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Abstract 

 

Let G be a connected graph with atleast two vertices. Let M ⊆ V be an open detour monophonic set of G. A 

subset T ⊆ M is called a forcing subset for M if M is the unique minimum open detour monophonic set 

containing T. A forcing open detour monophonic subset for M is the minimum cardinality of a minimum 

forcing subset of M, denoted by fodm(M), is the cardinality of a minimum forcing subset of M. The forcing 

open detour monophonic number of G, denoted by fodm(G). fodm(G) = min⁡{fodm(M)}, where the minimum 

is taken over all odm-set M of G.In this paper, we determined the forcing open detour monophonic number 

of some standard graphs and obtained some results. It is shown that for every pair of integersa and b with 

0⁡ ≤ ⁡a ≤ b, b ≥ 2 and b − a > 3, there exists a connected graph G such that  fodm(G) = aand odm(G) = b. 

 

Keywords: Detour monophonic number, Open detour monophonic number, Forcing open detour 

monophonic number. 
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1. Introduction 

 

For a graph G consists of a finite non-empty set Vof 

vertices and a set Eof 2-element subsets of Vcalled 

edges. For graph theoretic terminologies, we refer 

reader [1]. If  the vertices u and v are joined by the 

edges e, then the u and v are referred to as 

neighbors of each other. The neighbors of a vertex 

v is called the neighborhood of v, is denoted by 

N(v).Thus deg(v) ⁡= ⁡ |N(v)|. A vertex vis said to 

be a universal vertex if deg(v) ⁡= ⁡n⁡ − ⁡1. A 

subgraph Hof  Gis called an induced subgraph of 

Gif whenever u⁡and v are vertices of H and uv is an 

edge of G, then uv is an edge of H as well as. A 

vertex v⁡in a graph Gis called a simplicial vertex if 

the subgraph induced by its neighbourhood is 

complete. Let Gand Hbe two graphs. The join G⁡ +
⁡Hconsists of G ∘ H and all edges joining a vertices 

of Gand  H. The total graph T(G)of G is the graph 

with the vwertex set V ∪ E and two vertices are 

adjacent whenever they are either adjacent or 

incident in G. 

 

The distance between u and v is the shortest length 

of every x − y path in G,  is denoted by d(u, v). A 

chord of a path Pis an edge which connects two 

non-adjacent vertices of P. A x − y path is called a 

monophonic path if it is chord less path. The 
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monophonic distance dm(x, y)from x to y is 

defined as the length of a longest x − ymonophonic 

path in G. A x − y monophonic path with its length 

dm(x, y) is called a x − y monophonic. A set Mof 

vertices of a graph Gis a monophonic set of Glies 

on a x−ymonophonic path in Gfor some x, y ∈ M.  
The monophonic number m(G) is the minimum 

cardinality of a monophonic set of G. The 

monophonic number of a graph was studied in 

[3,4]. A set M⁡ ⊆ ⁡V is called an open detour 

monophonic set of G if Jdm(M) = V. An open 

detour monophonic number odm(G) is the 

minimum cardinality of an open detour 

monophonic set of G. The open detour monophonic 

number of a graph was studied in [2]. Let M ⊆ V be 

a detour monophonic set of G. A subset T ⊆ M is 

called a forcing subset for M if M is the unique 

minimum detour monophonic set containing T. A 

forcing subset for M is the minimum cardinality of 

a minimum forcing subset of M, denoted by 

fdm(M), is the cardinality of a minimum forcing 

subset of M. The forcing detour monophonic 

number of G, denoted by fdm(G). fdm(G) =
min⁡{fdm(M)}, where the minimum is taken over all 

odm-sets M of G. The forcing detour monophonic 

number of a graph was studied in [5]. A vertexof a 

connected graph Gis said to be a detour 

monophonic simplicial vertex of Gif v is not an 

internal vertex of any x − y detour monophonic 

path for every x, y ∈ V. Each extreme vertex of Gis 

a detour monophonic simplicial vertex ofG. 

 

The Forcing Open Detour Monophonic Number 

Of A Graph 

Definition 2.1 

Let M be an open detour monophonic set of G. A 

subset T ⊆ M is called a forcing subset for M if M 

is the unique minimumodm-set containing T. A 

forcing subset for M is the minimum cardinality of 

a minimum forcing subset of M, denoted by 

fodm(M), is the cardinality of a minimum forcing 

subset of M. The forcing open detour monophonic 

number of G, denoted by fodm(G). fodm(G) =
min⁡{fodm(M)}, where the minimum is taken over 

all odm-sets Mof G. 

