THE FORCING OPEN DETOUR MONOPHONIC NUMBER OF A GRAPH

S. Kavitha^{1*}, K. Krishna Kumari², D. Nidha³

^{1*}Assistant Professor, Department of Mathematics, Gobi Arts and Science College, Gobichettipalayam-638 474, Tamil Nadu, India.

²Research Scholar, Register Number-18223112092005, Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629 165, Tamil Nadu, India.

³Assistant Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629 165, Tamil Nadu, India.

^{2,3}Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

Email ^{1*}kavithaashmi@gmail.com , ²krishnakumarikr@yahoo.com, ³nidhamaths@gmail.com

Article History: Received: 28.05.2023	Revised: 11.06.2023	Accepted: 01.08.2023
---------------------------------------	---------------------	----------------------

Abstract

Let G be a connected graph with atleast two vertices. Let $M \subseteq V$ be an open detour monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum open detour monophonic set containing T. A forcing open detour monophonic subset for M is the minimum cardinality of a minimum forcing subset of M, denoted by $f_{odm}(M)$, is the cardinality of a minimum forcing subset of M. The forcing open detour monophonic number of G, denoted by $f_{odm}(G)$. $f_{odm}(G) = \min\{f_{odm}(M)\}$, where the minimum is taken over all odm-set M of G.In this paper, we determined the forcing open detour monophonic number of some standard graphs and obtained some results. It is shown that for every pair of integersa and b with $0 \le a \le b, b \ge 2$ and b - a > 3, there exists a connected graph G such that $f_{odm}(G) = aand odm(G) = b$.

Keywords: Detour monophonic number, Open detour monophonic number, Forcing open detour monophonic number.

DOI: 10.31838/ecb/2023.12.s3.786

1. Introduction

For a graph G consists of a finite non-empty set Vof vertices and a set Eof 2-element subsets of Vcalled edges. For graph theoretic terminologies, we refer reader [1]. If the vertices u and v are joined by the edges e, then the u and v are referred to as neighbors of each other. The neighbors of a vertex v is called the neighborhood of v, is denoted by N(v). Thus deg(v) = |N(v)|. A vertex vis said to be a universal vertex if deg(v) = n - 1. A subgraph Hof Gis called an induced subgraph of Gif whenever u and v are vertices of H and uv is an edge of G, then uv is an edge of H as well as. A

vertex v in a graph Gis called a simplicial vertex if the subgraph induced by its neighbourhood is complete. Let Gand Hbe two graphs. The join G + Hconsists of G \circ H and all edges joining a vertices of Gand H. The total graph T(G)of G is the graph with the vwertex set V \cup E and two vertices are adjacent whenever they are either adjacent or incident in G.

The distance between u and v is the shortest length of every x - y path in G, is denoted by d(u, v). A chord of a path Pis an edge which connects two non-adjacent vertices of P. A x - y path is called a monophonic path if it is chord less path. The

monophonic distance $d_m(x, y)$ from x to y is defined as the length of a longest x - ymonophonic path in G. A x - y monophonic path with its length $d_m(x, y)$ is called a x - y monophonic. A set Mof vertices of a graph Gis a monophonic set of Glies on a x-ymonophonic path in Gfor some $x, y \in M$. The monophonic number m(G) is the minimum cardinality of a monophonic set of G. The monophonic number of a graph was studied in [3,4]. A set $M \subseteq V$ is called an open detour monophonic set of G if $J_{dm}(M) = V$. An open detour monophonic number odm(G) is the minimum cardinality of an open detour monophonic set of G. The open detour monophonic number of a graph was studied in [2]. Let $M \subseteq V$ be a detour monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum detour monophonic set containing T. A forcing subset for M is the minimum cardinality of a minimum forcing subset of M, denoted by $f_{dm}(M)$, is the cardinality of a minimum forcing subset of M. The forcing detour monophonic number of G, denoted by $f_{dm}(G)$. $f_{dm}(G) =$ $\min\{f_{dm}(M)\}\$, where the minimum is taken over all odm-sets M of G. The forcing detour monophonic number of a graph was studied in [5]. A vertexof a

connected graph G is said to be a detour monophonic simplicial vertex of G if v is not an internal vertex of any x - y detour monophonic path for every x, $y \in V$. Each extreme vertex of G is a detour monophonic simplicial vertex of G.

The Forcing Open Detour Monophonic Number Of A Graph Definition 2.1

Jerinition 2.1

Let M be an open detour monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimumodm-set containing T. A forcing subset for M is the minimum cardinality of a minimum forcing subset of M, denoted by $f_{odm}(M)$, is the cardinality of a minimum forcing subset of M. The forcing open detour monophonic number of G, denoted by $f_{odm}(G)$. $f_{odm}(G) =$ min{ $f_{odm}(M)$ }, where the minimum is taken over all odm-sets Mof G.

