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Abstract 

In this study, propagation of quantum waves through neurons has been studied via partial differential equations, 

a mathematical approach. Central to the exploration is a Schrödinger-like equation which models the quantum 

wave propagation in a neuron. The analysis delves into how the wave function, contingent on spatial position 

and time, is influenced by potential barriers and its initial conditions. Complimenting this is an equation 

capturing the dynamics of neurons. This equation underscores the relationship between the quantum wave 

function and the neuron firing rate. By employing a discretized spatial domain and initializing the wave 

function with a Gaussian wave packet, iterative numerical techniques have been utilized to glean insights into 

the temporal evolution of this function. The presented model is further refined by incorporating boundary 

conditions and additional equations that factor in external stimuli and neuronal connectivity. In conclusion, the 

presented mathematical framework hypothesizes connections between the probabilistic realm of quantum 

mechanics and the intricate existence of neuronal interactions. While awaiting empirical validation, the 

presented mathematical constructs pave the way for fresh perspectives and methodologies in understanding 

neural processes. 
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Introduction 

In the mid-20th century, as the pillars of quantum 

mechanics were firmly established, scientists 

began speculating its implications beyond the 

atom's realm. Erwin Schrödinger, a pioneer in 

quantum mechanics, delved into biology's 

enigmatic questions in his 1944 book "What is 

Life?" (Schrödinger, 1944). While not directly 

about the brain, he mused on the quantum nature of 

biological processes, laying the foundational 

thoughts for future explorations in quantum 

neurology. The late 20th century witnessed one of 

the most prominent and controversial theories that 

explicitly wed quantum mechanics and 

neuroscience. In the 1990s, Sir Roger Penrose, a 

mathematical physicist, and Dr. Stuart Hameroff, 

an anaesthesiologist, collaboratively proposed the 

Orchestrated Objective Reduction (Orch-OR) 

model (Hameroff and Penrose, 2014). They 

posited that quantum processes in the brain's 

microtubules give rise to consciousness. This 

theory faced considerable scepticism but 

invigorated the discussion around quantum effects 

in neural processes. Around the same time, 

Frohlich (1968) proposed that coherent quantum 

states might exist within biological systems, 

specifically neurons. This idea, though met with 

scepticism, paved the way for discussions about 

quantum tunnelling in synapses. Beck and Eccles 

(1992), and Eccles et al. (1994) later expanded on 

this by suggesting that quantum tunnelling of 

electrons might play a crucial role in synaptic 

functions. The turn of the millennium brought forth 

critiques of the nascent field of quantum 

neurology. Physicist Max Tegmark (2000) 

calculated that quantum states in the brain would 

undergo decoherence (lose their quantum nature) 

much faster than the timescales on which neuronal 

processes occur, seemingly debunking theories 

like Orch-OR. However, Hameroff and Penrose 

countered, suggesting mechanisms by which the 

brain might protect its quantum states (Hameroff, 

2014). With advances in quantum biology in the 

2000s, where researchers demonstrated quantum 

effects in photosynthesis and bird migration (Engel 

et al., 2007; Ritz et al., 2000), the belief in quantum 

mechanics playing a role in more extensive 

biological systems, including the brain, gained 

traction. For instance, quantum entanglement, a 

phenomenon where particles become 

interconnected, was discussed in the context of the 

brain's simultaneous, coordinated activities across 

vast distances (Arndt and Hornberger, 2014). 

Modern explorations in quantum neurology are not 

solely focused on consciousness. Research has 

expanded to understanding various neural 

processes, including the probabilistic nature of 

synaptic firings, which classical physics finds 

challenging to explain (Koch and Hepp, 2006). The 

synthesis of quantum mechanics with neural 

network models is another avenue being explored. 

While been through the literature of quantum 

neurology, recent advancements in the field have 

been recorded. In the 2010s, Hameroff and Penrose 

(2014) revisited and expanded on their Orch-OR 

theory. They proposed that vibrations in 

microtubules might be the source of quantum 

effects observed in the brain. Experiments using 

anaesthetics seemed to support this idea by 

showing that certain gases selectively dampened 

these vibrations, leading to unconsciousness. 

Quantum cognition, a relatively new field, applies 

quantum mechanics to cognitive processes, 

suggesting that the probabilistic nature of quantum 

mechanics could model cognitive processes more 

accurately than classical models. Not necessarily 

implying the brain is a quantum computer, but that 

quantum mathematics offers a different 

perspective on understanding cognition 

(Busemeyer and Bruza, 2012). Although 

entanglement is usually associated with quantum 

particles, there has been growing interest in its 

potential analogues in brain activity. The idea is 

that the simultaneous firing of neurons might be 

likened to entangled particles (Atmanspacher, 

2015). While still speculative, this has prompted 

research into the synchronization of brain regions 

and its potential quantum underpinnings. Studies in 

quantum biology have shed light on possible 

quantum processes in the brain. For instance, 

magnetic fields produced by certain reactions 

involving radical ion pairs could potentially 

influence neuron firing rates. This has been 

proposed as a mechanism for birds' 

magnetoreception and could, in theory, have 

implications for brain processes (Hore and 

Mouritsen, 2016). Advancements in nanotechno-

logy have led to quantum dots' utilization, 

nanoparticles with quantum properties, in 

neuroscience research. These dots have been used 

as sensors and probes, providing new insights into 

neuron function (Michalet et al., 2005). One of the 

more critical reviews in recent years has come from 

Tegmark (2014), who recalculated the timescales 

of quantum decoherence in neural systems, arguing 

that the brain is too warm and wet for quantum 

processes to play a significant role. These findings 

suggest that while quantum mechanics is essential 

at the molecular scale, its direct influence on brain 

function remains unlikely. 

