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Abstract  

Gasoline desulfurization is a vital process in the petroleum industry aimed at reducing the sulfur 

content in gasoline to meet the updated regulations. Sulfur, a naturally occurring element found 

in crude oil, poses environmental and health risks when released into the atmosphere during the 

combustion of gasoline. To address these concerns, desulfurization techniques have been 

developed to minimize the sulfur content in gasoline, leading to cleaner and more 

environmentally friendly fuels. Within this context, membrane technology is considered one of 

the most promising methods for separation applications in several industries including gasoline 

desulfurization. In this review article, the desulfurization of gasoline using pervaporation (PV) 

process will be presented in theoretical aspects of material selection and process modification. In 

addition, parameters such as feed temperature and flow rate are discussed. PV unit has attracted 

an increasing attention as it provides an effective approach towards an eco-friendly sulfur 

removal method in petrochemical industries in terms of high selectivity, feasible economics, and 

safety procedure.  
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1. Introduction  

The combustion of sulfur-containing fuels, such as gasoline, releases sulfur dioxide (SO2) and 

nitrogen oxides (NOx) into the air. These compounds contribute to air pollution, smog formation, 

and the formation of acid rain [1,2]. Such pollutants have adverse effects on human health, 

including respiratory problems and increased risk of cardiovascular diseases. Additionally, sulfur 

compounds can damage emission control systems in vehicles, reducing their effectiveness in 

reducing harmful emissions [3-6]. To mitigate these issues, gasoline desulfurization plays a 

crucial role in ensuring compliance with stringent environmental regulations and improving air 

quality. The process involves the removal of sulfur compounds from gasoline, resulting in 

cleaner-burning fuels that emit significantly lower levels of harmful pollutants. There are several 

methods employed for gasoline desulfurization i.e., Hydrodesulfurization (HDS), Adsorbent-

based process, Oxidative desulfurization (ODS), Extraction processes, and Catalytic cracking 

[7]. Hydrodesulfurization (HDS) being the most common. HDS utilizes hydrogen gas (H2) and a 

catalyst to facilitate the reaction between sulfur compounds and hydrogen, resulting in the 

formation of hydrogen sulfide (H2S) [7-9]. This process effectively reduces the sulfur content in 

gasoline, making it more environmentally friendly. Adsorptive desulfurization is another 

technique used in gasoline desulfurization, particularly when extremely low levels of sulfur are 

required [7, 10]. In this process, adsorbent material is used to selectively adsorb sulfur 

compounds from gasoline. Commonly used adsorbents include activated carbon, zeolites, and 

metal oxides [10]. The gasoline is passed through a bed of adsorbent, and the sulfur compounds 

adhere to the surface of the adsorbent, allowing for their removal. On the other hand, ODS 

involves the oxidation of sulfur compounds in gasoline to convert them into more polar 
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compounds that can be easily separated [7,11]. Oxidizing agents, such as hydrogen peroxide or 

ozone, are used to react with the sulfur compounds and facilitate their removal.  

In the extraction processes, various extraction methods can be employed to remove sulfur 

compounds from gasoline [12,13]. For example, liquid-liquid extraction uses a solvent that 

selectively extracts sulfur compounds from gasoline. The solvent is then separated from the 

gasoline, and the sulfur compounds are recovered.  

As for the Catalytic cracking processes, such as fluid catalytic cracking (FCC), are primarily 

used for producing gasoline from crude oil [14-16]. These processes can also help in reducing 

the sulfur content of gasoline. During catalytic cracking, sulfur compounds are converted into 

hydrogen sulfide and other gases, which can be separated from the gasoline. Advancements in 

desulfurization technologies and the implementation of more stringent regulations are driving the 

development of cleaner and more sustainable fuel options for a greener future [17-22]. Currently, 

membrane technology has been explored as a potential method for gasoline desulfurization, 

although it is not as commonly used as other methods such as hydrodesulfurization (HDS) [7-9, 

