief recap of the 

above mentioned study which has been published 

in Ref [21]. 

 

The type of conjugate coupling that has been reported to have amplitude death is defined by the following 

governing equation, 
 

                                       (2) 

 

where ω0 and ε refers to the natural frequency and 

non-linearity parameters of the oscillators. The 

parameter, k indicates coupling strength between 

the two oscillators. It can be noted that, for ease of 

simple analysis we have assumed identical 

oscillators (ε1 = ε2 = ε) and (ω1 = ω2 = ω0). we begin 

by converting the governing equations to coupled 

first order equations to obtain,  

 

       (3) 

 

Solving equation (3) for fixed point we get 𝑥 =
 �̇� = 0 and 𝑦 =  �̇� = 0 and hence conclude such 

coupling does not alter the stable point. Now, one 

can employ Lyapunov analysis to ascertain its 

nature of stability. This method principally entails 

perturbation analysis of the linearized governing 

equations [22, 23]. The Jacobian matrix for 

linearized equations turn out to be  

     (4) 

 

whose characteristic equation is,     

                                      (5) 

 

The real parts of the roots of the equation (5) 

indicate Lyapunov exponents at the equilibrium 

point. The exponent is defined as the rate at which 

infinitesimally close trajectories in phase space 

separate out [24, 25, 26, 27]. More negative the 

Lyapunov exponent, the more stable the fixed point 

will be and the more positive the exponent, the 

more unstable the fixed point shall be. A criterion 

known as Routh-Hurwitz (RH) criterion, is used 

extensively in the domain of control systems to 
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determine the signs of the zeroes of the equation 

that designate output function [28, 29, 30, 31, 32]. 

The criterion states that a bi-quadratic polynomial, 

aλ4+bλ3+cλ2+dλ+e will have all roots comprising 

of negative real parts if the conditions e > 1, d > 0, 

cd−be > 0 and bcd−ad2 > 0 are satisfied [33, 34, 35, 

36]. This specific case of the criterion can be 

implemented to determine the sign of the roots of 

the equation (5). By using one of the conditions we 

immediately note that k > ε should be one of the 

required conditions for amplitude death. However, 

this clearly is not the only inequality as the other 

conditions of the criterion also must be satisfied 

necessarily. Analytically manipulating the other 

inequality conditions in the context of this coupled 

oscillator is a rigorously tedious task. Thus we seek 

for graphical visualisation.     

We plot the largest value of the real parts of the 

roots of equation (5) as a function of coupling 

strength. The result is indicated by figure 2. The 

values of coupling strength for which the largest 

Lyapunov exponent is negative testifies that 

amplitude death phenomenon is prevalent in this 

range of k values. As mentioned earlier this range 

is popularly termed as amplitude death regime. In 

other words, conjugate coupling has successfully 

converted the earlier unstable point into a stable 

attractor in this regime.   

3.   Variation of Amplitude death regime with 

nonlinearity parameter 

We shall explore the work done in the recent study 

further by understanding the variation of amplitude 

death regime with the characteristic parameters of 

the oscillators, non-linearity parameter ε at fixed 

value of ω = 1.05 in Figure. 3. We plot the largest 

Lyapunov exponent described by equation (3) 

against coupling strength k for nonlinearity 

parameter = 0.1 (keeping ω0 fixed). In Figure. 2 (a), 

we observed the largest Lyapunov exponent (black 

line) is negative at k = 0.11 which evidence of 

amplitude death and It also have good agreement of 

the largest eigenvalue (obtained from Eq. (5)) of 

the coupled oscillators. While at higher coupling 

strength (k>1.13), the coupled system goes to 

unbound state (UBS).

 

 
 

Figure. 2: (a) Variation of largest Lyapunov exponent (black line) for the range of coupling strength k 

signifying amplitude death at nonlinearity parameter ε = 0.1 and natural frequency, ω0= 1.05. Red circle 

represents the largest eigenvalue of the coupled VdP oscillator. (b) Parameter space in (ε-k) for natural 

frequency ω0= 1.05 for conjugate coupled VdP oscillators. 

 

In figure 2(b), we draw parameter plane (ε-k) at 

fixed value of ω = 1.05, and show the various 

dynamical regime: oscillatory state (OS), 

amplitude death (AD), and unbound state (UBS).  It 

can be notice that the critical value of coupling 

strength k for amplitude death is increase with 

nonlinearity parameter ε up to the ε =1.1. After this 

value amplitude death region is vanished and 

coupled oscillators have oscillation state. While at 

k>1.1, the coupled oscillators, wen to the unbound 

state (UBS) from oscillatory state or amplitude 

death state at any value of nonlinearity parameter ε. 