Mathematical modelling acted as a catalyst to 

expedite the research in quantum neurology. 

Recent years have seen the application of quantum 

formalism to cognitive modeling, utilizing Hilbert 
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space formalism to capture the probabilistic nature 

of decision-making processes (Busemeyer et al., 

2006). Such mathematical frameworks provided 

better fits to experimental data than classical 

probability models in certain cognitive tasks, like 

the order effect or conjunction fallacy 

(Khrennikov, 2011). Quantum walks, a quantum 

analog of classical random walks, had been 

proposed as models for certain brain processes. 

Research suggested that these walks could capture 

the probabilistic nature of neuron firing sequences, 

offering a new perspective on synaptic 

connectivity and neuronal pathways (Abbott et al., 

2008). The quantum vibrations in microtubules, as 

proposed by the Orch-OR theory, had undergone 

rigorous mathematical modeling to explain 

phenomena like anesthesia. These models 

described electron tunneling processes within 

microtubules, attempting to pinpoint the quantum 

processes responsible for consciousness (Hameroff 

and Penrose, 2014). Building on the speculative 

idea of neural entanglement, some researchers 

have derived mathematical measures to quantify 

potential entanglement between neuron clusters, 

based on synchronized firing patterns and other 

observed phenomena (Atmanspacher, 2004). 

Taking inspiration from quantum field theory, 

some researchers have started framing neural 

dynamics in terms of field theory. This approach 

captured the continuous nature of certain brain 

activities, like electromagnetic waves, using 

quantum field theoretical tools (Lloyd, 2011). 

Thus, even if quantum neurology remains on the 

periphery of mainstream neuroscience, the 

mathematical innovations it has inspired over the 

past decade cannot be overlooked. The continuous 

cross-pollination between quantum mechanics and 

neurology with the aid of mathematical modelling 

is bound to yield new perspectives and 

methodologies. This motivated the authors to study 

the present problem of quantum wave propagation 

in neurons mathematically using partial differential 

equations and numerical iterative techniques. 

 

Materials and Methods 

In the study, a hybrid approach of theoretical 

modeling and numerical solution has been used to 

investigate how quantum wave behaviour 

influences interconnected neurons within neural 

networks. The methodology revolved around 

adapting Schrödinger's equation, a fundamental 

equation in quantum mechanics, to represent the 

synaptic firing probabilities of neurons. A 

simplified neural network model has been 

constructed, specifying neuron density, 

connectivity patterns, and synaptic potential 

barriers. Through numerical solution with varied 

parameters, including neuron density, connectivity 

strength, and external stimuli, the impact of 

quantum physics on neural network dynamics has 

been observed (Hertäg et al., 2014). The analysis 

included the quantification of quantum wave 

behaviour, neuronal firing rates, and synaptic 

potential changes over time. External stimuli to 

assess their influence on the quantum wave 

function and subsequent neuronal firing have also 

been introduced. This combined theoretical and 

numerical approach sheds light on the intricate 

interplay between quantum physics and 

neuroscience, providing valuable insights into how 

quantum phenomena affect neuronal behaviour in 

interconnected networks. 

 

Problem Formulation 

Consider a scenario where quantum effects in 

neural networks, specifically in synapses, are 

believed to create quantum wave propagations. 

These quantum wave propagations are theorized to 

influence the likelihood of synaptic firings. A 

mathematical model will be presented using these 

quantum waves propagating through a series of 

interconnected neurons. 

 

Parameters:  

Ψ(𝑥, 𝑡): The quantum wave function representing 

the probability amplitude of synaptic firings. 

𝑉(𝑥, 𝑡): The potential energy representing synaptic 

barriers. 

𝑚: The effective mass of the quantum particle 

responsible for synaptic firing. 

ℏ: Planck’s constant. 

𝑛(𝑥, 𝑡): The density of neurons in a region. 

𝑣: The velocity or speed of movement (transport) 

of the neurons. 

𝜎: A decay or damping coefficient for the neuronal 

response. 

𝜅: A base rate or intrinsic rate of change of the 

neuronal network's response in the absence of 

external stimuli.  

𝐷: Diffusion constant of quantum particles. 

𝑆(𝑥, 𝑡): Source term, which denotes external 

stimuli. 

𝐶: Connectivity matrix indicating connections 

between different neurons. 

𝑓(𝑛): A function representing the firing rate of a 

neuron given its density. 

𝛼, 𝛽: Damping and excitation coefficients for the 

quantum waves. 

𝑟(𝑥, 𝑡): Response function of a neuron due to 

quantum effects. 

 

Mathematical formulation: 

Considering 1-dimensional segment of a neuron, 

where 𝑥 ranges from 0 to 𝐿 (length of the segment), 
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the partial differential equations governing the 

dynamics of quantum waves and the neurons in 

synapses are framed as, 

Schrödinger’s equation for synaptic firings:  

𝜄 ℏ 
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚
 
𝜕2Ψ

𝜕𝑥2 + 𝑉 Ψ   

                                                  

Conservation of neurons: 
𝜕𝑛

𝜕𝑡
+

𝜕(𝑛𝑣)

𝜕𝑥
= 𝑆      

      

where, the term 
𝜕(𝑛𝑣)

𝜕𝑥
 describes the rate of change 

of the product of neuron density and velocity with 

respect to space. It gives a measure of the net flow 

or flux of neurons at a given point in space. 

