FAIR INDEPENDENT DOMINATION IN JOIN, UNION AND LEXICOGRAPHIC PRODUCT OF GRAPHS

Mamatha R M ${ }^{1}$, $\operatorname{Dr} V$ Ramalatha ${ }^{1, *}$, and Raviprakasha J ${ }^{2}$
${ }^{1, *}$ Associate Professor,Department of Mathematics, Presidency University, Rajanukunte,Bengaluru,Pin:560064, Email:v.ramalatha@gmail.com
${ }^{1}$ Research Scholar,Department of Mathematics,Presidency University, Rajanukunte,Bengaluru,Pin:560064, Email:mamatha.rm@presidencyuniversity.in
${ }^{2}$ Research Scholar,Department of Mathematics,Presidency University, Rajanukunte,Bengaluru,Pin:560064, Email:raviprakasha.j@presidencyuniversity.in

Abstract

In a graph G, a fair independent dominating set (or FID-set) is an independent dominating set $S_{I D}$ such that all vertices in $V(G) \backslash S_{I D}$ are independently dominated by the equal number of vertices from $S_{I D}$; that is, every two vertices in $V(G) \backslash S_{I D}$ have the equal number of neighbours in $S_{I D}$. The fair independent domination number, fid(G) is the minimum number of elements in a FID-set. In this paper, we characterize the fair independent dominating sets in the join, union and lexicographic product of graphs.

KEYWORDS: Independent domination, Fair independent domination, q-fair independent domination.

1 INTRODUCTION

Let $G=(V(G), E(G))$ be a graph and $b \in V(G)$. The neighbourhood of b is the set $N_{G}(b)=N(b)$ $=\{a \in V(G): a b \in E(G)\}$. If $A \subseteq V(G)$, the open neighbourhood of A is theset $N_{G}(A)=N(A)$ $=\cup_{b \in A} N_{G}(b)$. The closed neighbourhood of A is $N_{G}[A]=N[A]=A \cup N(A)$.

A dominating set of a graph G is a set S_{D} of vertices of G such that all vertices in $V(G) \backslash S_{D}$ is adjacent to a vertex in S_{D}. An independent set of a graph G is a set $S_{\text {, }}$ of vertices of G if no two of its vertices are adjacent. An independent dominating set of graph G is a set $S_{I D}$ that is both dominating and independent in G. An independent domination number of G , represented by $i(G)$, is the set $i(G)=\min \left\{\left|S_{I D}\right|\right\}$. An independent dominating set of G of size $i(G)$ is called an $i-s e t$.

An independent domination theory was framed by Berge[4] and Ore [5] in 1962. An independent domination number and its notation $i(G)$ were introduced by Cockayne and Hedetniemi[6,7].

Consider the graph G in which the graph is not empty. For $q \geq 1$ an integer, a q-fair independent dominating set, abbreviated as qFID-set, in G is an independent dominating set ID such that $|N d(b) \cap I D|=q$ for every vertex $b \in V \backslash I D$. As we note that the set $I D=V$ is a qFIDset since it is empty every vertex in $\mathrm{V} \backslash I D=\varnothing$ satisfies the required property, where $N d(b)$ is the neighbourhood of the vertex b . The q-fair independent domination number of graph G , represented by fid $_{q}(\mathrm{G})$, is the minimum cardinality of a qFID-set. A qFID-set of G of cardinality $\mathrm{fid}_{q}(\mathrm{G})$ is called a $\mathrm{fid}_{q}(G)$-set.