23-25]. Membrane-based desulfurization typically involves the use of selective membranes that 

can separate sulfur compounds from the gasoline stream. These membranes have specific pore 

sizes or chemical properties that allow them to selectively permeate sulfur compounds wh     ile 

excluding other gasoline components [26-29]. This process is often referred to as selective 

permeation. There are different types of membranes that have been investigated for gasoline 

desulfurization, including polymeric membranes and inorganic membranes [29]. Polymeric 

membranes are typically made from synthetic polymers, such as polyimides or polymeric blends, 

and they rely on size exclusion or chemical affinity to separate sulfur compounds. Inorganic 

membranes, on the other hand, are usually made from ceramic materials, such as zeolites or 



      Removal of Sulfur from Gasoline Using Pervaporation: A Review 
  
                                                                                                                        Section A-Research paper 
 

2896 

Eur. Chem. Bull. 2023,12(12), 2893-2921 

 

metal oxides, and they exploit differences in molecular size or charge to achieve selectivity. One 

of the potential advantages of membrane-based desulfurization is its ability to operate at ambient 

conditions, unlike HDS, which requires high temperatures and pressures [30]. This could lead to 

energy savings and lower operating costs. However, there are several challenges associated with 

membrane technology, including membrane fouling, low selectivity, and limited scalability. 

While research and development efforts are ongoing to improve the performance and 

commercial viability of membrane-based desulfurization, it is important to note that HDS 

remains the dominant method for gasoline desulfurization in the industry due to its well-

established technology and efficiency. However, HDS holds some disadvantages including; the 

requirement of constant supply of hydrogen gas, which can be expensive [31]. Also, the process 

operates at high temperatures and pressures, making it energy-intensive. Finally, catalysts used 

in HDS can be prone to deactivation, leading to reduced efficiency and increased maintenance 

requirements. 

2. Gasoline and sulfur species  

Gasoline typically contains trace amounts of sulfur species, primarily as impurities. These sulfur 

species can be categorized into organic sulfur compounds and inorganic sulfur compounds.  

Organic and inorganic sulfur compounds are two broad categories of compounds that contain 

sulfur atoms. Organic sulfur compounds contain carbon-sulfur bonds. In contrast, inorganic 

sulfur compounds lack carbon-sulfur bonds, and have diverse industrial and environmental 

applications [32]. The major sulfur compound are listed in Table 1.  
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Table 1: Major sulfur compounds in gasoline  

Sulfur compounds Boiling range 
o
C 

Sulfur content 

ppm % 

Mercaptans 66 34   4.5 

Thiophene 65-93 37 4.9 

C1-thiophenes 92-121 106 14.1 

Tetrahydrothiophene 191 24 3.2 

C2-thiophenes 120-149 118 15.6 

C3-thiophenes/thiophenol 149-190 76 10.1 

C4-thiophenes/C1-thiophenol 177 83 11 

Benzothiophene 190 276 36.6 

 

 

2.1 Organic sulfur compounds  

Organic sulfur compounds are a class of chemical compounds that contain carbon-sulfur (C-S) 

bonds. Sulfur is an essential element in organic chemistry, and it plays a crucial role in the 

structure and function of many biological molecules [29]. Organic sulfur compounds are 

widespread in nature and can be found in various forms, ranging from simple molecules to 

complex polymers. Organic sulfur compounds mainly includes, gasoline thiols and disulfides 

[33]. Gasoline thiols, also known as mercaptans, are a class of organic compounds that contain a 

sulfur atom bonded to a hydrogen atom (SH group). They are characterized by their strong and 

unpleasant odor, often described as a "rotten egg" smell. In the context of gasoline, thiols are 

typically present in small amounts as impurities. Thiols can be formed during the refining and 

processing of crude oil, which is used to produce gasoline. They can also result from the 
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degradation of sulfur-containing compounds in the fuel. While modern refining techniques aim 

to minimize the sulfur content in gasoline, trace amounts of thiols may still be present. The 

presence of gasoline thiols is undesirable due to their odor, which can be irritating and 

unpleasant [34,35]. In addition, thiols can contribute to the formation of air pollutants, such as 

sulfur dioxide and particulate matter, which have negative effects on air quality and human 

health. To mitigate the presence of thiols in gasoline, various methods are employed, including 