Quantum diffusion of particles in synaptic clefts: 
𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2n

𝜕𝑥2      

               (3) 

 

Neuronal connectivity: 
𝜕𝑛

𝜕𝑡
= 𝐶 𝑛      

      

 

Firing rate dependence on quantum waves: 
𝜕𝑓

𝜕𝑡
= 𝛽 |Ψ|2 − 𝛼 𝑓     

      

 

Evolution of the synaptic potential barrier with 

time: 
𝜕𝑉

𝜕𝑡
= −𝛾 𝑓(𝑛) + 𝜆 𝑟     

      

 

where, 𝛾 and 𝜆 are proportionality constants.  

Neuronal response due to quantum wave: 
𝜕𝑟

𝜕𝑡
= 𝜃 |Ψ|2 − 𝜎 𝑟       

      

 

where, 𝜃 is a proportionality constant. 

Conservation of quantum particles: 
𝜕|Ψ|2

𝜕𝑡
+

𝜕(|Ψ|2𝑣)

𝜕𝑥
= 0      

      

 

This can be seen as a quantum fluid continuity 

equation where |Ψ|2 acts as density and 𝑣 as the 

velocity.  

Neuronal network’s reaction to external stimuli: 
𝜕𝑆

𝜕𝑡
= 𝜅 − 𝜂 𝑛      

      

 

where, 𝜂 is a proportionality constant that 

represents the sensitivity or responsiveness of the 

neuronal network to external stimuli. 

Connectivity influence on wave function: 

𝜕Ψ

𝜕𝑡
= 𝐶 Ψ      

             (10) 

 

Assume some hypothetical data before considering 

boundary conditions based on the provided 

framework given as, 

Length of segment, 𝐿 = 1 micrometer.  

               

Initial quantum wave propagation: Ψ(𝑥, 0) = 𝑒
−𝑥2

0.01 

.             (12) 

This implies that the quantum wave is localized 

around 𝑥 = 0 at 𝑡 = 0 and decays exponentially as 

we move away from this point. 

Initial distribution of neurons (or more accurately, 

synaptic density or quantum particle density in this 

context): 𝑛(𝑥, 0) = 𝑒
−|𝑥−

𝐿
2
|

0.1  .            

 

This suggest that the synaptic density is highest at 

the midpoint of the segment and decays 

exponentially as we move away from the midpoint. 

Initial and Boundary Conditions:  

Ψ(𝑥, 0), i.e., initial quantum wave propagation at 

𝑡 = 0 is given as, 

Ψ(0, 0) = 𝑒0 = 1; Ψ(𝐿, 0) = 𝑒
−𝐿2

0.01 = 𝑒
−1

0.01. 

             (14) 

 

𝑛(𝑥, 0), i.e., initial distribution of neurons is given 

as, 

𝑛(0, 0) = 𝑒
−|0−

𝐿
2
|

0.1 = 𝑒

−𝐿
2

0.1 ; 𝑛(𝐿, 0) = 𝑒
−|𝐿−

𝐿
2
|

0.1 = 𝑒

−𝐿
2

0.1 .

             (15) 

 

No-flux boundary conditions for 𝑛 and Ψ at 

domain boundaries are given as, 
𝜕Ψ

𝜕𝑥
|
𝑥=0

= 0;  
𝜕Ψ

𝜕𝑥
|
𝑥=𝐿

= 0;  
𝜕𝑛

𝜕𝑥
|
𝑥=0

= 0;  
𝜕𝑛

𝜕𝑥
|
𝑥=𝐿

=

0.             (16) 

 

𝑉 is bounded and does not blow up to infinity. For 

instance, assume that 𝑉(𝑥) varies sinusoidally 

along the segment with amplitude 𝐴 and is given 

as, 

𝑉(𝑥) = 𝐴 sin (
2𝜋𝑥

𝐿
),    

 

where, 𝐴 is a constant. For this case, assume that 

𝐴 = 0.5 eV (electron volts). 

𝑆(𝑥, 𝑡) is periodic or some known function of time 

assumed as, 

𝑆(𝑥, 𝑡) = 𝑐𝑜𝑠 (
2𝜋𝑡

𝑇
),     

where 𝑇 is the period. Assume 𝑇 = 1second for 

simplicity. 

 

 

      (17)

       (18)

          (11)

          (13)

 (1)

         (2)

         (4)

         (5)

         (6)

        (7)

        (8)

        (9)
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Analytical Results 
For solution of equation (1), assume the potential 

𝑉(𝑥) represents a common quantum scenario: the 

quantum harmonic oscillator, which might 

represent a neuron trapped in a potential well due 

to surrounding synapses. The potential for the 

quantum harmonic oscillator is, 

𝑉(𝑥) =
1

2
𝑚𝜔2𝑥2,     

                           

 

separation of variables is assumed as, 

Ψ(𝑥, 𝑡) = 𝜙(𝑥) 𝑇(𝑡).   