A fair independent dominating set, abbreviated as FID-set, in G is a qFID-set for some integer $q \geq 1$. Thus, an independent dominating set ID is a FID-set in G if $I D=V$ or if $I D \neq V$ and all vertices in $V(G) \backslash I D$ are dominated by the equal number of vertices from ID; that is, $|N d(u) \cap I D|=|N d(v) \cap I D|>0$ for every two vertices $u, v \in V \backslash I D$. The fair independent domination number, represented by fid (G), of a non-empty graph G is the minimum cardinality of a FID-set in G. By convention, if $G=K_{n}$, we define $\operatorname{fid}(\mathrm{G})=n$. Hence if G is the non-empty graph, then $\operatorname{fid}(\mathrm{G})=\min \left\{\operatorname{fid}_{q}(G)\right\}$, where the minimum is taken over all integers q where $1 \leq q \leq|V|-1$. A FID-set of G of cardinality $f i d(G)$ is called a $f i d(G)$-set. Every FID-set in a graph G is an independent dominating set in G. Hence, we have some observations.

2 OBSERVATIONS

Observation 2.1. For a graph G having order n, the following conditions holds.
(a) $i(G) \leq \operatorname{fid}(G)$.
(b) fid ((G) $\leq n$, with equality $\Leftrightarrow G=\overline{K_{n}}$.

Observation 2.1(b) can be improved as follows: If G be a graph of order n , then $\operatorname{fid}(\mathrm{G}) \leq$ $n-2$, but not if $G=\overline{K_{n}}$, in which case $f i d(G)=n$, or G contains specifically one edge, in which case $\operatorname{fid}(\mathrm{G})=n-1$.

Observation 2.2. ([2]) Let G be a graph of order n. Then, $\xi_{o r}(G) \geq 0$, with equality \Leftrightarrow $G=\overline{K_{n}}$, where $\xi_{o r}(G)$ is out regular number.

A perfect independent dominating set $S_{P I D}$, abbreviated as PID-set in G, then every vertex in $V(G) \backslash S_{P I D}$ is dominated by a unique vertex in $S_{P I D}$, and so $S_{P I D}$ is a 1FID-set, implying that $\operatorname{fid}(\mathrm{G}) \leq \operatorname{fid}_{1}(\mathrm{G}) \leq i(G)$. Consequently, by Observation 2.1, the following observation is made.

Observation 2.3. If a graph G has a $\overline{P I D-s e t, ~ t h e n ~} i d(G)=\operatorname{fid}_{1}(G)=f i d(G)$.
Observation 2.4. If $G \in\left\{P_{n}, K_{n}, C_{n}, \overline{K_{n}}, K_{m, n}\right\}$, for $m, n \geq 1$, then $\operatorname{fid}(G)=i(G)$.

3 MAIN RESULTS

Following that, we construct a relationship between the fair independent domination number (fid) and an out-regular number ($\xi_{o r}$) of a graph G.

Theorem 3.1. For every graph G of order $n \geq 2, \operatorname{fid}(G)+\xi_{o r}(G)=n$.

Proof. If a graph $G=\overline{K_{n}}$, then $\operatorname{fid}(G)=n$ and we know that, $\xi_{o r}(G)=0$. Thus, we can assume that $G \neq K_{n}$, for otherwise the required result holds. Let ID be a fid(G)-set. By Observation 2.1(b), $\operatorname{fid}(\mathrm{G})<n$. Let $\mathrm{M}=\mathrm{V} \backslash \mathrm{ID}$. Then, M is an OR -set ([2]) in G , and so $\xi_{o r}(\mathrm{G}) \geq|M|=n-$ fid (G), or likewise,

$$
\begin{equation*}
f i d(G)+\xi_{o r}(G) \geq n \tag{1}
\end{equation*}
$$

Conversely, let M be an $\xi_{o r}(G)$-set. By Observation $2.2, \xi_{o r}(G)>0$.
By definition, $\xi_{o r}(G)<n$. Let ID $=\mathrm{V} \backslash \mathrm{M}$. Then, ID is a FID-set, and so
$\operatorname{fid}(G) \leq|I D|=n-\xi_{o r}(G)$, or, likewise

$$
\begin{equation*}
f i d(G)+\xi_{o r}(G) \leq n \tag{2}
\end{equation*}
$$

From equation (1) and (2), we get

$$
\operatorname{fid}(\mathrm{G})+\xi_{o r}(G)=n
$$

Remark 1: Let G be a connected graph of order $n \geq 2$ and any +ve integer $q, 1 \leq i(G) \leq$ fid(G) \leq qfid(G).

