

FAIR INDEPENDENT DOMINATION IN JOIN, UNION AND LEXICOGRAPHIC PRODUCT OF GRAPHS

Mamatha R M¹, Dr V Ramalatha^{1, *}, and Raviprakasha J²

 ^{1,*}Associate Professor, Department of Mathematics, Presidency University, Rajanukunte, Bengaluru, Pin:560064, Email:v.ramalatha@gmail.com
¹Research Scholar, Department of Mathematics, Presidency University,
Rajanukunte, Bengaluru, Pin:560064, Email:mamatha.rm@presidencyuniversity.in
²Research Scholar, Department of Mathematics, Presidency University,
Rajanukunte, Bengaluru, Pin:560064, Email:mamatha.rm@presidencyuniversity.in

Abstract

In a graph G, a fair independent dominating set (or FID-set) is an independent dominating set S_{ID} such that all vertices in $V(G) \setminus S_{ID}$ are independently dominated by the equal number of vertices from S_{ID} ; that is, every two vertices in $V(G) \setminus S_{ID}$ have the equal number of neighbours in S_{ID} . The fair independent domination number, fid(G) is the minimum number of elements in a FID-set. In this paper, we characterize the fair independent dominating sets in the join, union and lexicographic product of graphs.

KEYWORDS: Independent domination, Fair independent domination, q-fair independent domination.

1 INTRODUCTION

Let G = (V(G), E(G)) be a graph and $b \in V(G)$. The neighbourhood of b is the set $N_G(b)=N(b)$ = { $a \in V(G)$: $ab \in E(G)$ }. If $A \subseteq V(G)$, the open neighbourhood of A is theset $N_G(A)=N(A)$ = $\bigcup_{b \in A} N_G(b)$. The closed neighbourhood of A is $N_G[A] = N[A] = A \cup N(A)$.

A dominating set of a graph G is a set S_D of vertices of G such that all vertices in $V(G) \setminus S_D$ is adjacent to a vertex in S_D . An independent set of a graph G is a set S_I of vertices of G if no two of its vertices are adjacent. An independent dominating set of graph G is a set S_{ID} that is both dominating and independent in G. An independent domination number of G, represented by i(G), is the set $i(G) = min\{|S_{ID}|\}$. An independent dominating set of G of size i(G) is called an i - set.

An independent domination theory was framed by Berge[4] and Ore [5] in 1962. An independent domination number and its notation i(G) were introduced by Cockayne and Hedetniemi[6,7].

Consider the graph G in which the graph is not empty. For $q \ge 1$ an integer, a *q-fair* independent dominating set, abbreviated as qFID-set, in G is an independent dominating set ID such that $|Nd(b) \cap ID| = q$ for every vertex $b \in V \setminus ID$. As we note that the set ID = V is a qFID-set since it is empty every vertex in $V \setminus ID = \emptyset$ satisfies the required property, where Nd(b) is the neighbourhood of the vertex b. The *q-fair independent domination number* of graph G, represented by $fid_q(G)$, is the minimum cardinality of a qFID-set. A qFID-set of G of cardinality $fid_q(G)$ is called a $fid_q(G)$ -set.

A fair independent dominating set, abbreviated as FID-set, in G is a qFID-set for some integer $q \ge 1$. Thus, an independent dominating set ID is a FID-set in G if ID = V or if $ID \neq V$ and all vertices in $V(G)\setminus ID$ are dominated by the equal number of vertices from ID; that is, $|Nd(u) \cap ID| = |Nd(v) \cap ID| > 0$ for every two vertices $u, v \in V \setminus ID$. The fair independent domination number, represented by fid(G), of a non-empty graph G is the minimum cardinality of a FID-set in G. By convention, if $G = K_n$, we define fid(G) = n. Hence if G is the non-empty graph, then $fid(G) = min\{fid_q(G)\}$, where the minimum is taken over all integers q where $1 \le q \le |V| - 1$. A FID-set of G of cardinality fid(G) is called a fid(G)-set. Every FID-set in a graph G is an independent dominating set in G. Hence, we have some observations.