 

Example 2.2 

 For the graph G of Figure 2.1, M1 = {v1, v4, v5} 
and M2 ⁡= {v1, v4, v6} are theodm-sets of G such 

that fodm(M1) = 1 andfodm(M2) ⁡= ⁡1 so that 

fodm(G) ⁡= ⁡1. 

 

 
 

The following result follows immediately from the 

definitions of open detour monophonic number and 

the forcing open detour monophonic number of a 

connected graph G. 

 

Theorem 2.3 

Let G be a connected graph of order  n, Then 

1. G has a unique minimum odm-set if and only 

if fodm(G) = 0. 
2. fodm(G) = odm(G)if and only if no minimum 

odm-set containing any of its proper subsets. 

 

Theorem 2.4 

 For the connected graph Gand let S be the set of all 

detour monophonic simplicial vertices of G.Then 

fodm(G) ⁡≤ ⁡odm(G)–⁡|S|. 
Proof. Let M be any minimum odm-set of 

G.Thenodm(G) = |M|, S ⊆ M and M is the unique 

odm-set containing M− S.⁡Thus fodm(G) ≤

|M − S| = |M| − |S| = ⁡odm(G)– |S|. 

Theorem 2.5 

 For any complete graph G⁡ = ⁡Kn⁡(n ≥
2), fodm(G) = 0. 
Proof: Let G = Kn(n ≥ 2),then M = V(G)is the 

unique odm-set of G, by Theorem 2.3,fodm(G)⁡= 0 

 

Corollary 2.6 

(i) For any star graph G⁡ = ⁡K1,n−1⁡(n⁡ ≥
⁡2), fodm(G) = 0.⁡ 

(ii) For any non-trivial tree T, fodm(G) = 0.⁡ 
Proof: This result follows by Theorem 2.5. 

 

Theorem 2.7 

LetG be a connected graph f order n, 0 ≤
fodm(G) ≤ odm(G) ≤ n. 

Proof: Since every connected graph have a odm-

set, fodm(G) ≥ 0. Also since forcing subset is a 

subset of odm-set of G, fodm(G) ≤ odm(G). Since 

V(G) is the unique odm-set of G, odm(G) ≤ n. 
Hence 0 ≤ fodm(G) ≤ odm(G) ≤ n. 
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Remark 2.8.The bounds in Theorem 2.7 are sharp. 

For 𝐺 = 𝐾𝑛(𝑛 ≥ 2), 𝑓𝑜𝑑𝑚(𝐺) = 0 and 𝑜𝑑𝑚(𝐺) =
𝑛.The bounds in strict in Theorem 2.7. For the 

graph 𝐺 in Figure 2.1.𝑜𝑑𝑚(𝐺) = 3 and 𝑓𝑜𝑑𝑚(𝐺) =
1. Thus 0 < 𝑓𝑜𝑑𝑚(𝐺) < 𝑜𝑑𝑚(𝐺) < 𝑛. 

 

Theorem 2.9. For the cycle 𝐺 = ⁡𝐶𝑛(𝑛⁡ ≥ ⁡3), 

𝑓𝑜𝑑𝑚(𝐺)⁡={

0⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓𝑛 = 3,4
4⁡⁡⁡⁡⁡⁡⁡𝑖𝑓𝑛 = 5
1⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓𝑛 = 6
3⁡⁡⁡⁡⁡⁡⁡𝑖𝑓𝑛⁡ ≥ 7⁡

 

Proof: Let 𝐶𝑛 be 𝑣1, 𝑣2, . . . , 𝑣𝑛−1, 𝑣𝑛 . For 𝑛 = 3,4, 

𝑀 = 𝑉(𝐺) is the unique 𝑜𝑑𝑚-set of 𝐺. By 

Theorem 2.3,𝑓𝑜𝑑𝑚(𝐺) = 0. Let𝑛 = 5.  For any 𝑥 ∈
𝑉(𝐺), there exists 𝑀 = 𝑉(𝐺) − {𝑥}, is a 𝑜𝑑𝑚-set 