Theorem 3.2. For any connected graph G of order n. Then $\operatorname{fid}(G)=1 \Leftrightarrow i(G)=1$.
Proof. If $G=K_{1}$, then $i(\mathrm{G})=\operatorname{fid}(\mathrm{G})=1$. Let $|V(G)| \geq 2$. Suppose fid $(\mathrm{G})=1$. By Remark $1, i(G)=1$.

Conversely, if $i(G)=1$. Let ID $=\{i\}$ be an independent dominating set of G. Then, for all $j \in V(G) \backslash I D, N d(j) \cap I D=\{i\}$. Thus, for all $k, j \in V(G) \backslash I D$ with $k \neq j$, we have $|N d(k) \cap I D|=1=|N d(j) \cap I D|$. This shows that ID is a 1FID-set of G. By Remark 1,
$1 \leq \operatorname{fid}(\mathrm{G}) \leq 1 \operatorname{fid}(\mathrm{G})=1$ and therefore, $\operatorname{fid}(\mathrm{G})=1$.
Corollary 3.2.1. Let G be $W_{n}, K_{1, n-1}$ or K_{n}. Then $\operatorname{fid}(G)=1$.
Proof. The proof of this corollary is immediately follows from Theorem 3.2.

Theorem 3.3. For any connected graph G of order $n \geq 2$. Then it holds following conditions.
(i) If the graph \bar{G} is connected, then fid(G)=fid (\bar{G}).
(ii) If the graph $\overline{\bar{G}}$ has $c \geq 2$ components, then $\operatorname{fid}(G) \leq n / c \leq n / 2$.

Proof. (i) Assume that the graph \bar{G} is connected. Let $I D$ be a $\operatorname{fid}(\mathrm{G})-s e t$, then every vertex $v \in V \backslash I D$ is adjacent to precisely q vertices in $I D$ for some integer $q, 1 \leq q \leq|I D|$. If $q=|I D|$, then in \bar{G} there are no edges between $I D$ and $V \backslash I D$, this contradicting our assumption that \bar{G} is connected. Therefore, $q<|I D|$. But then in \bar{G} every vertex in $V \backslash / D$ is adjacent to precisely $|I D|-q>0$ vertices in $I D$, and so $I D$ is a FID-set in G. Hence,

$$
\begin{equation*}
\operatorname{fid}(\bar{G}) \leq|I D|=\operatorname{fid}(G) \tag{3}
\end{equation*}
$$

Now reversing the roles of G and \bar{G}, we have that

$$
\begin{equation*}
\operatorname{fid}(G) \leq \operatorname{fid}(\bar{G}) \tag{4}
\end{equation*}
$$

From equation (3) and (4), we get

$$
\operatorname{fid}(\mathrm{G})=\operatorname{fid}(\bar{G})
$$

(ii) Suppose that \bar{G} is disconnected and has 'c' components. Clearly, there exists smallest component in \bar{G} has cardinality at most n / c. Let S be the smallest component in G and let $I D=V(S)$. Then in G every vertex in $V \backslash I D$ is adjacent to all vertices in $I D$, and so $I D$ is a FID-set in G. Thus,

$$
f i d(\mathrm{G}) \leq|I D| \leq n / c \leq n / 2
$$

Hence the proof.