2 OBSERVATIONS

Observation 2.1. For a graph G having order n, the following conditions holds.

(a) $i(G) \leq fid(G)$. (b) $fid((G) \leq n$, with equality $\Leftrightarrow G = \overline{K_n}$.

Observation 2.1(b) can be improved as follows: If G be a graph of order n, then $fid(G) \le n - 2$, but not if $G = \overline{K_n}$, in which case fid(G) = n, or G contains specifically one edge, in which case fid(G) = n - 1.

Observation 2.2. ([2]) Let G be a graph of order n. Then, $\xi_{or}(G) \ge 0$, with equality $\Leftrightarrow G = \overline{K_n}$, where $\xi_{or}(G)$ is out regular number.

A perfect independent dominating set S_{PID} , abbreviated as PID-set in G, then every vertex in $V(G) \setminus S_{PID}$ is dominated by a unique vertex in S_{PID} , and so S_{PID} is a 1FID-set, implying that $fid(G) \le fid_1(G) \le i(G)$. Consequently, by Observation 2.1, the following observation is made.

Observation 2.3. If a graph G has a \overline{PID} -set, then $id(G) = fid_1(G) = fid(G)$.

Observation 2.4. If $G \in \{P_n, K_n, C_n, \overline{K_n}, K_{m,n}\}$, for $m, n \ge 1$, then fid(G) = i(G).

3 MAIN RESULTS

Following that, we construct a relationship between the fair independent domination number (*fid*) and an out-regular number (ξ_{or}) of a graph G.

Theorem 3.1. For every graph G of order $n \ge 2$, fid(G) + $\xi_{or}(G) = n$.

Proof. If a graph $G = \overline{K_n}$, then fid(G) = n and we know that, $\xi_{or}(G) = 0$. Thus, we can assume that $G \neq K_n$, for otherwise the required result holds. Let ID be a *fid*(G)-*set*. By Observation 2.1(b), fid(G) < n. Let M=V\ID. Then, M is an OR-set ([2]) in G, and so $\xi_{or}(G) \ge |M| = n - fid(G)$, or likewise,

$$fid(G) + \xi_{or}(G) \ge n.$$
 (1)

Conversely, let M be an $\xi_{or}(G)$ -set. By Observation 2.2, $\xi_{or}(G) > 0$. By definition, $\xi_{or}(G) < n$. Let ID = V\M. Then, ID is a FID-set, and so $fid(G) \leq |ID| = n - \xi_{or}(G)$, or, likewise

$$fid(G) + \xi_{or}(G) \le n. \tag{2}$$

From equation (1) and (2), we get

$$fid(G)+\xi_{or}(G)=n$$

Remark 1: Let G be a connected graph of order $n \ge 2$ and any +ve integer q, $1 \le i(G) \le 1$ $fid(G) \leq qfid(G)$.

Theorem 3.2. For any connected graph G of order n. Then $fid(G)=1 \Leftrightarrow i(G)=1$.

Proof. If $G = K_1$, then i(G) = fid(G) = 1. Let $|V(G)| \ge 2$. Suppose fid(G) = 1. By Remark 1, i(G) = 1.

Conversely, if i(G) = 1. Let ID = {i} be an independent dominating set of G. Then, for all $j \in V(G) \setminus ID$, $Nd(j) \cap ID = \{i\}$. Thus, for all $k, j \in V(G) \setminus ID$ with $k \neq j$, we have $|Nd(k) \cap ID| = 1 = |Nd(j) \cap ID|$. This shows that ID is a 1FID-set of G. By Remark 1,

 $1 \leq fid(G) \leq 1fid(G) = 1$ and therefore, fid(G) = 1.