of 𝐺, 𝑜𝑑𝑚(𝐺) = 4 = 𝑓𝑜𝑑𝑚(𝐺). For 𝑛 = 6, Let 𝑥 be 

a vertex of 𝐺 and 𝑦, 𝑧 be the two antipodal vertices 

of 𝑥 and 𝑣,w be the antipodal vertex of 𝑢. Then 

𝑀1 = {𝑥, 𝑦, 𝑧} and𝑀2 = {𝑢, 𝑣, 𝑤}  are the only two 

𝑜𝑑𝑚-sets of 𝐺 so that 𝑓𝑜𝑑𝑚(𝐺) = 1. For 𝑛 ≥ 7, Let 

𝑥𝑦 ∈ 𝐸(𝐺) and 𝑢, 𝑣 ∈ 𝑉(𝐺) such that 𝑑(𝑥, 𝑢) =
𝑑(𝑦, 𝑣) = 2. Then  𝑀 = {𝑥, 𝑦, 𝑢, 𝑣} is a odm-set of 

𝐺, 𝑜𝑑𝑚(G)=4.  Since  𝑛 ≥ 7, there must be at least 

7 odm-sets and so 𝑓𝑜𝑑𝑚(𝑀) ≥ 2. Since any two 

element subset of 𝑀 is not a forcing subset of 𝑀, 

𝑓𝑜𝑑𝑚(𝑀) ≥ 3.  Now 𝑇 = {𝑥, 𝑦, 𝑢} is a forcing 

subset of 𝑀 and so 𝑓𝑜𝑑𝑚(𝑀) = 3. Since this is true 

for all 𝑜𝑑𝑚-sets 𝑀 of 𝐺, 𝑓𝑜𝑑𝑚(𝐺) = 3. 
 

Theorem 2.10.  For the complete bipartite graph 

𝐺 = 𝐾𝑟,𝑠(2 ≤ 𝑟 ≤ 𝑠), 
 

⁡fodm(G) = ⁡{

0⁡⁡⁡⁡⁡𝑖𝑓𝑟 = 𝑠 = 2
2⁡⁡⁡⁡⁡𝑖𝑓⁡2 = ⁡𝑟⁡ ≤ ⁡𝑠

4⁡⁡⁡⁡𝑖𝑓⁡3 ≤ 𝑟 ≤ 𝑠
 

Proof: If 𝑟 = 𝑠 = 2, then 𝐺 = 𝐶4, the result 

follows by Theorem 2.9, 𝑓𝑜𝑑𝑚(𝐺) = 0. If 𝑟 = 2and 

𝑠 ≥ 3. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑟} and 𝑌 =
{𝑦1, 𝑦2, . . . , 𝑦𝑠} be the bipartite sets of 𝐺. Then 

𝑀𝑖𝑗 = {𝑥1, 𝑥2, 𝑦𝑖 , 𝑦𝑗}is the 𝑜𝑑𝑚-set of 𝐺for some 𝑖 

and 𝑗(1⁡ ≤ ⁡𝑖, 𝑗⁡ ≤ ⁡𝑠).⁡⁡𝑜𝑑𝑚(𝐺) = 4.Since 𝑋 =
{𝑥1, 𝑥2}is a subset of every 𝑜𝑑𝑚(𝐺)-set of𝐺, by 

Theorem 2.4, 𝑓𝑜𝑑𝑚(𝐺) ≤ 𝑜𝑑𝑚(𝐺) − |𝑋| = 4 −
2 = 2. We prove that f𝑜𝑑𝑚(𝐺) = 2. Since 𝑠 ≥ 3  

and𝑦𝑖lies on more than two 𝑜𝑑𝑚-sets for some 

𝑖(1⁡ ≤ 𝑖 ≤ ⁡𝑠)⁡and 𝑦𝑗 lies on more than two 𝑜𝑑𝑚-

sets of 𝐺for some 𝑗((1⁡ ≤ 𝑗 ≤ ⁡𝑠). Since this is true 

for 𝑓𝑜𝑑𝑚(𝑀𝑖𝑗) = 2for all 𝑖 and 𝑗,(1⁡≤ ⁡𝑖, 𝑗 ≤ ⁡𝑠). 

Hence it follows that 𝑓𝑜𝑑𝑚(𝐺) = 2. If 𝑟, 𝑠 ≥
3,𝑀𝑖𝑗 = {𝑥𝑖 , 𝑥𝑗 , 𝑦𝑙 , 𝑦𝑚}is the 𝑜𝑑𝑚-set of 𝐺for some 

𝑖 and 𝑗(1⁡ ≤ ⁡𝑖, 𝑗⁡ ≤ ⁡𝑟) and for some 𝑙 and 𝑚(1⁡ ≤
⁡𝑙, 𝑚⁡ ≤ ⁡𝑠), 𝑜𝑑𝑚(𝐺) = 4. Since𝑀𝑖𝑗is not the 

unique 𝑜𝑑𝑚-set containing any of its proper 

subsets so that  𝑓𝑜𝑑𝑚(𝐺) = 4. 
 