Example 2.2

For the graph G of Figure 2.1, $M_1 = \{v_1, v_4, v_5\}$ and $M_2 = \{v_1, v_4, v_6\}$ are theodm-sets of G such that $f_{odm}(M_1) = 1$ and $f_{odm}(M_2) = 1$ so that $f_{odm}(G) = 1$.

 v_4

The following result follows immediately from the definitions of open detour monophonic number and the forcing open detour monophonic number of a connected graph G.

Theorem 2.3

Let G be a connected graph of order n, Then

- 1. G has a unique minimum odm-set if and only if $f_{odm}(G) = 0$.
- f_{odm}(G) = odm(G)if and only if no minimum odm-set containing any of its proper subsets.

Theorem 2.4

For the connected graph Gand let S be the set of all detour monophonic simplicial vertices of G.Then $f_{odm}(G) \leq odm(G) - |S|$.

Proof. Let M be any minimum odm-set of G.Thenodm(G) = $|M|, S \subseteq M$ and M is the unique odm-set containing M - S. Thus $f_{odm}(G) \leq |M - S| = |M| - |S| = odm(G) - |S|$.

Theorem 2.5

For any complete graph $G = K_n (n \ge 2)$, $f_{odm}(G) = 0$. **Proof:** Let $G = K_n (n \ge 2)$, then M = V(G) is the

unique odm-set of G, by Theorem 2.3, $f_{odm}(G) = 0$

Corollary 2.6

(i) For any star graph G = K_{1,n-1} (n ≥ 2), f_{odm}(G) = 0.
(ii) For any non-trivial tree T, f_{odm}(G) = 0. **Proof:** This result follows by Theorem 2.5.

Theorem 2.7

Let G be a connected graph f order n, $0 \le f_{odm}(G) \le odm(G) \le n$.

Proof: Since every connected graph have a odmset, $f_{odm}(G) \ge 0$. Also since forcing subset is a subset of odm-set of G, $f_{odm}(G) \le odm(G)$. Since V(G) is the unique odm-set of G, $odm(G) \le n$. Hence $0 \le f_{odm}(G) \le odm(G) \le n$. **Remark 2.8.** The bounds in Theorem 2.7 are sharp. For $G = K_n (n \ge 2)$, $f_{odm}(G) = 0$ and odm(G) = n. The bounds in strict in Theorem 2.7. For the graph *G* in Figure 2.1. odm(G) = 3 and $f_{odm}(G) = 1$. Thus $0 < f_{odm}(G) < odm(G) < n$.

Theorem 2.9. For the cycle $G = C_n (n \ge 3)$, $f_{odm}(G) = \begin{cases} 0 & ifn = 3,4 \\ 4 & ifn = 5 \\ 1 & ifn = 6 \\ 3 & ifn \ge 7 \end{cases}$

Proof: Let C_n be $v_1, v_2, ..., v_{n-1}, v_n$. For n = 3, 4, M = V(G) is the unique odm-set of G. By Theorem 2.3, $f_{odm}(G) = 0$. Let n = 5. For any $x \in$ V(G), there exists $M = V(G) - \{x\}$, is a odm-set of G, $odm(G) = 4 = f_{odm}(G)$. For n = 6, Let x be a vertex of G and y, z be the two antipodal vertices of x and v, w be the antipodal vertex of u. Then $M_1 = \{x, y, z\}$ and $M_2 = \{u, v, w\}$ are the only two *odm*-sets of *G* so that $f_{odm}(G) = 1$. For $n \ge 7$, Let $xy \in E(G)$ and $u, v \in V(G)$ such that d(x, u) =d(y, v) = 2. Then $M = \{x, y, u, v\}$ is a odm-set of *G*, odm(G)=4. Since $n \ge 7$, there must be at least 7 odm-sets and so $f_{odm}(M) \ge 2$. Since any two element subset of M is not a forcing subset of M, Now $T = \{x, y, u\}$ is a forcing $f_{odm}(M) \ge 3.$ subset of *M* and so $f_{odm}(M) = 3$. Since this is true for all *odm*-sets M of G, $f_{odm}(G) = 3$.