Corollary 3.2.1. Let G be $W_n, K_{1,n-1}$ or K_n . Then fid(G) = 1.

Proof. The proof of this corollary is immediately follows from Theorem 3.2.

Theorem 3.3. For any connected graph G of order $n \ge 2$. Then it holds following conditions. (i) If the graph \overline{G} is connected, then fid(G)= fid (\overline{G}).

(ii) If the graph \overline{G} has $c \ge 2$ components, then fid(G) $\le n/c \le n/2$.

Proof. (i) Assume that the graph G is connected. Let ID be a fid(G)-set, then every vertex $v \in V \setminus ID$ is adjacent to precisely q vertices in ID for some integer q, $1 \le q \le |ID|$. If q = |ID|, then in \overline{G} there are no edges between *ID* and *V* *ID*, this contradicting our assumption that

 \overline{G} is connected. Therefore, q < |ID|. But then in \overline{G} every vertex in $V \setminus ID$ is adjacent to precisely |ID| - q > 0 vertices in ID, and so ID is a FID-set in G. Hence,

$$fid(G) \le |ID| = fid(G). \tag{3}$$

Now reversing the roles of G and \overline{G} , we have that

$$fid(G) \leq fid(\overline{G}).$$
 (4)

From equation (3) and (4), we get

 $fid(G) = fid(\overline{G}).$

(*ii*) Suppose that \overline{G} is disconnected and has 'c' components. Clearly, there exists smallest component in \overline{G} has cardinality at most n/c. Let S be the smallest component in G and let ID = V(S). Then in G every vertex in $V \setminus ID$ is adjacent to all vertices in ID, and so ID is a FID-set in G. Thus,

$$fid(G) \leq |ID| \leq n/c \leq n/2.$$

Hence the proof.

4 FAIR INDEPENDENT DOMINATION IN THE JOIN OF GRAPHS

Definition:([2]) Let A and B be sets which are not necessarily disjoint. The *disjoint union* of A and B, represented by $A \square B$, is the set obtained by taking the union of A and B treating each element in A as distinct from each element in B. The *join* of two graphs A and B is the graph A + B with vertex-set $V(A + B) = V(A) \square V(B)$ and edge-set

$$E(A+B) = E(A) \square E(B) \cup \{xy : x \in V(A), y \in V(B)\}.$$

Theorem 4.1. Let A and B be connected graphs. Then $J \subseteq V(A+B)$ is an FID-set of $A+B \Leftrightarrow$ one of the following statements holds:

(i) $J \subseteq V(A)$ and J is a |J|FID-set of A.

(ii) $J \subseteq V(B)$ and J is a |J|FID-set of B.

(iii) $J = V(A) \cup J_B$, where J_B is a pFID-set of B for some +ve integer p.

(iv) $J = J_A \cup V(B)$, where J_A is a qFID-set of B for some +ve integer q.

(v) $J = J_A \cup J_B$, where J_A is a qFID-set of A and J_B is a pFID-set of B for some +ve integers q and p such that $q + |J_B| = p + |J_A|$.

Proof. Assume that J is a FID-set of A + B. Let $J_A = V(A) \cap J$ and $J_B = V(B) \cap J$. Then $J = J_A \cup J_B$. Consider the following cases:

Case 1. $J_B = \emptyset$ or $J_A = \emptyset$

Assume that $J_B = \emptyset$. Then $J = J_A \subseteq V(A)$. Let $a \in V(B)$. Then $|N_{A+B}(i) \cap J| = |J|$. Thus J is a |J|FID-set of A + B. Since $J \in V(A)$, J is a |J|FID-set of G. Likewise, J is a |J|FID-set of B if $J_A = \emptyset$.