It can also be concluded that varying the 

nonlinearity results in variation of the lower limit 

of amplitude death state of coupling strength while 

the upper limit remains unchanged. Thus the 
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nonlinearity parameter for this type of coupling 

acts as a controller for the lower limit of amplitude 

death.  

  

4.   Variation of Amplitude death regime with 

natural frequency 

Figure 3(a) is indicative of the variation of largest 

Lyapunov exponent with the range of coupling 

strength k to signifying amplitude death for various 

value of natural frequency ω0. Unlike the previous 

case, here adjusting the natural frequency causes 

variation in the upper limit of range of coupling 

strength k for which amplitude death can be 

attained. Thus natural frequency can act as a 

controller for the upper limit of amplitude death 

range. We have also draw the parameter plane 

between (ω0-k) at constant nonlinearity parameter 

ε = 0.1 for conjugate coupled VdP oscillators in 

figure 3(b), and observed similar regime: 

oscillatory (OS), Amplitude death (AD), and 

unbound state (UBS). 

Above mentioned facts form the basis for the most 

sought after property of this type of coupling. The 

beauty of this type of conjugate coupled VdP 

oscillator pair is that the lower and upper limits of 

amplitude death range can be controlled 

independently by varying the respective individual 

oscillator parameters (ε and ω0) without one 

affecting the other. One may imagine that such 

coupling gas a wide ranges of uses that has such 

immense ease of control to obtain the desired 

output.  

 

 
 

Figure 3: (a) Variation of largest Lyapunov exponent with coupling strength, k for various value of natural 

frequency ω at nonlinearity parameter ε = 0.1. (b) Different dynamical regime in parameter plane (ω-k) for 

conjugate coupled VdP oscillator. 

 

5.   Output characteristic of the coupling 

For more exhaustive review in the light of the 

above discussions, we seek for graphical 

verification and analysis. In our context, 

understanding how the conjugate coupled oscillator 

behaves, particularly in the amplitude death region 

is of immense importance to experimentalists and 

engineers, who wish to get the desired output for 

their applications, by varying its parameters. Such 

desired output in precise applications can only be 

achieved with knowledge on output characteristics 

of an oscillator in correlation with its parameters. 

For this we solve the governing equations (2) and 

(3) numerically for fixed values of natural 

frequency ω0 and nonlinearity parameter ε. The 

outcome is reflected in figure 4(a). A 

comprehensive understanding of the outputs can be 

achieved by more rigorous inspection of figure 

4(a), which shows the variation of largest 

eigenvalue with coupling strength k.  

It can be seen that for the values of coupling 

strength such that k < ε referred to as region R1 in 

Figure 4(a) the largest eigenvalue is positive and 

there will be no amplitude death. This is verified in 

figure 4(b). We also infer that the frequency of 

stable oscillations decreases as the coupling 

strength increases and the reason for this can be 

attributed to the fact that the largest eigenvalue 

decreases and becomes less positive in this interval.  

For the range of coupling strength given by 0.09 < 

k < 1, where k is the value of coupling strength at 

which the largest eigenvalue is least as depicted by 

R2 in figure 4(a), the largest eigenvalue is negative. 

Thus it can be concluded that amplitude death 

phenomena can be encountered in this range. This 

is indicated in figure 4(c). Furthermore, the 

oscillatory damping is found to be of under-

damping type. The under-damping characteristics 

are also found to decrease with the increase in 

coupling strength, meaning as the coupling strength 

increases the amplitude dies down quicker. This is 

because the largest eigenvalue decreases and 

becomes more negative in this region.  
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For the region R3 shown in figure 4(a) the largest 

eigenvalue is still negative and thus it can be 

inferred that amplitude death shall transpire in this 

region. This fact is supported by figure 4(d). 

Moreover, it can be noticed that the amplitude 

death is an over-damped type. Further inspection 

shows that the characteristics of over-damping 

decreases with increase in coupling strength, 

essentially meaning the rate of amplitude death 

decreases. This can be accredited to the fact that the 

largest eigenvalue increases and becomes less 

negative in this region.  