Theorem 2.11. For the wheel 𝐺⁡ = ⁡𝐾𝑛 +

⁡𝐶𝑛−1⁡(𝑛⁡ ≥ ⁡4), 𝑓𝑜𝑑𝑚(𝐺)⁡={

⁡⁡0⁡⁡⁡⁡𝑖𝑓𝑛 = 4,5⁡
4⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓𝑛 = 6
1⁡⁡⁡⁡⁡⁡𝑖𝑓𝑛 = 7
3⁡⁡⁡⁡⁡⁡𝑖𝑓𝑛 ≥ 8

 

Proof: Let 𝑉(𝐾1) = 𝑥 and 𝑉(𝐶𝑛−1) =
{𝑣1, 𝑣2, . . . , 𝑣𝑛−1}. If 𝑛 = 4, then 𝐺 = 𝐾4, by 

Theorem 2.5, 𝑓𝑜𝑑𝑚(𝐺) = 0. If 𝑛 = 5,𝑀 = 𝑉(𝐶4) is 

the unique 𝑜𝑑𝑚-set of 𝐺, by Theorem 2.3, 

𝑓𝑜𝑑𝑚(𝐺) = 0. Let 𝑛 ≥ 6. Since 𝑥 is a detour 

monophonic simplicial vertices of 𝐺, {𝑥} is a subset 

of every 𝑜𝑑𝑚-set of 𝐺. Let  𝑛 = 6. For any vertex 

𝑢 ∈ 𝑣(𝐺), there exists 𝑀 = 𝑉(𝐺) − {𝑢} is a odm-

set of G, 𝑜𝑑𝑚(𝐺) = 5. By Theorem 2.4, 

𝑓𝑜𝑑m(𝐺) ≤ 𝑜𝑑𝑚(𝐺) − 1 = 5 − 1 = 4. For 𝑛 = 7, 

Let h be a vertex of 𝐺 and i, 𝑗 be the two antipodal 

vertices of h and 𝑣, 𝑤 be the antipodal vertex of 𝑢. 
Then 𝑀1 = {𝑥, ℎ, 𝑖, 𝑗} and 𝑀2 = {𝑥, 𝑢, 𝑣, 𝑤}  are 

the only two 𝑜𝑑𝑚-sets of 𝐺 so that 𝑜𝑑𝑚(𝐺) =
4.⁡By Theorem 2.4 𝑓𝑜𝑑𝑚(𝐺) ≤ 3. Since {ℎ} is not 

containing 𝑀2,  𝑓𝑜𝑑𝑚 = 1.  For 𝑛 ≥ 8, Let 𝑦𝑧 ∈
𝐸(𝐺) and 𝑢, 𝑣 ∈ 𝑉(𝐺) such that 𝑑(𝑦, 𝑢) =
𝑑(𝑧, 𝑣) = 2. Then  𝑀 = {𝑥, 𝑦, 𝑧, 𝑢, 𝑣} is a odm-set 

of 𝐺, 𝑜𝑑𝑚(𝐺)=5. By Theorem 2.4 𝑓𝑜𝑑𝑚(𝐺) ≤ 4.  
Since  𝑛 ≥ 8, there must be at least 7 odm-sets and 

so 𝑓𝑜𝑑𝑚(𝑀) ≥ 2. Since any two element subset of 

𝑀 is not a forcing subset of M, 𝑓𝑜𝑑𝑚(𝑀) ≥ 3.  
Now 𝑇 = {𝑦, 𝑧, 𝑢} is a forcing subset of 𝑀 and so 

𝑓𝑜𝑑𝑚(𝑀) = 3. Since this is true for all 𝑜𝑑𝑚-sets 𝑀 

of 𝐺, 𝑓𝑜𝑑𝑚(𝐺) = 3. 
 