hydrotreating and catalytic processes during the refining stage. These processes help reduce the 

sulfur content and remove thiols or convert them to less odorous compounds. It's worth noting 

that gasoline thiols are different from methyl mercaptan, which is a thiol compound commonly 

added to odorless natural gas to give it a distinct smell for safety purposes. The addition of 

methyl mercaptan allows the detection of gas leaks by the characteristic odor [34,36]. On the 

other hand, gasoline disulfides, also known as sulfur compounds or sulfur-containing compounds 

in gasoline, refer to organic compounds that contain two sulfur atoms bonded together [37, 38]. 

They are typically formed by the oxidation of thiols. These compounds are formed during the 

refining process or can be introduced through various sources, such as crude oil impurities or 

fuel additives. Disulfides are a subset of sulfur compounds found in gasoline, and they include 

different chemical species, such as dimethyl disulfide (DMDS), diethyl disulfide (DEDS), and 

other similar compounds [39, 40]. These compounds contribute to the overall sulfur content of 

gasoline, which is regulated in many countries due to environmental concerns. The presence of 

disulfides in gasoline can have several effects including emissions, catalyst poisoning and odor.  

- Emissions: Sulfur compounds in gasoline can contribute to the emission of sulfur dioxide 

(SO2) and other sulfur-containing pollutants when the fuel is burned. These pollutants are 
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known to be harmful to human health and the environment, contributing to air pollution, acid 

rain, and respiratory issues. 

- Catalyst poisoning: Sulfur compounds can poison catalytic converters used in vehicle exhaust 

systems. These converters are designed to reduce emissions of pollutants like nitrogen oxides 

(NOx) and carbon monoxide (CO). The sulfur compounds can interact with the catalyst, 

reducing its efficiency and leading to increased emissions. 

- Odor: Some sulfur compounds, such as DMDS, have a distinct odor, which can contribute to 

the unpleasant smell associated with gasoline. 

2.2 Inorganic sulfur compounds    

Inorganic sulfur compounds can be present in gasoline as impurities or as additives. These 

compounds are typically sulfur-containing chemicals that are not derived from crude oil but are 

introduced during the refining or blending process [41]. One common inorganic sulfur 

compound found in gasoline is hydrogen sulfide (H2S). H2S is a colorless gas with a distinct 

rotten egg smell and is highly toxic. It is usually removed during the refining process to prevent 

its release into the atmosphere. Other inorganic sulfur compounds that may be present in 

gasoline include sulfur dioxide (SO2) and sulfur trioxide (SO3). These compounds can be formed 

during the combustion of gasoline and contribute to air pollution, leading to the formation of acid 

rain and the exacerbation of respiratory problems [42]. 

3. Sulfur removal from FCC gasoline using PV 

Fluid catalytic cracking is a widely used refining process in the petroleum industry to convert 

heavy hydrocarbon feedstocks into lighter, more valuable products such as gasoline and diesel 

[43,44]. However, one of the challenges associated with FCC is the presence of sulfur 

compounds in the products, which are undesirable due to their detrimental effects on the 



      Removal of Sulfur from Gasoline Using Pervaporation: A Review 
  
                                                                                                                        Section A-Research paper 
 

2900 

Eur. Chem. Bull. 2023,12(12), 2893-2921 

 

environment and catalytic activity [45-48]. Pervaporation offers an effective solution for 

removing sulfur from FCC products.  

 

 

3.1 Basics of PV  

Pervaporation is a membrane separation process used to separate liquid mixtures based on their 

vapor pressure differences [49-55].  In pervaporation, a liquid mixture is brought into contact 

with a selective membrane, and a partial vacuum is applied on one side of the membrane as 

illustrated in Figure 1. As a result, one component of the liquid mixture selectively permeates 

through the membrane as vapor, while the other components remain behind as a concentrated 

liquid or retentate [55]. The driving force behind pervaporation is the vapor pressure difference 

between the components of the liquid mixture. The membrane used in pervaporation is typically 

a thin, selective layer that allows the preferential transport of one component while rejecting the 