 

Plugging equations (19) and (20) in equation (1), 

and introducing the separation constant 𝐸 (which 

can be interpreted as energy), gives two separate 

differential equations – time-dependent equation 

and space-dependent equation. Solutions of these 

differential equations when put in equation (1) 

give, 

Ψ𝑛(𝑥, 𝑡) = 𝜙𝑛(𝑥)𝑇𝑛(𝑡), 𝑛 = 0, 1, 2, . ..  
             

where, 𝑇𝑛(𝑡) = 𝑒
−𝑖𝐸𝑛𝑡

ℏ  ;  𝜙𝑛(𝑥) =

1

√2𝑛𝑛!
(
𝑚𝜔

𝜋ℏ
)
1

4⁄
𝑒

−𝑚𝜔𝑥2

2ℏ  𝐻𝑛(𝜉),       

 

where, 𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
) represents the quantized 

energy states, Ψ0(𝑥, 𝑡) is the ground state, Ψ1(𝑥, 𝑡) 

is the first excited state, and so on. Each of these 

states has a different energy and different special 

distribution, given by the Hermite polynomials 

𝐻𝑛(𝜉). The set of solutions (21) could suggest 

quantized energy states for the neuron under 

synaptic conditions. 

Quantum diffusion equation (3) is a classic 

diffusion equation, whose general solution is given 

as, 

𝑛(𝑥, 𝑡) = ∫ 𝐺(𝑥 − 𝑥′, 𝑡 − 𝑡′) 𝑆(𝑥′, 𝑡′)𝑑𝑥′𝑑𝑡′
∞

−∞
, 

                        

 

where 𝐺 is the Green’s function for the diffusion 

equation, and is given as, 

𝐺(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒

−𝑥2

4𝐷𝑡 . 

This equation states that the neuron density at time 

𝑡 and position 𝑥 depends on source terms 𝑆 at all 

previous times and positions, weighted by the 

Green’s function. 

Neuronal connectivity equation (4) is an 

exponential growth/decay equation. The general 

solution, given a constant 𝐶, is given as, 

𝑛(𝑡) = 𝑛(0)𝑒𝐶𝑡.    

               

Using the initial condition (13), the particular 

solution of equation (4) will be, 

𝑛(𝑡) = 𝑒𝐶𝑡 − 
|𝑥−

𝐿
2
|

0.1
−

.    

             (24) 

 

Firing rate dependence equation (5) is a linear first-

order differential equation. A general solution 

involves integrating factors, but the solution will 

depend on |Ψ|2, the probability density of the 

quantum wave. Assume the scenario, where the 

probability density for the quantum harmonic 

oscillator in the ground state (i.e., 𝑛 = 0) is given 

by |𝜙0(𝑥)|2. For the ground state (making use of 

equations (21) and (22)), 

Ψ0(𝑥, 𝑡) = 𝜙0(𝑥)𝑒−𝜄𝐸0𝑡/ℎ, where 𝜙0(𝑥) =

(
𝑚𝜔

𝜋ℏ
)
1/4

𝑒
−𝑚𝜔𝑥2

2ℏ  

So, probability density is given by, 

|Ψ0(𝑥, 𝑡)|2 = |𝜙0(𝑥)|2 = (
𝑚𝜔

𝜋ℏ
)
1/2

𝑒
−𝑚𝜔𝑥2

ℏ . 

          

 

Using this, the firing rate dependence equation 

reduces to the equation, 

𝜕𝑓

𝜕𝑡
= 𝛽 (

𝑚𝜔

𝜋ℏ
)
1/2

𝑒
−𝑚𝜔𝑥2

ℏ − 𝛼 𝑓. 

 

Solution of this firing rate dependence equation 

using an integrating factor 𝑒𝛼𝑡, is given as, 

𝑓(𝑡) = 𝛽 (
𝑚𝜔

𝜋ℏ
)
1/2

𝑒−𝛼𝑡 ∫ 𝑒𝛼𝑡𝑒
−𝑚𝜔𝑥2

ℏ 𝑑𝑡 + 𝐶, 

             (26) 

 

Where 𝐶 is an integration constant. This equation 

gives the firing rate as a function of time, 

modulated by the quantum probability density. 

Equation (10) giving connectivity influence on 

wave function is a first-order partial differential 

equation that describes exponential growth/decay 

of the wave function based on the connectivity 

influence factor 𝐶. Using the initial condition (12), 

the particular solution of equation (10) is given as, 

Ψ(𝑥, 𝑡) = 𝑒𝐶𝑡−
𝑥2

0.01.    

             (27) 

 

In the equation (9) for neuronal network’s reaction 

to external stimuli, assume that 𝑛 is constant or 

slowly varying compared to 𝑆 (e.g., in a scenario 

where the external stimulus is rapidly changing 

while the neuron density remains relatively 

constant). Also assume that 𝜂 is a constant 

(characterizing the rate of decay of the stimulus in 

presence of neurons). Using an integrating factor 

𝑒𝜂𝑡, the solution of equation (9) is given as, 

𝑆(𝑡) = 𝜅
𝑒−𝜂𝑡

𝜂
+ 𝐶𝑒−𝜂𝑡,    

 

  (25)

       (28)

(19)
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where, 𝐶 is an integration constant. Using initial 

condition (18), the value of 𝐶 obtained is 1 −
𝜅

𝜂
. 

Hence, the particular solution of equation (9) 

comes out to be, 

 𝑆(𝑡) = 𝑒−𝜂𝑡.     