4 FAIR INDEPENDENT DOMINATION IN THE JOIN OF GRAPHS

Definition:([2]) Let A and B be sets which are not necessarily disjoint. The disjoint union of A and B, represented by $A B$, is the set obtained by taking the union of A and B treating each element in A as distinct from each element in B. The join of two graphs A and B is the graph $A+B$ with vertex-set $V(A+B)=V(A)$ 回 $V(B)$ and edge-set

$$
E(A+B)=E(A) \text { 回 } E(B) \cup\{x y: x \in V(A), y \in V(B)\} .
$$

Theorem 4.1. Let A and B be connected graphs. Then $J \subseteq V(A+B)$ is an FID-set of $A+B$ \Leftrightarrow one of the following statements holds:
(i) $J \subseteq V(A)$ and J is a $|\boldsymbol{J}| F I D$-set of A.
(ii) $J \subseteq V(B)$ and J is a $|\boldsymbol{J}| F I D$-set of B.
(iii) $J=V(A) \cup J_{B}$, where J_{B} is a pFID-set of B for some +ve integer p.
(iv) $J=J_{A} \cup V(B)$, where J_{A} is a qFID-set of B for some +ve integer q.
(v) $J=J_{A} \cup J_{B}$, where J_{A} is a qFID-set of A and J_{B} is a pFID-set of B for some +ve integers q and p such that $q+\left|\boldsymbol{J}_{B}\right|=p+\left|\boldsymbol{J}_{A}\right|$.

Proof. Assume that J is a FID-set of $A+B$. Let $J_{A}=V(A) \cap J$ and $J_{B}=V(B) \cap J$. Then $J=J_{A} \cup J_{B}$. Consider the following cases:

Case 1. $J_{B}=\varnothing$ or $J_{A}=\varnothing$
Assume that $J_{B}=\emptyset$. Then $\boldsymbol{J}=\boldsymbol{J}_{A} \subseteq V(A)$. Let $a \in V(B)$. Then $\left|N_{A+B}(i) \cap \boldsymbol{J}\right|=|\boldsymbol{J}|$. Thus \boldsymbol{J} is a $|\boldsymbol{J}|$ FID-set of $\boldsymbol{A}+\boldsymbol{B}$. Since $\boldsymbol{J} \in V(A), \boldsymbol{J}$ is a $|\boldsymbol{J}|$ FID-set of G. Likewise, \boldsymbol{J} is a $|\boldsymbol{J}|$ FID-set of B if $\boldsymbol{J}_{A}=\varnothing$.

Case 2. $J_{B} \neq \varnothing$ and $J_{A} \neq \varnothing$
Assume that $J_{A}=V(A)$. If $J_{B} \neq V(B)$, then J_{B} is a p FID-set for any +ve integer p. So, suppose $J_{B} \neq V(B)$ and let $b \in V(B) \backslash J_{B}$. Then $N_{A+B}(b) \cap J=V(A) \cup\left(N_{B}(b) \cap J_{B}\right)$. Since \boldsymbol{J} is a FID-set, it follows that $\left|\boldsymbol{N}_{B}(b) \cap \boldsymbol{J}_{B}\right|=p$ for some integer p for each $b \in V(B) \backslash \boldsymbol{J}_{B}$. This
implies that $J=V(A) \cup J_{B}$ and J_{B} is a pFID-set of B for some +ve integer p. Likewise, (iv) holds if $J_{B}=V(B)$.

Next, suppose that $J_{A} \neq V(A)$ and $J_{B} \neq V(B)$. Assume that further that J_{A} is not a FID-set. Then there exist $x, y \in V(A) \backslash J_{A}$ such that

$$
\left|N_{A}(x) \cap J_{A}\right|=\left|N_{A}(y) \cap J_{A}\right|
$$

Hence,

$$
\left|\boldsymbol{N}_{A+B}(x) \cap \boldsymbol{J}\right|=\left|\boldsymbol{N}_{A}(x) \cap \boldsymbol{J}_{A}\right|+\left|\boldsymbol{J}_{B}\right|=\left|\boldsymbol{N}_{A}(y) \cap \boldsymbol{J}_{A}\right|+\left|\boldsymbol{J}_{B}\right|=\left|\boldsymbol{N}_{A+B}(y) \cap \boldsymbol{J}\right|
$$