Theorem 2.10. For the complete bipartite graph $G = K_{r,s} (2 \le r \le s)$,

$$f_{odm}(G) = \begin{cases} 0 & ifr = s = 2\\ 2 & if \ 2 = r \le s\\ 4 & if \ 3 \le r \le s \end{cases}$$

Proof: If r = s = 2, then $G = C_4$, the result follows by Theorem 2.9, $f_{odm}(G) = 0$. If r = 2 and $s \ge 3$. Let $X = \{x_1, x_2, ..., x_r\}$ and Y = $\{y_1, y_2, \dots, y_s\}$ be the bipartite sets of G. Then $M_{ij} = \{x_1, x_2, y_i, y_j\}$ is the *odm*-set of *G* for some *i* and $j(1 \le i, j \le s)$. odm(G) = 4. Since X = $\{x_1, x_2\}$ is a subset of every odm(G)-set of G, by Theorem 2.4, $f_{odm}(G) \le odm(G) - |X| = 4 - 4$ 2 = 2. We prove that $f_{odm}(G) = 2$. Since $s \ge 3$ and y_i lies on more than two odm-sets for some $i(1 \le i \le s)$ and y_i lies on more than two odmsets of *G* for some $j((1 \le j \le s))$. Since this is true for $f_{odm}(M_{ij}) = 2$ for all i and $j, (1 \le i, j \le s)$. Hence it follows that $f_{odm}(G) = 2$. If $r, s \ge 1$ 3, $M_{ii} = \{x_i, x_j, y_l, y_m\}$ is the *odm*-set of *G* for some i and $i(1 \le i, j \le r)$ and for some l and $m(1 \le i, j \le r)$ $l, m \leq s$), odm(G) = 4. Since M_{ij} is not the unique odm-set containing any of its proper subsets so that $f_{odm}(G) = 4$.

Theorem 2.11. For the wheel
$$G = K_n + C_{n-1}$$
 $(n \ge 4), f_{odm}(G) = \begin{cases} 0 & ifn = 4,5 \\ 4 & ifn = 6 \\ 1 & ifn = 7 \\ 2 & ifn = 6 \end{cases}$

(3 $ifn \ge 8$ $V(K_1) = x$ and $V(C_{n-1}) =$ **Proof:** Let $\{v_1, v_2, \dots, v_{n-1}\}$. If n = 4, then $G = K_4$, by Theorem 2.5, $f_{odm}(G) = 0$. If $n = 5, M = V(C_4)$ is the unique odm-set of G, by Theorem 2.3, $f_{odm}(G) = 0$. Let $n \ge 6$. Since x is a detour monophonic simplicial vertices of G, $\{x\}$ is a subset of every *odm*-set of *G*. Let n = 6. For any vertex $u \in v(G)$, there exists $M = V(G) - \{u\}$ is a odmset of G, odm(G) = 5. By Theorem 2.4, $f_{odm}(G) \le odm(G) - 1 = 5 - 1 = 4$. For n = 7, Let h be a vertex of G and i, j be the two antipodal vertices of h and v, w be the antipodal vertex of u. Then $M_1 = \{x, h, i, j\}$ and $M_2 = \{x, u, v, w\}$ are the only two odm-sets of G so that odm(G) =4. By Theorem 2.4 $f_{odm}(G) \leq 3$. Since $\{h\}$ is not containing M_2 , $f_{odm} = 1$. For $n \ge 8$, Let $yz \in$ E(G) and $u, v \in V(G)$ such that d(y, u) =d(z, v) = 2. Then $M = \{x, y, z, u, v\}$ is a odm-set of G, odm(G)=5. By Theorem 2.4 $f_{odm}(G) \le 4$. Since $n \ge 8$, there must be at least 7 odm-sets and so $f_{odm}(M) \ge 2$. Since any two element subset of M is not a forcing subset of M, $f_{odm}(M) \ge 3$. Now $T = \{y, z, u\}$ is a forcing subset of M and so $f_{odm}(M) = 3$. Since this is true for all odm-sets M of G, $f_{odm}(G) = 3$.

Theorem 2.12. For the fan graph $G = F_n = K_1 + P_{n-1}$, $(n \ge 3)$, $f_{odm}(G) = 0$. **Proof:** Let $V(K_1) = \{x\}$ and $V(P_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$.

If n = 3, then $G = K_3$, by Theorem 2.5, $f_{odm}(G) = 0$. If n = 4, then $M = \{v_1, v_3\}$ is the unique odmset of G so that $f_{odm}(G) = 0$. Let $n \ge 5$, then $M = \{x, v_1, v_{n-1}\}$ is the unique odm-set of $G, f_{odm}(G) = 0$.

Theorem 2.13. Let $G = \overline{K}_2 + \overline{K}_{n-2}$ $(n \ge 6), f_{odm}(G) = 2.$

Proof: Let $V(K_2) = \{x, y\}$ and $V(K_{n-2}) = \{v_1, v_2, \dots, v_{n-2}\}$.Since $X = \{x, y\}$ is a subset of every odm-set of G. Now $M_{ij} = \{x, y\} \cup \{v_i, v_j\} i \neq j (1 \le i, j \le n-2\}$ is a odm-set of G, odm(G) = 4. By Theorem 2.4, $f_{odm}(G) =$

odm(G) - |X| = 4 - 2 = 2. Since $\{v_i, v_j\}$ is not containing any *odm*-set of it proper subsets $f_{odm}(G) = 2$.