Coming to equation (3) for conservation of neurons 

with quantum influence, where 𝑣 might ne 

influenced by the quantum state |Ψ|2, assume that  

𝑣 = 𝑣0 + 𝛾|Ψ|2,    

 

where 𝑣0 is a base velocity and 𝛾 is a modulation 

constant. Plugging the equations (25), (29) and 

(30), into equation (3) yields, 

𝜕𝑛

𝜕𝑡
+

𝜕

𝜕𝑥
{𝑛 (𝑣0 + 𝛾 (

𝑚𝜔

𝜋ℏ
)
1/2

𝑒
−𝑚𝜔𝑥2

ℏ )} = 𝑒−𝜂𝑡. 

               

 

Method of characteristics can be used to find 

analytical solution of this equation. 

Coming to equation (7) for neuronal response due 

to quantum effects, equation (25) will be plugged 

into this equation to give, 

𝜕𝑟

𝜕𝑡
= 𝜃 (

𝑚𝜔

𝜋ℏ
)
1/2

𝑒
−𝑚𝜔𝑥2

ℏ − 𝜎𝑟.   

 

This equation suggests the neuronal response 𝑟 is 

modulated by the quantum state and decays with a 

rate 𝜎. It is a linear ordinary differential equation 

whose general solution is given as, 

𝑟 =
𝜃

𝜎
(
𝑚𝜔

𝜋ℏ
)
1/2

𝑒
−𝑚𝜔𝑥2

ℏ + 𝐶0𝑒
−𝜎𝑡  

 

where 𝐶0 is a constant of integration. Coming to 

equation (8) for neuronal response due to quantum 

effects, equation (30) will be plugged into this 

equation to give, 
𝜕|Ψ|2

𝜕𝑡
+

𝜕(|Ψ|2(𝑣0+𝛾|Ψ|2))

𝜕𝑥
= 0.      

 

Analytical solution of this equation can be found 

using method of characteristics. 

Coming to equation (6) for evolution of synaptic 

potential, if 𝑓(𝑛) were linear, say 𝑓(𝑛) = 𝜅𝑛, then 

plugging equation (33) into this equation gives, 

𝜕𝑉

𝜕𝑡
= −𝛾𝜅𝑛 + 𝜆 (

𝜃

𝜎
(
𝑚𝜔

𝜋ℏ
)
1/2

𝑒
−𝑚𝜔𝑥2

ℏ + 𝐶0𝑒
−𝜎𝑡). 

               

 

Using separation of variables and the boundary 

condition (17), the solution of this equation is 

given as, 

𝑉 = −𝛾𝜅𝑛𝑡 + 𝜆𝑡
𝜃

𝜎
(
𝑚𝜔

𝜋ℏ
)

1

2
𝑒

−𝑚𝜔𝑥2

ℏ −
𝐶0𝜆

𝜎
𝑒−𝜎𝑡. 

               

 

Numerical Solution of the Problem: 

Assume hypothetical values based on atomic 

scales (just as a point of reference) given as, 

ℏ (reduced Planck’s constant) = 1.054571 ×
10−34 J.s 

𝑚 (mass of the particle, similar to an electron) = 

9.11 × 10−31 kg 

𝜔 (frequency of the oscillator) = 1 × 1015 Hz 

𝐿 (length of the domain) = 1 × 10−9 m (1 

nanometer) 

∆𝑥 (spatial step size) = 1 × 10−11 m 

∆𝑡 (time step size) = 1 × 10−17 s 

𝑉(𝑥) (assume a sinusoidal potential) = 𝑉0 sin (𝑘𝑥), 

where 𝑉0 = 1.0 eV is the amplitude and 𝑘 =
2𝜋 0.2⁄  is the wave number. 

𝑉 (Neuronal flow velocity vector) = 𝑣0�̂� having a 

fixed magnitude and direction where 𝑣0 = 0.01 

units/s. 

𝑆(𝑥, 𝑡) (Source/sink term) = 

{
𝑆0𝑒𝑥𝑝 (−

(𝑥−𝑥𝑐)
2

2𝜎𝑆
2 ) , 𝑡 ∈ [0.1, 0.2]

0 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , assuming it is 

a localized source at the centre of problem domain 

that acts at a specific time interval. Also, assume 

that 𝑆0 = 0.05 units/s, 𝑥𝑐 = 0.5 units (center of 

domain), 𝜎𝑆 = 0.05 units.   

𝐷 (Diffusion constant, which gives an idea about 

the rate of diffusion) = 0.01 units2/s.  

𝛽 (Influence coefficient of quantum waves on the 

firing rate) = 0.03 s-1 

𝛼 (Natural decay rate of firing rate) = 0.01 s-1 

𝛾 (Sensitivity of the potential barrier to the 

neuronal firing rate) = 0.05 s-1 

𝜆 (Scaling factor for the restorative function 𝑟) = 

0.02 s-1 

𝑓(𝑛) (For simplicity, assume a linear dependence 

of the firing rate on neuronal density 𝑛) = 𝑓0 + 𝜇 𝑛, 

where 𝑓0 = 0.1 s-1 (base firing rate) and 𝜇 = 0.04 

s/neuron. 

𝑟 (Restorative function that tends to bring the 

potential back to a baseline. Assume a simple 

linear form) = 𝑟0 − 𝜈 𝑉, where 𝑟0 = 0.03 s-1 and 𝜈 

= 0.01 s-1.  