this contradicts to our assumption that J is a FID-set. Thus, J_{A} is a FID-set of A. Likewise, S_{B} is a FID-set of B. Let q and p be +ve integers such that J_{A} is a q FID-set and J_{B} is a p FID-set. Let $x \in V(A) \backslash J_{A}$ and $a \in V(B) \backslash J_{B}$. Since J is a FID-set of $A+B$, it follows that

$$
\left|N_{A}(x) \cap J_{A}\right|+\left|J_{B}\right|=\left|N_{A+B}(x) \cap \boldsymbol{J}\right|=\left|N_{A+B}(a) \cap \boldsymbol{J}\right|=\left|N_{B}(a) \cap J_{B}\right|+\left|J_{A}\right|
$$

Thus, $q+\left|\boldsymbol{J}_{B}\right|=p+\left|\boldsymbol{J}_{A}\right|$, showing that (v) holds.
For the converse, assume that the statement (v) holds. Let $u, v \in V(A+B) \backslash J$. If $u, v \in V(A)$ or $u, v \in V(B)$, then $\left|N_{A+B}(u) \cap J\right|=q+\left|J_{B}\right|=\left|N_{A+B}(v) \cap J\right|$ or $\left|N_{A+B}(u) \cap J\right|=$ $p+\left|\boldsymbol{J}_{A}\right|=\left|N_{A+B}(v) \cap \boldsymbol{J}\right|$. So suppose $u \in V(A)$ and $v \in V(B)$. Then by assumption,

$$
\left|\boldsymbol{N}_{A+B}(u) \cap \boldsymbol{J}\right|=q+\left|\boldsymbol{J}_{B}\right|=p+\left|\boldsymbol{J}_{\boldsymbol{A}}\right|=\left|\boldsymbol{N}_{A+B}(v) \cap \boldsymbol{J}\right| .
$$

Therefore, J is a FID-set of $A+B$. Clearly, J is a FID-set of $A+B$ if (i), (ii), (iii) or (iv) holds.

Theorem 4.2. Let A and B be connected graphs. Then fid $(A+B)=1 \Leftrightarrow i(A)=1$ or $i(B)=1$.

Proof. Assume that $i(A)=1$, say $\mathrm{ID}=\{x\}$ is an independent dominating set in A. By Theorem 3.2, $\operatorname{fid}(A)=1$. Hence, ID is a FID-set in A. Furthermore, $\left|N_{A+B}(x) \cap I D\right|=|I D|$ for all $x \in V(A+B) \backslash I D$. By Theorem 4.1, ID is a FID-set of $A+B$. It follows that fid $(A+B)$ $\leq|I D|=1$. By Remark 1, fid $(A+B)=1$. Likewise, $f i d(A+B)=1$ if $i(A)=1$.

Assume that $f i d(A+B)=1$. Then $i(A+B)=1$ by Theorem 3.2.
It follows that $i(A)=1$ or $i(B)=1$.
Corollary 4.2.1. Let A be a connected graph and B be $W_{n}, F_{n}, K_{1, n-1, \text { or }} K_{n}$. Then fid $(A+B)=$ 1.

5 FAIR INDEPENDENT DOMINATION IN LEXICOGRAPHIC PRODUCT OF GRAPHS

Definition:([2])The lexicographic product of two graphs X and Y is the graph $\mathrm{X}[\mathrm{Y}]$ with vertex-set $V(X[Y])=V(X) \times V(Y)$ and edge-set $E(X[Y])$ satisfying the following conditions: $(x, u)(y, v) \in E(X[Y]) \Leftrightarrow$ either $x y \in E(X)$ or $x=y$ and $u v \in E(Y)$.

Theorem 5.1. Let X and Y be connected graphs. Then $\operatorname{fid}(X[Y])=1 \Leftrightarrow i(X)=i(Y)=1$.