On the other hand, region R4 depicted that the 

largest eigenvalue exponent is positive which 

basically translates that amplitude death is not 

possible. In fact, interestingly in this region there is 

growth in amplitude with no oscillations refer as 

unbound state as depicted in figure 4(e). We can 

term this phenomenon as explosive amplitude 

growth. Furthermore, it can be discerned that the 

rate of amplitude growth increases as coupling 

strength increases and this owes to the fact that the 

coupling strength increases and becomes more 

positive in this interval. 

 

 
 

Figure 4: (a) Largest eigenvalue plotted as a function of coupling strength k. The time series of x and y 

variable outputs of the coupled oscillator for values of coupling strength (b) k = 0.1, (c) k = 0.5 (d) k = 1.1, 

and (e) k = 1.3 at nonlinearity parameters ε = 0.1 and natural frequency ω0 = 1.1. 

 

6.   No amplitude death condition 

It is to be made aware that, in any case natural 

frequency becomes less than or equal to the non-

linearity parameter (ω0 ≤ ε), amplitude death cannot 

be achieved for any value of coupling strength. 

This has been verified in figure 5. The Lyapunov 

exponent is positive for all values of coupling 

strength, signifying that the amplitude death regime 

is non-existent. This testifies that conjugate 

coupling will be unsuccessful in creating a stable 

attractor for the oscillators whose characteristic 

parameters are such that ω0 ≤ ε. Further verification 

can be done by solving the governing equations (2) 

and (3) numerically by implying the condition, ω0 

≤ ε. This is portrayed in figure 5 by plotting the 

parameter plane between (ε-k) for different value 

of frequency.  

 

7.   Conclusion 

The Van der Pol oscillator has a single equilibrium 

state which is unstable in nature. The incentive is 

to review a recent research study that induces 

amplitude death phenomenon by coupling two Van 

der Pol oscillators via diffusive flow of conjugate 

variables which is commonly referred to as 

conjugate coupling, consequently converting the 

initially unstable equilibrium state into a stable 

attractor. Amplitude death under conjugate 

coupling is prevalent for a range of values of 

coupling strength which is termed as amplitude 

death regime.



Exploring Amplitude Death In Conjugate Coupled Van Der Pol Oscillators:  

A Comprehensive Review   Section A-Research paper 

 

Eur. Chem. Bull. 2023, 12(Special Issue 10), 4187 – 4195                        4193 

 

 
 

Figure 5: Figure depicting region of amplitude death in parameter plane (ε-k) for various value of natural 

frequency (a) ω0 = 0.5, (b) ω0 = 0.6, and (c) ω0 = 0.7 in the conjugate coupled VdP oscillators.

  

We have also explored further by appreciating the 

variation of this amplitude death regime with the 

characteristic parameters of the oscillators (ω0 and 

ε). We find that the nonlinearity parameter (ε) acts 

as the controller for the lower limit of the amplitude 

death regime. The lower limit value of coupling 

strength, k is also exactly equal to the value of ε. 

On the other hand, the natural frequency acts as the 

controller for the upper limit of the amplitude death 

regime. Thus, it is concluded that the limits of the 

amplitude death regime can be controlled 

independently by varying the respective controlling 

characteristic parameters of the oscillators without 

one affecting the other. This gives extensive ease 

of control to obtain desired output and can be 

thought to have far-reaching applications. We have 

also presented a comprehensive understanding of 

the output characteristics of such conjugate coupled 

VdP oscillator pairs.  

We see that based on the output characteristics the 

entire range of coupling strength can be broadly 

classified into four distinct types. Amplitude death 

is seen only in region R2 and R3. Region R1 and 

R4 fail to induce amplitude death phenomenon. As 

mentioned, region 1 represents limit cycle 

oscillations with decreasing frequency, while R4 

indicates growth of amplitude with no oscillations. 

R2 signifies amplitude death with decreasing 

under-damped characteristics whereas, the 

oscillator pairs show Amplitude death with 

decreasing over-damped characteristics in R3. The 

coupled VdP oscillators possessing amplitude 

death can find applications in many field. 

Furthermore, we realise that this type of conjugate 

coupling is unsuccessful in creating an amplitude 

death regime for oscillators, that have natural 

frequency lesser than the non- linearity parameter 

(ω0 < ε), with the output being oscillations for lower  

 

values of k to being non oscillatory growth of 

amplitude for higher values of k.  
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