Theorem 2.14. For any Ladder graph $G = L_n = P_2 \times P_n (n \ge 2), f_{odm}(G) = 0.$ **Proof:** Let $V(G) = \{v_1, v_2, \dots, v_{n-2}\} \cup \{u_1, u_2, \dots, u_n\}$.Let $M = \{v_1, u_1, u_n\}$ be unique

odm-set of G. By Theorem 2.3, $f_{odm}(G)=0$

Theorem 2.15. For the total graph of path $G = T(P_n)(n \ge 3)$, $f_{odm}(G) = 0$.

Proof: Let $/V(G) = \{v_1, v_2, ..., v_{n-2}\} \cup \{u_1, u_2, ..., u_{n-1}\}$. For n = 3, then $M = \{v_1, v_2, v_3\}$ is the unique *odm*-set of G, $f_{odm}(G) = 0$. For $n \ge 4$, $X = \{v_1, v_n\}$. Since $X = \{v_1, v_n\}$ is the detour monophonic simplicial vertices of G. Let $M = \{v_1, v_n\}$ is the unique *odm*-set of G, $f_{odm}(G) = 0$.

Theorem 2.16

For every pair of integers *a* and *b* with $0 \le a \le b, b \ge 2$ and b - a > 3, there exists a connected graph *G* such that $f_{odm}(G) = a$ and odm(G) = b. **Proof:** For a = 0, let $G = K_b$. Then by Theorem 2.5, $f_{odm}(G) = 0$ and odm(G) = b. Thus we assume $0 \le a \le b, b \ge 2$.

Let P: x, ybe a path on two vertices and $P_i: x_i, y_i, z_i (1 \le i \le a)$ be a copy of a path on 3 vertices. Let *H*be the graph obtained from *P* and $P_i(1 \le i \le a)$ and introduce a vertex *w* and introduce the edges $xx_i(1 \le i \le a), yz_i(1 \le i \le a)$ and $wx_i(1 \le i \le a), wz_i(1 \le i \le a)$. Let *G* be the graph obtained from *H* by adding the new vertices $v_1, v_2, u_i(1 \le j \le b - a - 2)$ and

introducing the edges $yu_j(1 \le j \le b-a-3)$, xu_{b-a-2}, wv_1 and wv_2 . The graph G is shown in Figure 2.2.

First we prove that odm(G) = b.LetX = $\{u_1, u_2, \dots, u_{b-a-2}, v_1, v_2\}$ be the set of all extreme vertices of G. By Theorem 1.1, Xcontains every minimum odm-set of $G, odm(G) \ge b - a - 2 + 2 = b - a$. We observe that every minimum odm-set contains exactly one vertex from $H_i = \{x_i, z_i\} (1 \le i \le a)$. Thus $odm(G) \ge b - a + a = b.$ Let $M = X \cup$ $\{x_1, x_2, \dots, x_a\}$. Then Mis an odm-set of G so that odm(G) = b. Next we prove that $f_{odm}(G) = a.$ Since every minimum odm-set contains X, by Theorem 2.4, $f_{odm}(G) \leq odm(G) -$ |X| = b - (b - a) = a. We prove that $f_{odm}(G)=a$. On the contrary, suppose that $f_{odm}(G) < a$. Now since odm(G) = b and every odm-set contains X and every odm-set of G contains at least one vertex from each H_i ($1 \le i \le a$). It is easily seen that every odm-set M is of the $X \cup \{e_1, e_2, \dots, e_n\}$, where $e_i \in H_i$ ($1 \le i \le a$).Let Gbe any proper subset of M with |T| < a. Then there exists $e_i \in$ $H_i(1 \le j \le a)$ such that $e_i \in T$. Let f_i be the vertex of $H_i(1 \le i \le a)$ distinct from e_i . Then $M' = (M - \{e_i\}) \cup \{f_i\}$ is a odm-set of G properly containing T. Thus M is not the unique odm-set of G containing T so that T is not a forcing subset of M. This is true for all odm-sets containing G so that $f_{odm}(M) = a$.

3.

2. Conclusion

This paper exhibits the forcing open detour monophonic number of some standard graphs.

3. References

- 1. G. Chartrand and P.Zhang, Introduction to Graph Theory, Tata McGraw Hill (2006).
- 2. K.KrishnaKumari, S.Kavitha and D.Nidha, On the upper detour monophonic number of a graph, Malaya Journal of Matematik, 9(1), (2021), 765-769.

A.P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, 03 (2), (2011), 159 – 169

4. A.P. Santhakumaran, P. Titus and K. Ganesamoorthy, On the monophonic number of a graph, J.Appl. Math. Informatics, 32 (1-2),(2014), 255 - 266.

5. P.Titus and K.Ganeshmoorthy, Forcing detour monophonic number of a graph, FactaUniversitatis,Ser math Inform. 28, No 2 (2013),211-220.