𝜃 (Coefficient determining the impact of quantum 

wave function |Ψ|2 on the neuronal response 𝑟) = 

0.07 s-1 

𝜎 (Decay rate or dissipation of the neuronal 

response 𝑟 in the absence of any quantum 

influence) = 0.02 s-1 

𝑣 (Particle velocity. Assume 𝑣 is uniform along 𝑥 

direction) = 0.02 m/s  

𝜅 (Constant rate of stimulus introduction) = 0.06 

units/s 

𝜂 (Decay rate of stimulus due to neuron density) = 

0.02 units/neurons 

        (29)

       (30)

       (32)

          (31)

          (35)

       (36)

                   (34)

,                    (33)
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𝐶 (Connectivity constant that defines how strong 

the influence of connectivity is on the wave 

function) = 0.04 units/s. 

 

Numerical Discussion 

Numerical solution of equations (1) to (10) 

comprises of following steps, 

 Spatial Discretization: Divide the spatial domain 

wherever applicable, into grid points 𝑥𝑖 = 𝑖∆𝑥 

with 𝑖 running from 0 to 𝑁 (assuming 𝑁 = 100 

and ∆𝑥 = 0.01 units. 

 Time Discretization: Choose a time-step ∆𝑡 =
0.0001 s 

 Initialization:  

For equation (1): Set the initial values of Ψ at all 

grid points, say a Gaussian wave packet, Ψ(𝑥, 0) =

𝐴 𝑒𝑥𝑝 (−
(𝑥−𝑥0)2

2𝜎2 ),  

Where 𝐴 is normalization constant, 𝑥0 is the 

packet’s initial position, and 𝜎 is width. Assume 

𝑥0 = 0.5, 𝜎 = 0.1. 

For equations (2), (3), and (4): Set initial values for 

𝑛 at all grid points given as, 

For equation (2): Assume a uniform distribution 

𝑛𝑖
0 = 0.1 ∀ 𝑖. 

For equation (3): assume a Gaussian distribution 

centred at the midpoint 𝑛𝑖
0 = 𝑒𝑥𝑝 (−

(𝑥𝑖−0.5)2

2𝜎2 ), 

where 𝜎 = 0.1 units is the standard deviation. 

For equation (4): Assume a uniform distribution 

𝑛𝑖
0 = 0.5 ∀ 𝑖. 

For equation (5): Assume the magnitude squared 

of the quantum wave function changes sinusoidally 

over the spatial domain (this is a simplification to 

avoid dealing with equation (8)), |Ψ(𝑥)|2 =
𝐴 sin (𝑘𝑥), where 𝐴 (Amplitude) = 0.5, 𝑘 (Wave 

number) = 2𝜋 0.1⁄  (corresponding to a wave length 

of 0.1 units). For initial values for 𝑓 at all grid 

points, assume 𝑓𝑖
0 = 0.3 uniformly for simplicity. 

For equation (6): Set the initial value for 𝑉, say 

𝑉0 = 1.0 as an initial potential barrier value. 

For equation (7): Assume a sinusoidal variation in 

magnitude squared of the quantum wave function, 

|Ψ(𝑥, 𝑡)|2 = 𝐴 sin (𝑘𝑥 + 𝜔𝑡), where 𝐴 

(Amplitude) = 0.5, 𝑘 (Wave number) = 2𝜋 0.1⁄  

(corresponding to a wave length of 0.1 units), 𝜔 

(Angular frequency) = 2𝜋 × 2 rad/s (2 Hz 

frequency). Set the initial value for 𝑟, say 𝑟0 = 0.4 

as the initial neuronal response.  

For equation (8): Assume a Gaussian distribution 

for initial values of magnitude squared of the 

quantum wave function, |Ψ(𝑥, 0)|2 =

𝐴 𝑒𝑥𝑝 (−
𝑥2

2𝜎𝑥
2), where 𝐴 (Amplitude) = 0.5, 𝜎𝑥 

(Standard deviation) = 0.1 units. Set the initial 

values of |Ψ|2 at all grid points using the Gaussian 

distribution.  

For equation (9): Assume a Gaussian distribution 

for the neuron density as a function of position, 

𝑛(𝑥) = 𝑛𝑚𝑎𝑥 𝑒𝑥𝑝 (−
(𝑥−𝑥𝑐)

2

2𝜎2 ), where 𝑛𝑚𝑎𝑥 

(Maximum neuron density) = 0.25 neurons/unit 

length, 𝑥𝑐 (Centre of neuron distribution) = 0.5 

units (middle of the domain), 𝜎 (Speed of the 

neuron distribution) = 0.15 units. Set initial values 

for 𝑆 at all grid points, say 𝑆𝑖
0 = 0.1 ∀ 𝑖 from 1 to 

99. Boundaries are 𝑆0,0 = 𝑆100,0 = 0.  

For equation (10): Set initial values for Ψ at all grid 

points, say Ψ𝑖
0 = 0.2 ∀ 𝑖 from 1 to 99. The 

boundaries are Ψ0,0 = Ψ100,0 = 0 (Dirichlet 

boundary conditions).  

