

τ^* -semi-generalized -closed sets in Topological spaces

S.Saranya

Abstract

We establish a new collection of sets termed τ^* semi-generalized closed and open sets in (M, τ^*) topological spaces. In this research and examine some of its characteristics.

Mathematics Subject Classification: 54A05

Keywords: τ^* -*sg*-closed set, τ^* -*sg*- open set.

1 Introduction

Levine[4][5] explored the most fundamental features and introduced the notions of generalized closed sets in (M, τ) in topological spaces. Dunham[3] proposed the cl^{*} and topology τ^* and investigated their characteristics. Generalized semi-closed sets in topological spaces were introduced by and studied by Arya[1]. Semi-generalized closed sets were first introduced to topology by B.K. Lahiri and P. Bhattacharya[2]. In the weaker topological space (M, τ^*) , Pushpalatha et al.[6] presented τ^* generalized closed sets. In (M, τ^*) topological space Saranya et al.[7] presented τ^* -generalized-semi-closed sets. The purpose of this study is to define the notions of τ^* -semi-generalized-closed sets in (M, τ^*) topological spaces.

2 Preliminaries

M and N are topological spaces on which no speration axioms are assumed unless otherwise explicitly stated. For a subset E of a topological space

^{*}Department of Mathematics, CMR University, Bangalore, Karnataka, India. E. mail:saranya.subbaiyan@gmail.com

M, int(E), $int^*(E)$, cl(E), $cl^*(E)$, $scl^*(E)$ and A^c denote the interior, interior^{*}, closure, closure^{*}, semi closure^{*} and complement of E respectively.

Definition 2.1. *E* of a topological space (M, τ) is called a generalized closed[3] if cl(E) \subseteq *K* whenever $E \subseteq K$ and *K* is open in *M*.

Note For a subset *E* of a topological space (M, τ) , the generalized closure of *E* denoted by $cl^*(E)[2]$ is defined as the intersection of all *g*-closed sets containing *E*.

Definition 2.2. Let (M, τ) be a topological space. Then the collection $\{K : cl^*(K^c) = (K^c)\}$ is a topology on M and is denoted as $\tau^*[4]$ that is $\tau^* = \{K : cl^*(K^c) = (K^c)\}$

Remark For a subset *E* of *M* $cl^*(E) = \cap \{O : O \supset E, O^c \in \tau^*\}$ $int^*(E) = \cup \{K : K \subset E, K \in \tau^*\}$

Definition 2.3. A subset *E* of a topological space *M* is said to be τ^* -semi-closed set (briefly τ^* -s-closed) if $int^*(cl^*(E)) \subseteq E$. The complement of a τ^* -s-closed set is called the τ^* -semi-open set (briefly τ^* -s-open).

For a subset *E* of a topological space (M, τ^*) , the generalized semi closure of *E* denoted as $scl^*(E)$ is defined as the intersection of all semi closed sets in τ^* containing *E*

Definition 2.4. A subset *E* of a topological space *M* is said to be τ^* -generalized-semiclosed set[7] (briefly τ^* -gs-closed) if scl^{*}(*E*) \subseteq *K* whenever *E* \subseteq *K* and *K* is τ^* -open.

3 τ^* -Semi-Generalized-Closed Sets in Topological Spaces

In this section, we introduce the concept of τ^* -semi-generalized-closed sets in topological spaces.

Definition 3.1. A subset *E* of a topological space *M* is said to be τ^* -semi-generalizedclosed set (briefly τ^* -sg-closed) if scl^{*}(*E*) \subseteq *K* whenever $E \subseteq K$ and *K* is τ^* -s- open . The complement of a τ^* -sg- closed set is called the τ^* -semi-generalized-open set (briefly τ^* -sg-open).

Theorem 3.1. Every closed set in M is τ^* -sg-closed

Proof Let E be a closed set. Let $E \subseteq K$ where K is τ^* -s-open. Since E is closed, $cl(E) = E \subseteq K$. But $scl^*(E) \subseteq cl(E)$. Hence we have $scl^*(E) \subseteq K$. Therefore E is τ^* -sg- closed.

Theorem 3.2. Every semi closed set in M is τ^* -sg-closed **Proof** Let E be a semi closed set. Let $E \subseteq K$ where K is τ^* -s-open. Since E is semi closed. But $scl^*(E) \subseteq scl(E) \subseteq K$. Hence we have $scl^*(E) \subseteq K$. Therefore E is τ^* -sgclosed.

Theorem 3.3. Every τ^* -closed set in M is τ^* -sg-closed **Proof** Let E be a τ^* closed set. Let $E \subseteq K$ where K is τ^* -s-open. Since E is τ^* closed. $scl^*(E) \subseteq cl^*(E)$. Therefore $scl^*(E) \subseteq K$. Hence E is τ^* -sg- closed.

The converse is not true.

Example 3.1. Consider the topological spaces $M = \{1, 2, 3\}$ with topology $\tau = \{M, \emptyset, \{1\}, \{1, 2\}\}$. Then the set $\{1\}$ is τ^* -sg-closed but not closed, semi-closed and τ^* -closed.