others. The selective layer can be made of various materials, including polymers, ceramics, or 

composite materials. The permeated vapor is collected on the other side of the membrane, where 

it can be condensed and separated from the permeate. The permeate usually contains a higher 

concentration of the more volatile component of the liquid mixture. The retentate, on the other 

hand, becomes more concentrated in the less volatile component. Pervaporation has several 

advantages over traditional separation processes such as distillation or absorption. It operates at 

lower temperatures and pressures, making it more energy-efficient. It is particularly useful for 

separating azeotropic or close-boiling mixtures that are difficult to separate by conventional 

means. Pervaporation is also effective for removing volatile organic compounds from water or 

solvents. Applications of pervaporation include the dehydration of organic solvents, the removal 

of water from organic compounds, the recovery of organic solvents, and the purification of 



      Removal of Sulfur from Gasoline Using Pervaporation: A Review 
  
                                                                                                                        Section A-Research paper 
 

2901 

Eur. Chem. Bull. 2023,12(12), 2893-2921 

 

specialty chemicals. It is also used in the food and beverage industry for the concentration of 

fruit juices and the removal of alcohol from beverages. Currently, pervaporation is being used in 

removing sulfur from fluid catalytic cracking (FCC) products [55-59]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1. Schematic diagram on gasoline desulfurization using PV. 

 

 

3.2 PV process and operation  

The process involves passing the FCC products through a membrane that selectively permeates 

sulfur compounds, allowing them to be separated from the desired hydrocarbons [57]. The 

membrane used in pervaporation is typically made of a polymer material with high sulfur 

selectivity [60]. During pervaporation, the FCC product mixture is heated and brought into 

contact with one side of the membrane. The sulfur compounds present in the mixture have higher 
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affinity and permeability through the membrane compared to hydrocarbons. As a result, sulfur 

compounds preferentially permeate through the membrane, while hydrocarbons are retained on 

the feed side. The permeated sulfur compounds can be collected and further treated or processed 

to recover valuable sulfur or disposed of in an environmentally friendly manner. The purified 

hydrocarbon stream is obtained from the feed side of the membrane, free from significant 

amounts of sulfur compounds. Pervaporation for sulfur removal from FCC products offers 

several advantages. It operates at relatively mild conditions, requiring moderate temperatures and 

pressures, which can reduce energy consumption compared to conventional sulfur removal 

methods. Additionally, pervaporation is a continuous process and can be integrated into existing 

FCC units, making  it a potentially cost-effective solution [61,62]. However, it's important to 

note that pervaporation for sulfur removal is still a developing technology, and there may be 

challenges related to membrane fouling, membrane selectivity, and overall process efficiency 

[63]. Research and development efforts are ongoing to optimize membrane materials and process 

parameters to enhance the performance and commercial viability of pervaporation for sulfur 

removal in FCC applications. 

4. Materials selection  

The selection of membrane materials for pervaporation process in FCC gasoline desulfurization 

depends on several factors, including the desired separation performance, chemical 

compatibility, stability, and cost-effectiveness. Materials such as zeolites, polymers, and 

biological materials have been applied as membranes for this application [64-66]. Table 2 

presents the PV membrane materials reported recently and their sulfur removal performance. 
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Table 2: Comparison of the separation efficiencies of various membranes. 

Membrane 
Sulfur Content, 

ppm 
Temperature, 

o
C 

Flux, 

(J, kg/m
2
h) 

Separation 

factor 
Reference 

UF G - 10 4239 - 0.45 53.61 67 

PI 248 71 6.2 2.18 68 

PDMS-

Ag2O/PAN 
3640 30 1.65 3.9 69 

PDMS-

AgY/PAN 
3700 31 1.04 4.4 70 

PDMS/ ceramic 1000 50 3.31 3.35 71 

PEG/PES 1300 33 6.95 3.15 72 

EC 300 80 0.7 3.75 73 

PBPP 400 55 0.038 11.92 74 

CI-PBPP 400 85 1.38 5.6 75 

PEBA / PVDF 1000 40 3.8 4 76 

PDMS-GNS 1312 40 6.22 3.58 77 

 