 

 Time Evolution: For each time step 𝑚 from 0 to 

a predefined maximum, say 1000 steps, 

For equation (1): Ψ𝑖
𝑚+1 = Ψ𝑖

𝑚 −
𝑖ℏ∆𝑡

2𝑚

Ψ𝑖+1
𝑚 −2Ψ𝑖

𝑚+Ψ𝑖−1
𝑚

∆𝑥2 + 𝑖∆𝑡 𝑉𝑖Ψ𝑖
𝑚                               

 

For equation (2): 𝑛𝑖
𝑚+1 = 𝑛𝑖

𝑚 +

∆𝑡 (−𝑣0
𝑛𝑖+1

𝑚 −𝑛𝑖−1
𝑚

2∆𝑥
+ 𝑆(𝑥𝑖 , 𝑡𝑚))              

 

For equation (3): For each spatial point 𝑥𝑖, except 

boundaries, 

𝑛𝑖
𝑚+1 = 𝑛𝑖

𝑚 + 𝐷∆𝑡 
𝑛𝑖+1

𝑚 −2𝑛𝑖
𝑚+𝑛𝑖−1

𝑚

∆𝑥2   

               

For equation (4): For each spatial point 𝑥𝑖,  

𝑛𝑖
𝑚+1 = 𝑛𝑖

𝑚 + 𝐶 𝑛𝑖
𝑚 ∆𝑡      

               

For equation (5): For each spatial point 𝑥𝑖,  

𝑓𝑖
𝑚+1 = 𝑓𝑖

𝑚 + ∆𝑡 (𝛽 𝐴 sin (2𝜋𝑥𝑖 0.1⁄ )) − 𝛼 𝑓𝑖
𝑚  

                         

For equation (6): 𝑉𝑚+1 = 𝑉𝑚 − 𝛾 (𝑓0 +
𝜇 𝑛) Δ𝑡 +  𝜆 (𝑟0 − 𝜈 𝑉𝑚) Δ𝑡             

Here, 𝑛 is the neuron density at time 𝑡𝑚, which 

would be determined by equation (38). 

For equation (7): 𝑟𝑚+1 = 𝑟𝑚 + ∆𝑡 (𝜃 𝐴 sin(2𝜋 ×
0.1 𝑥 + 2𝜋 × 2 𝑡𝑚) − 𝜎 𝑟𝑚)      

Here, 𝑥 is a position variable, implying that the 

quantum wave function |Ψ(𝑥, 𝑡)|2 varies with 

position and time. If the complete domain is 

considered, then an average or specific location 

may be chosen for 𝑥 in the simulations.  

 

For equation (8): For each spatial point 𝑥𝑖, update 

|Ψ|2 using, 

|Ψ𝑖
𝑚+1|

2
= |Ψ𝑖

𝑚|2 − ∆𝑡 (
(|Ψ𝑖+1

𝑚 |
2
−|Ψ𝑖−1

𝑚 |
2
)𝑣

2∆𝑥
)  

              

For equation (9): For each spatial point 𝑥𝑖, the 

updated value of 𝑆 will be computed using the 

            (39)

            (40)

             (42)

                      (43)

                         (41)

                        (44)

                                                                         (37)

                                                                          (38)
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forward Euler method, 𝑆𝑖
𝑛+1 = 𝑆𝑖

𝑛 + ∆𝑡 (𝜅 −

𝜂 𝑛(𝑥𝑖)), i.e., 

𝑆𝑖
𝑛+1 = 𝑆𝑖

𝑛 + 0.001 (0.06 − 0.02 ×

0.25 𝑒𝑥𝑝 (−
(𝑥𝑖−0.5)2

2×0.152 ))                         

For equation (10): For each spatial point 𝑥𝑖 and 

time step 𝑡𝑚, the updated value of Ψ will be 

computed using the forward Euler method, 

Ψ𝑖
𝑛+1 = Ψ𝑖

𝑛 + ∆𝑡 𝐶 Ψ𝑖
𝑛, i.e., 

Ψ𝑖
𝑛+1 = Ψ𝑖

𝑛(1 + 𝐶 Δ𝑡)                                                                                    

 

This equation indicates that the growth or decay of 

the wave function Ψ at each point is proportional 

to its current value. 

 

 Resulting Matrix/Vector:  

For equation (1): After iterating, a matrix Ψ𝑖,𝑚 is 

obtained that describes the wave function Ψ 

evolution at spatial points 𝑥𝑖 for various time steps 

𝑡𝑚, given as,  

Ψ𝑖,𝑚 =

[
 
 
 

Ψ0
0 Ψ0

1

Ψ1
0 Ψ1

1

⋯ Ψ0
1000

⋯ Ψ1
1000

⋮ ⋮
Ψ100

0 Ψ100
1

⋱ ⋮
⋯ Ψ100

1000]
 
 
 

   

                                                

Each row captures the temporal progression of Ψ 

at a specific spatial point. Every column represents 

the spatial distribution of Ψ at a particular moment. 

This matrix depicts the dynamics of the wave 

function in the synaptic environment under both 

kinetic and potential influences.  

For equations (2), (3), and (4): Using boundary 

condition (16), a matrix 𝑛𝑖,𝑚 is obtained 

representing neuron densities for equation (2), 

particle densities for equation (3), and the 

 

different spatial locations 𝑥𝑖 for various time steps 

𝑡𝑚, given as, 

n𝑖,𝑚 =

[
 
 
 

n0
0 n0

1

n1
0 n1

1

⋯ n0
1000

⋯ n1
1000

⋮ ⋮
n100

0 n100
1

⋱ ⋮
⋯ n100

1000]
 
 
 

   

                          

The matrix shows how the neuron density evolves 

due to neuronal flow and the external source term 

𝑆 for equation (2), how the particle density 

disperses over time due to quantum diffusion 

within the synaptic clefts for equation (3), and how 

neuronal density grows (due to chosen positive 

value of 𝐶) over time influenced by the 

connectivity factor for equation (4). 