Theorem 3.4. Every τ^* -sg-closed set in M is τ^* -gs-closed The proof is straight forward from the definition. The converse is not true.

Example 3.2. Consider the topological spaces $M = \{1, 2, 3\}$ with topology $\tau = \{M, \emptyset, \{1\}, \{1, 2\}\}$. Then the set $\{1, 2\}$ is τ^* -gs closed but not τ^* -sg-closed.

Theorem 3.5. If a subset E of X is τ^* -sg-closed and $E \subseteq F \subseteq scl^*(E)$ then F is τ^* -sg-closed.

proof Let *E* be a τ^* -sg- closed set and $E \subseteq F \subseteq scl^*(E)$. Let *P* be a τ^* -s-open set of *M* such that $F \subseteq$. Since *E* is τ^* -sg- closed, we have $scl^*(E) \subseteq P$. Now $scl^*(E) \subseteq scl^*(F) \subseteq scl^*(Scl^*(E)] = scl^*(E) \subseteq P$. That is $scl^*(F) \subseteq P$ whenever *P* is τ^* -s-open. Therefore *F* is τ^* -sg-closed.

Theorem 3.6. Let *E* be an τ^* -sg-closed set. Then $scl^*(E) - E$ contains no non empty τ^* -s-closed set in *M*.

Proof Given E is a τ^* -sg- closed set. Let U be a non empty τ^* -s-closed subset of $scl^*(E) - E$. Now $U \subseteq scl^*(E) - E$. Then $U \subseteq scl^*(E) \cap E^c$, since $scl^*(E) - E = scl^*(E) \cap E^c$. Therefore $U \subseteq scl^*(E)$ and $U \subseteq E^c$. Therefore $E \subseteq U^c$. Since U^c is a τ^* -s-open set and E is τ^* -sg-closed, $scl^*(E) \subseteq U^c$. That is $U \subseteq [scl^*(E)]^c$. Hence $U \subseteq scl^*(E) \cap [scl^*(E)]^c = \emptyset$. That is $U = \emptyset$, a contradiction. Thus $scl^*(E) - E$ contains no non-empty τ^* -s-closed set in M.

Corollary 3.1. Let *E* be a τ^* -sg-closed set. Then *E* is τ^* -s-closed if and only if scl^{*}(*E*)-*E* is τ^* -s-closed.

proof Given E is a τ^* -sg-closed set. If E is τ^* -s-closed, then we have $scl^*(E) - E = \emptyset$ which is τ^* -s-closed set. Conversely, let $scl^*(E) - E$ be a τ^* -s-closed. Then, by Theorem 3.6, $scl^*(E) - E$ does not contain any non-empty τ^* -s-closed subset and therefore $scl^*(E) - E = \emptyset$. This implies that $E = scl^*(E)$ and so E is τ^* -s closed set.

Section A-Research paper

Theorem 3.7. The union of two τ^* -sg-closed sets is again a τ^* -sg-closed. **proof** Assume that E and F are τ^* -sg-closed sets in M. Let K be an τ^* -s-open set in M such that $E \cup F \subseteq K$. Then $E \subseteq K$ and $F \subseteq K$. Since E and F are τ^* -sg-closed, scl^{*}(E) $\subseteq K$ and scl^{*}(F) $\subseteq K$. Hence scl^{*}($E \cup F$) = scl^{*}(E) \cup scl^{*}(F) $\subseteq K$. Therefore $E \cup F$ is τ^* -sg-closed.

Theorem 3.8. For each $x \in M$ either the set $M - \{x\}$ is τ^* -sg-closed in M or τ^* -s-open

Proof Suppose $M - \{x\}$ is not τ^* -s-open. Then M is the only τ^* -s-open set containing $M - \{x\}$. This implies $scl^*(M - \{x\}) \subseteq X$. Hence $M - \{x\}$ is a τ^* -sg-closed in M.

Remark We deduce the following consequences from the aforementioned observations.

 $closed \rightarrow \tau^* closed \rightarrow \tau^* \text{-} sg\text{-} closed \rightarrow \tau^* \text{-} gs\text{-} closed$ The reverse implication is not true.

References

- [1] P.Bhattacharya and B.K.Lahiri,Semi-generalized closed sets in topology,*Indian J.Math*, **29** (1987), 375-382.
- [2] S.P.Arya and T.Nour, Characterization of s-normal spaces, *Indian J.Pure Appl.Math*, **21** (1990), 717 719.
- [3] W.Dunham, A new closre operator for non- T_1 topologies, *Kyungpook Math.J.***22** (1982), 55 60.
- [4] N.Levine, Generalized closed sets in topology, *Rend. Circ.Mat.Palermo*, **19** (1970), 89 - 96.
- [5] N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer.Math.Monthly*,**70** (1963),36 - 41.
- [6] A.Pushpalatha,S.Eswaran and P.Rajarubi, τ^* -generalized closed sets in topological spaces, *Proceeding of the World Congress on Engineering*,**Vol II** (2009),1-3.
- [7] A.Parvathi,G.K.Chandrika and S.Saranya, τ^* -generalized-semi- closed sets in topological spaces, *Journal of Advanced Research in Pure Mathematics*,**Vol. 2** (2010), 15-18.