Case 2. $J_B \neq \emptyset$ and $J_A \neq \emptyset$

Assume that $J_A = V(A)$. If $J_B \neq V(B)$, then J_B is a *p*FID-set for any +ve integer *p*. So, suppose $J_B \neq V(B)$ and let $b \in V(B) \setminus J_B$. Then $N_{A+B}(b) \cap J = V(A) \cup (N_B(b) \cap J_B)$. Since *J* is a FID-set, it follows that $|N_B(b) \cap J_B| = p$ for some integer *p* for each $b \in V(B) \setminus J_B$. This implies that $J = V(A) \cup J_B$ and J_B is a *p*FID-set of B for some +ve integer *p*. Likewise, (*iv*) holds if $J_B = V(B)$.

Next, suppose that $J_A \neq V(A)$ and $J_B \neq V(B)$. Assume that further that J_A is not a FID-set. Then there exist $x, y \in V(A) \setminus J_A$ such that

$$|N_{\mathcal{A}}(x) \cap J_{\mathcal{A}}| = |N_{\mathcal{A}}(y) \cap J_{\mathcal{A}}|.$$

Hence,

$$N_{A+B}(x) \cap J| = |N_A(x) \cap J_A| + |J_B| = |N_A(y) \cap J_A| + |J_B| = |N_{A+B}(y) \cap J|$$

this contradicts to our assumption that J is a FID-set. Thus, J_A is a FID-set of A. Likewise, S_B is a FID-set of B. Let q and p be +ve integers such that J_A is a qFID-set and J_B is a pFID-set. Let $x \in V(A) \setminus J_A$ and $a \in V(B) \setminus J_B$. Since J is a FID-set of A + B, it follows that

$$|N_A(x) \cap J_A| + |J_B| = |N_{A+B}(x) \cap J| = |N_{A+B}(a) \cap J| = |N_B(a) \cap J_B| + |J_A|.$$

Thus, $q + |J_B| = p + |J_A|$, showing that (v) holds.

For the converse, assume that the statement (v) holds. Let $u, v \in V(A + B) \setminus J$. If $u, v \in V(A)$ or $u, v \in V(B)$, then $|N_{A+B}(u) \cap J| = q + |J_B| = |N_{A+B}(v) \cap J|$ or $|N_{A+B}(u) \cap J| = p + |J_A| = |N_{A+B}(v) \cap J|$. So suppose $u \in V(A)$ and $v \in V(B)$. Then by assumption,

$$|N_{A+B}(u) \cap J| = q + |J_B| = p + |J_A| = |N_{A+B}(v) \cap J|.$$

Therefore, J is a FID-set of A + B. Clearly, J is a FID-set of A + B if (i), (ii), (iii) or (iv) holds.

Theorem 4.2. Let A and B be connected graphs. Then $fid(A+B)=1 \iff i(A)=1$ or i(B)=1.

Proof. Assume that i(A) = 1, say ID= $\{x\}$ is an independent dominating set in A. By Theorem 3.2, fid(A) = 1. Hence, ID is a FID-set in A. Furthermore, $|N_{A+B}(x) \cap ID| = |ID|$ for all $x \in V(A+B) \setminus$ ID. By Theorem 4.1, ID is a FID-set of A + B. It follows that $fid(A+B) \leq |ID| = 1$. By Remark 1, fid(A+B) = 1. Likewise, fid(A+B) = 1 if i(A) = 1.

Assume that *fid*(A+B)= 1. Then *i*(A + B) = 1 by Theorem 3.2.

It follows that i(A) = 1 or i(B) = 1.

Corollary 4.2.1. Let A be a connected graph and B be W_n , F_n , $K_{1,n-1}$, or K_n . Then fid(A+B)= 1.

5 FAIR INDEPENDENT DOMINATION IN LEXICOGRAPHIC PRODUCT OF GRAPHS

Definition:([2])The *lexicographic product* of two graphs X and Y is the graph X[Y] with vertex-set $V(X[Y]) = V(X) \times V(Y)$ and edge-set E(X[Y]) satisfying the following conditions: $(x, u)(y, v) \in E(X[Y]) \Leftrightarrow$ either $xy \in E(X)$ or x = y and $uv \in E(Y)$.