Nevertheless, polymers are currently the most broadly used materials [78 – 82] due to the fact 

that polymer materials offer several advantages over other materials when it comes to 

membranes including;  

- Versatility: Polymer membranes can be designed to have a wide range of properties, making 

them highly versatile. They can be tailored to have specific pore sizes, surface chemistries, and 

permeability characteristics to suit various applications [79,83]. 
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- Selectivity: Polymer membranes can exhibit excellent selectivity, allowing them to separate 

specific molecules or ions from a mixture. By controlling the polymer composition and 

structure, it is possible to achieve high selectivity for a particular substance, which is crucial in 

applications such as water purification, gas separation, and drug delivery [78]. 

- Scalability: Polymer membranes are often more scalable than other materials, such as ceramic 

or metal membranes. They can be manufactured through various techniques, including phase 

inversion, electrospinning, and casting, which are relatively cost-effective and suitable for 

large-scale production [81]. 

- Energy Efficiency: Polymer membranes can offer high permeability with low energy 

consumption, making them energy-efficient. They can enable efficient separation processes by 

requiring less pressure or lower temperature differentials compared to other membrane 

materials. This is particularly important in applications like reverse osmosis for desalination or 

gas separation for industrial processes [82,84]. 

- Chemical Resistance: Many polymer materials exhibit excellent chemical resistance, allowing 

them to withstand exposure to harsh chemicals, acids, and solvents without significant 

degradation. This makes them suitable for applications in corrosive environments or when 

dealing with aggressive substances [78-85]. 

- Flexibility and Ease of Processing: Polymer membranes are typically flexible and can be easily 

formed into various shapes or configurations, including flat sheets, hollow fibers, or tubular 

structures. Their flexibility enables their use in applications where conformability or flexibility 

is required, such as in wearable devices or flexible electronics [86]. 

- Cost-Effectiveness: Polymer membranes are often more cost-effective compared to other 

membrane materials, such as ceramics or metals. The raw materials for polymers are relatively 



      Removal of Sulfur from Gasoline Using Pervaporation: A Review 
  
                                                                                                                        Section A-Research paper 
 

2905 

Eur. Chem. Bull. 2023,12(12), 2893-2921 

 

inexpensive, and the manufacturing processes can be less complex and more cost-efficient, 

resulting in lower production costs [87]. 

 

 

 

 

5. Effect of the gasoline components on membranes performance 

The effect of gasoline on a polymer membrane can vary depending on the specific polymer 

composition and the exposure conditions [88,90]. When gasoline comes into contact with a 

polymer membrane, several potential interactions can occur including; swelling, solvent action, 

Permeation and Chemical degradation. Some polymers may absorb gasoline and swell as a 

result. This can lead to changes in the dimensions and mechanical properties of the membrane. 

Also, gasoline can act as a solvent for certain polymers, causing them to dissolve or soften. This 

can lead to a loss of structural integrity and a breakdown of the membrane. Gasoline molecules 

may diffuse through the polymer membrane, leading to permeation [91]. This can be problematic 

in applications where the membrane is intended to provide a barrier against the passage of 

liquids. Chemical degradation can take place because the aromatic components of gsoline can 

chemically react with certain polymer materials, resulting in degradation of the polymer chains. 

This can lead to a loss of mechanical strength, embrittlement, or cracking of the membrane. To 

mitigate the potential negative effects of gasoline on a polymer membrane [92], various 

strategies can be employed. These include selecting a polymer material with high resistance to 

gasoline, using barrier coatings or laminates to protect the membrane, or incorporating additives 

that enhance resistance to gasoline exposure [93,94]. It is important to consider the specific 
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requirements of the application and consult the manufacturer's recommendations or conduct 

appropriate testing to ensure the compatibility of the polymer membrane with gasoline [95]. 