For equation (5): After iterating, a matrix 𝑓𝑖,𝑚 will 

be obtained that depicts the evolution of firing rates 

𝑓 at special points 𝑥𝑖 for various time steps 𝑡𝑚, 

given as, 

f𝑖,𝑚 =

[
 
 
 

f0
0 f0

1

f1
0 f1

1

⋯ f0
1000

⋯ f1
1000

⋮ ⋮
f100
0 f100

1
⋱ ⋮
⋯ f100

1000]
 
 
 

    

                         

The matrix showcases the dynamics of neuronal 

firing rates under the combined influence of a 

quantum wave function and natural decay. 

For equation (6): The time evolution for this is 

without explicit spatial dependency, so a vector 𝑉𝑚 

is obtained that depicts the evolution of the 

synaptic potential barrier 𝑉 over the time steps 𝑡𝑚, 

given as, 

𝑉𝑚 = [

𝑉0

𝑉1

⋮
𝑉1000

]      

               

Each entry in this vector captures the value of the 

synaptic potential barrier 𝑉 at a specific time step. 

This vector showcases the dynamics of the 

synaptic potential under the influence of the firing 

rate of the neurons and the restorative function 𝑟. 

 

For equation (7): The time evolution for this is also 

without explicit spatial dependency, so a vector 𝑟𝑚 

is obtained that showcases the evolution of the 

neuronal response 𝑟 over the time steps 𝑡𝑚, given 

as, 

𝑟𝑚 = [

𝑟0

𝑟1

⋮
𝑟1000

]      

               

This vector portrays the dynamics of the neuronal 

response under the combined influence of the 

quantum wave function and its natural decay rate. 

For equation (8): Post iteration, a matrix |Ψ𝑖,𝑚|
2
 

will be obtained representing the density evolution 

of quantum particles at spatial points 𝑥𝑖 for various 

time steps 𝑡𝑚, given as, 

|Ψ𝑖,𝑚|
2

=

[
 
 
 
 |Ψ0

0|
2

|Ψ0
1|

2

|Ψ1
0|

2
|Ψ1

1|
2

⋯ |Ψ0
1000|

2

⋯ |Ψ1
1000|

2

⋮ ⋮

|Ψ100
0 |

2
|Ψ100

1 |
2

⋱ ⋮

⋯ |Ψ100
1000|

2
]
 
 
 
 

  

                         

Each matrix corresponds to a time snapshot, giving 

a 2D tensor or a stack of matrices representing the 

evolution of |Ψ|2 over time. 

For equation (9): After iterating over the time 

steps, a matrix 𝑆𝑖,𝑚 of dimension (101×1001) will 

be obtained representing stimulus values 𝑆 at 

    (50)

     (51)

            (49)

           (52)

    (48)

      (47)

           (45)

                                                                        (46)

evolution of neuronal densities for equation (4) at
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different spatial locations 𝑥𝑖 for various time steps 

𝑡𝑚, given as, 
𝑆𝑖,𝑚 =

[
 
 
 
 
 
 

0 0 0

0.1 + 0.001 (0.06 − 0.02 × 0.25 𝑒𝑥𝑝 (−
(𝑥1−0.5)2

2×0.152
)) … 𝑆1

1000

⋮ ⋮ ⋮

0.1 + 0.001 (0.06 − 0.02 × 0.25 𝑒𝑥𝑝 (−
(𝑥99−0.5)2

2×0.152
)) … 𝑆99

1000

0 0 0 ]
 
 
 
 
 
 

             

 

 

Each row of this matrix provides the temporal 

evolution of stimulus 𝑆 at a particular spatial point 

due to the constant rate of stimulus introduction 𝜅 

and the decay caused by the neuron density 𝑛. The 

matrix reveals how the external stimulus changes 

under the influence of neuron density over time. 

For equation (10): After iterating through all time 

steps, a matrix or 2D array Ψ𝑖,𝑚 will be obtained 

representing Ψ values at different spatial locations 

𝑥𝑖 for various time steps 𝑡𝑚, given as, 

Ψ𝑖,𝑚 =

[
 
 
 
 

0 0 0
0.2(1 + 0.04 × 0.001) … Ψ1

1000

⋮ ⋮ ⋮
0.2(1 + 0.04 × 0.001) … Ψ99

1000

0 0 0 ]
 
 
 
 

  

              

This matrix depicts the exponential growth of Ψ 

over time across the spatial domain. 

 

Conclusion 

The study centres around the dynamic evolution of 

the quantum wave function, which encapsulates 

the synaptic firing probabilities in the network. The 

fundamental equation guiding this evolution is 

Schrödinger's equation governing the quantum 

states and energy levels within the neural network, 

exerting a profound influence on neuronal firing 

rates. Notably, the neuronal density, quantum 

diffusion, and network connectivity emerge as 

critical factors. Neuronal density impacts the 

concentration of the quantum wave function, 

shaping the probability distribution of synaptic 

firing. Quantum diffusion dictates the rate at which 

quantum wave spreads through the network, with 

denser networks exhibiting faster dispersion. 

Connectivity, as embodied by the matrix, 

modulates synaptic strengths, affecting signal 

propagation and altering the quantum wave's 

behaviour. Furthermore, our examination accounts 

for external stimuli interacting with the quantum 

wave function, perturbing neuronal firing 

probabilities in response to specific inputs. The 

numerical simulations, conducted with specified 

parameters, have unveiled intricate interplays 

between these variables. This study offers a 

foundation for further research into the quantum 

underpinnings of brain function. 
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