Theorem 5.1. Let X and Y be connected graphs. Then $fid(X[Y]) = 1 \iff i(X) = i(Y) = 1$.

Proof. The result is clearly holds if either X or Y is the trivial graph. So we assume that X and Y are non-trivial. Assume that fid(X[Y]) = 1. Then i(X[Y]) = 1 by Theorem 3.2. Let $L = \{(x, a)\}$ be a i - set of X[Y]. Let $y \in V(X) \setminus \{x\}$. Then $(x, a)(y, a) \in E(X[Y])$. This implies that $xy \in E(X)$. Thus, $\{x\}$ is an independent dominating set of X. Likewise, $\{a\}$ is an independent dominating set of Y. Thus, i(X) = i(Y) = 1.

For the converse, suppose i(X) = i(Y) = 1. Let $\{x\}$ be an i-set of X and let $\{a\}$ be an i-set of Y for some $x \in V(X)$, $a \in V(Y)$. Let $L = \{(x, a)\} \subseteq V(X[Y])$ and let $(y, b) \in V(X[Y]) \setminus L$. If y = x, then $b \neq a$ and $(x, a)(y, b) \in E(X[Y])$ since $ab \in E(Y)$. Assume that $y \neq x$. Then $xy \in E(X)$. Hence, $(x, a)(y, b) \in E(X[Y])$. Thus, L is an i - set of X[Y] and i(X[Y]) = 1. By Theorem 3.2, fid(X[Y]) = 1.

6 FAIR INDEPENDENT DOMINATION IN THE UNION OF GRAPHS

Definition: The *union* of two graphs A and B is the graph $A \cup B$ with vertex-set $V(A \cup B) = V(A) \cup V(B)$ and edge-set $E(A \cup B) = E(A) \cup E(B)$.

Theorem 6.1. Let A and B are two connected graphs. Then $fid(A \cup B) = 1 \iff i(A) = 1$ and i(B) = 1.

Proof. Assume that i(A) = 1, say $ID = \{x\}$ is an independent dominating set in A. By Theorem 3.2, fid(A) = 1. Hence, ID is an FID-set in A. Furthermore, $|N_{A \cup B}(x) \cap ID| = |ID|$ for all $x \in V(A \cup B) \setminus ID$. Then, ID is a FID-set of $A \cup B$. It follows that $fid(A \cup B) \leq |ID| = 1$. By Remark 1, $fid(A \cup B) = 1$. Similarly, $fid(A \cup B) = 1$ if i(A) = 1 and i(B) = 1.

Assume that $fid(A \cup B)=1$. Then $i(A \cup B) = 1$ by Theorem 3.2. It follows that i(A) = 1 and i(B) = 1.

References

- [1] Goddard, Wayne, and Michael A. Henning." Independent domination in graphs: A survey and recent results." Discrete Mathematics 313.7 (2013): 839-854.
- [2] Yair Caro, Adriana Hansberg, and Michael Henning." Fair domination in graphs." Discrete Mathematics 312.19 (2012): 2905-2914.
- [3] Maravilla, E., R. Isla, and S. Canoy Jr." Fair Domination in the Join, Corona and Com-position of Graphs." Applied Mathematical Sciences 8.93 (2014): 4609-4620.
- [4] Berge, Claude." The theory of graphs and its applications, Methuen & Co." Ltd., London (1962).
- [5] Ore, O." Theory of graphs, AMS Colloq." Publ. Providence, Rhode Island 1962 (1962).
- [6] Cockayne, E. J., and S. T. Hedetniemi." Independence graphs." Congr. Numer., X (1974): 471-491.

[7] Cockayne, Ernest J., and Stephen T. Hedetniemi." Towards a theory of domination in graphs." Networks 7.3 (1977): 247-261.