 

 

 

6. Operating parameters 

The operating conditions in pervaporation can significantly influence its performance. Here are 

some key factors:  

6.1 Effect of feed temperature 

Pervaporation is a temperature-dependent process [96]. As temperature increases, the vapor 

pressure of the components in the liquid mixture also increases, resulting in enhanced permeation 

rates as illustrated by Arrhenius relationship (Figure 2) [96,97] . In addition, higher temperatures 

accelerate the diffusion rate of solutes in the solution [98]. This increased molecular motion 

results in a greater concentration gradient across the membrane, leading to enhanced mass 

transfer through the membrane and consequently higher flux [99]. Moreover, the permeability of 

the membrane itself can be influenced by temperature. In some cases, higher temperatures can 

reduce the resistance of the membrane, leading to increased permeability and flux [100]. For 

example in polymeric membranes, the polymer chains become flexible at higher temperatures, 

resulting more available free volume and paths within the membrane structure. However, the 

selectivity of the membrane may decrease at higher temperatures due to increased diffusion of 

both components. Therefore, an optimal temperature must be selected to achieve the desired 

separation performance. 
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Figure 2: Arrhenius relationship between flux and temperature [70]. 

 

 

6.2 Effect of feed pressures 

Feed pressure is an important operational parameter that can significantly affect the performance 

of a pervaporation membrane system used for separating gasoline components [101]. The feed 

pressure in a pervaporation system affects the separation performance in several ways: 

1. Permeation Flux: Generally, increasing the feed pressure in a pervaporation system leads to an 

increase in the permeation flux. Higher pressure can enhance the driving force for mass transfer 

across the membrane, resulting in increased permeation rates. This can be beneficial for 

achieving higher separation efficiency and higher productivity [102, 103]. 
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2. Selectivity: Feed pressure can influence the selectivity of the membrane system. In some 

cases, high feed pressures can cause a reduction in selectivity, leading to increased co-

permeation of undesired components. This can result in lower separation efficiency and reduced 

product quality [102-104] . 

3. Membrane Performance: Pervaporation membranes have certain operating limits, including 

pressure differentials, beyond which their performance may deteriorate or they may be damaged 

[105]. Excessive feed pressures can cause membrane compaction, increased mechanical stresses, 

or even membrane rupture, leading to a loss in separation efficiency and membrane integrity 

[102, 106]. It is important to operate the pervaporation system within the recommended pressure 

range specified by the membrane manufacturer. 

6.3 Effect of feed composition 

Specific effects of gasoline on a membrane will depend on factors such as the membrane 

composition, thickness, exposure duration, and the concentration and composition of the gasoline 

itself [107]. Different types of membranes may exhibit different responses to gasoline exposure. 

Gasoline contains a mixture of hydrocarbons, some of which can be chemically reactive. 

Prolonged exposure to gasoline can lead to chemical degradation of the membrane material 

[108]. This degradation can result in changes to the membrane's structure, loss of mechanical 

strength, and reduced performance. In addition, gasoline may cause the leaching of certain 

additives or plasticizers present in the membrane material. This leaching can alter the 

membrane's properties and potentially contaminate the surrounding environment. 
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6.4 Influence of feed sulfur concentration 

Sulfur compounds, especially inorganic sulfates and sulfides, can cause fouling on the membrane 

surface. Fouling refers to the accumulation of unwanted substances on the membrane, which can 

reduce its performance and efficiency [109]. Sulfur fouling can be particularly problematic 

because sulfur compounds tend to form insoluble precipitates that adhere to the membrane 

surface. Other sulfur compounds, such as hydrogen sulfide (H2S), can react with the membrane 

material and cause degradation. This degradation may result in changes in membrane 

morphology, reduced mechanical strength, and increased susceptibility to fouling and chemical 

attack [109,110]. 

6.5 Effect of feed flow rate 

The gasoline feed flow rate can have several effects on a membrane system. The feed flow rate 

will generally lead to higher permeate flux. However, there is a limit to this relationship as 

excessively high flow rates can result in reduced efficiency due to limitations in the membrane's 

permeability and fouling resistance [111].  Also, higher feed flow rates can help to minimize 

fouling by promoting a higher shear rate and maintaining a more turbulent flow. This can help 

prevent the deposition of particles on the membrane surface and improve overall efficiency. 