Proof. The result is clearly holds if either X or Y is the trivial graph. So we assume that X and Y are non-trivial. Assume that $f i d(X[Y])=1$. Then $i(X[Y])=1$ by Theorem 3.2. Let $L=\{(x, a)\}$ be a $i-$ set of $X[Y]$. Let $y \in V(X) \backslash\{x\}$. Then $(x, a)(y, a) \in E(X[Y])$. This implies that $x y \in E(X)$. Thus, $\{x\}$ is an independent dominating set of X. Likewise, $\{a\}$ is an independent dominating set of Y . Thus, $i(X)=i(Y)=1$.

For the converse, suppose $i(X)=i(Y)=1$. Let $\{x\}$ be an i-set of X and let $\{a\}$ be an $i-$ set of Y for some $x \in V(X), a \in V(Y)$. Let $L=\{(x, a)\} \subseteq V(X[Y])$ and let $(y, b) \in V(X[Y]) \backslash L$.If $y=x$, then $b \neq a$ and $(x, a)(y, b) \in E(X[Y])$ since $a b \in E(Y)$. Assume that $y \neq x$. Then $x y$ $\in E(X)$. Hence, $(x, a)(y, b) \in E(X[Y])$. Thus, L is an $i-$ set of $X[Y]$ and $i(X[Y])=1$. By Theorem 3.2, $\operatorname{fid}(X[Y])=1$.

6 FAIR INDEPENDENT DOMINATION IN THE UNION OF GRAPHS

Definition: The union of two graphs A and B is the graph $A \cup B$ with vertex-set $V(A \cup B)=$ $V(A) \cup V(B)$ and edge-set $E(A \cup B)=E(A) \cup E(B)$.

Theorem 6.1. Let A and B are two connected graphs. Then fid $(A \cup B)=1 \Leftrightarrow i(A)=1$ and $i(B)=1$.

Proof. Assume that $i(A)=1$, say $\mathrm{ID}=\{x\}$ is an independent dominating set in A. By Theorem 3.2, $\operatorname{fid}(\mathrm{A})=1$. Hence, ID is an FID-set in A. Furthermore, $\left|N_{A \cup B}(x) \cap I D\right|=|I D|$ for all $x \in V(A \cup B) \backslash I D$. Then, ID is a FID-set of $A \cup B$. It follows that $\operatorname{fid}(A \cup B) \leq|I D|=1$. By Remark 1, fid $(\mathrm{A} \cup \mathrm{B})=1$. Similarly, $f i d(\mathrm{~A} \cup B)=1$ if $i(A)=1$ and $i(B)=1$.

Assume that $\operatorname{fid}(\mathrm{A} \cup B)=1$. Then $i(A \cup B)=1$ by Theorem 3.2. It follows that $i(A)=1$ and $i(B)=1$.

References

[1] Goddard, Wayne, and Michael A. Henning." Independent domination in graphs: A survey and recent results." Discrete Mathematics 313.7 (2013): 839-854.
[2] Yair Caro, Adriana Hansberg, and Michael Henning." Fair domination in graphs." Discrete Mathematics 312.19 (2012): 2905-2914.
[3] Maravilla, E., R. Isla, and S. Canoy Jr." Fair Domination in the Join, Corona and Com-position of Graphs." Applied Mathematical Sciences 8.93 (2014): 4609-4620.
[4] Berge, Claude." The theory of graphs and its applications, Methuen \& Co." Ltd., London (1962).
[5] Ore, O." Theory of graphs, AMS Colloq." Publ. Providence, Rhode Island 1962 (1962).
[6] Cockayne, E. J., and S. T. Hedetniemi." Independence graphs." Congr. Numer., X (1974): 471-491.

FAIR INDEPENDENT DOMINATION IN JOIN, UNION AND LEXICOGRAPHIC PRODUCT OF GRAPHS
[7] Cockayne, Ernest J., and Stephen T. Hedetniemi." Towards a theory of domination in graphs." Networks 7.3 (1977): 247-261.