Another aspect that should be considered is the pressure drop. The feed flow rate is directly 

related to the pressure drop across the membrane system. Increasing the flow rate will generally 

lead to a higher pressure drop [111,112]. The feed flow rate can impact the energy consumption 

of the membrane system. Higher flow rates typically require more energy to maintain the desired 

pressure and flow conditions. Therefore, it is important to consider the energy requirements and 
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cost-effectiveness when determining the optimal feed flow rate. Also, The feed flow rate can also 

affect the lifespan and durability of the membrane. Operating at excessively high flow rates for 

extended periods may result in increased mechanical stress on the membrane, potentially leading 

to damage or reduced membrane lifespan. It is important to operate within the recommended 

operating conditions specified by the membrane manufacturer to ensure longevity. 

 

7. Economic analysis 

Pervaporation is a membrane separation process that has been explored for various applications, 

including the desulfurization of gasoline. The economic analysis of pervaporation for gasoline 

desulfurization involves evaluating the costs and benefits associated with implementing this 

technology. Here are some key factors to consider in such an analysis. The capital costs are the 

initial investment required to set up a pervaporation system for gasoline desulfurization includes 

the cost of purchasing and installing the pervaporation membranes, pumps, and other equipment. 

These costs can vary depending on the scale of the operation and the specific membrane 

materials used. As for the operating costs of a pervaporation system include energy consumption, 

maintenance, and replacement of membranes [113, 114]. Energy costs will depend on the power 

requirements of the pumps and other equipment. Membrane replacement is necessary over time 

due to fouling or degradation, and the frequency and cost of replacement will impact the overall 

operating costs. In general, the effectiveness of pervaporation in removing sulfur compounds 

from gasoline will influence the economic analysis. Higher sulfur removal efficiency means a 

higher-quality desulfurized product, which may command a premium price in the market. The 

quality of the desulfurized gasoline product produced through pervaporation will play a 

significant role in the economic analysis. If the desulfurized gasoline meets the regulatory 
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standards and has desirable properties, its market value may be higher compared to conventional 

gasoline. The cost of the gasoline feedstock is an important consideration. If the pervaporation 

process allows for the use of lower-cost, high-sulfur feedstocks, it can provide a cost advantage 

compared to alternative desulfurization methods that require more expensive low-sulfur 

feedstocks. Environmental regulations regarding sulfur content in gasoline can impact the 

economic analysis. If pervaporation enables compliance with stricter regulations at a lower cost 

compared to alternative technologies, it can provide a competitive advantage. On the other hand, 

the scale at which the pervaporation system is implemented can affect the economics. Large-

scale operations may benefit from economies of scale, potentially reducing capital and operating 

costs per unit of desulfurized gasoline produced. 

 

8.  Final remarks and future prospects 

In conclusion, gasoline desulfurization using pervaporation has proven to be a promising 

technology for the removal of sulfur compounds from gasoline. It offers several advantages over 

conventional methods, such as higher selectivity, lower energy consumption, and simpler 

operation. Pervaporation has demonstrated its efficiency in removing both organic and inorganic 

sulfur compounds, including difficult-to-remove compounds like thiophene and benzothiophene. 

The use of selective membranes in pervaporation enables the separation of sulfur compounds 

from gasoline based on their molecular size, polarity, and affinity to the membrane material. By 

optimizing the membrane properties and operating conditions, high desulfurization efficiency 

can be achieved while maintaining a high gasoline recovery rate. As for the future prospects, 

continued research and development efforts should focus on designing and optimizing 

membranes specifically tailored for gasoline desulfurization. This includes improving the 
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selectivity, permeability, and stability of the membranes to enhance their performance and 

longevity. Also, Pervaporation can be integrated with other desulfurization technologies, such as 

hydrotreating or adsorption, to create hybrid processes that offer synergistic benefits. The 

combination of different technologies can potentially enhance the overall desulfurization 

efficiency and reduce operating costs. While pervaporation has shown promise at the laboratory 

scale, further efforts are needed to scale up the technology for industrial applications. The 

development of large-scale pervaporation systems and the evaluation of their economic 

feasibility will be crucial steps towards commercialization.    
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