Theorem 2.12. For the fan graph 𝐺 = 𝐹𝑛 = 𝐾1 +
𝑃𝑛−1, (𝑛 ≥ 3), 𝑓𝑜𝑑𝑚(𝐺)⁡= 0. 
Proof: Let 𝑉⁡(𝐾1) ⁡= ⁡ {𝑥} and 𝑉(𝑃𝑛−1) ⁡=
{𝑣1, 𝑣2, . . . , 𝑣𝑛−1}. 
If 𝑛 = 3,then 𝐺 = 𝐾3, by Theorem 2.5, 𝑓𝑜𝑑𝑚(𝐺) =
0.  If 𝑛 = 4, then 𝑀⁡ = ⁡ {𝑣1, 𝑣3} is the unique 𝑜𝑑𝑚-

set of 𝐺 so that 𝑓𝑜𝑑𝑚(𝐺)⁡= 0. Let 𝑛 ≥ 5, then 𝑀 =
⁡{𝑥, 𝑣1, 𝑣𝑛−1} is the unique 𝑜𝑑𝑚-set of 

𝐺, 𝑓𝑜𝑑𝑚(𝐺) = 0. 
 

Theorem 2.13. Let𝐺 = 𝐾2 + 𝐾𝑛−2(𝑛⁡ ≥
⁡6), 𝑓𝑜𝑑𝑚(𝐺)⁡=2. 
Proof: Let 𝑉(𝐾2) ⁡= {𝑥, 𝑦} and 𝑉(𝐾𝑛−2) ⁡=
{𝑣1, 𝑣2, . . . , 𝑣𝑛−2}.Since𝑋 = {𝑥, 𝑦} is a subset of 

every 𝑜𝑑𝑚-set of 𝐺. Now 𝑀𝑖𝑗 = {𝑥, 𝑦} ∪

{𝑣𝑖 , 𝑣𝑗}𝑖 ≠ 𝑗(1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 2} is a 𝑜𝑑𝑚-set of 

𝐺, 𝑜𝑑𝑚(𝐺) = 4. By Theorem 2.4,𝑓𝑜𝑑𝑚(𝐺) = 

𝑜𝑑𝑚(𝐺) − |𝑋| = 4 − 2 = 2. Since {𝑣𝑖 , 𝑣𝑗} is not 

containing any 𝑜𝑑𝑚-set of it proper subsets 

𝑓𝑜𝑑𝑚(𝐺) = 2. 
 

Theorem 2.14. For any Ladder graph  𝐺 = 𝐿𝑛 =
𝑃2 × 𝑃𝑛(𝑛⁡ ≥ ⁡2), 𝑓𝑜𝑑𝑚(𝐺)⁡= 0. 
Proof: Let 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛−2} ∪
{𝑢1, 𝑢2, … , 𝑢𝑛}.Let 𝑀 ={, 𝑣1, 𝑢1, 𝑢𝑛}be unique 

𝑜𝑑𝑚-set of 𝐺. By Theorem 2.3, 𝑓𝑜𝑑𝑚(𝐺)=0 

 

 



Section  A-Researchpaper The Forcing Open Detour Monophonic Number of a Graph 

 

 

Eur. Chem. Bull. 2023, 12 (S3), 7063 – 7066                                                                                                7066 

   

Theorem 2.15. For the total graph of path 𝐺 =
𝑇(𝑃𝑛)(𝑛 ≥ 3), 𝑓𝑜𝑑𝑚(𝐺)⁡= 0. 
Proof: Let /𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛−2} ∪
{𝑢1, 𝑢2, … , 𝑢𝑛−1}.⁡For 𝑛 = 3, then 𝑀 = {𝑣1, 𝑣2, 𝑣3} 
is the unique 𝑜𝑑𝑚-set of 𝐺, 𝑓𝑜𝑑𝑚(𝐺) = 0.For 𝑛 ≥
4, 𝑋 = {𝑣1, 𝑣𝑛}. Since 𝑋 = {𝑣1, 𝑣𝑛} is the detour 

monophonic simplicial vertices of 𝐺. Let𝑀 =
{𝑣1, 𝑣𝑛} is the unique 𝑜𝑑𝑚-set of 𝐺, 𝑓𝑜𝑑𝑚(𝐺) = 0. 
 

Theorem 2.16 

For every pair of integers𝑎 and 𝑏 with 0⁡ ≤ ⁡𝑎 ≤
𝑏, 𝑏 ≥ 2 and 𝑏 − 𝑎 > 3, there exists a connected 

graph 𝐺 such that 𝑓𝑜𝑑𝑚(𝐺) = 𝑎and 𝑜𝑑𝑚(𝐺) = 𝑏. 

Proof: For 𝑎 = 0, let 𝐺= 𝐾𝑏. Then by Theorem 2.5, 

𝑓𝑜𝑑𝑚(𝐺) = 0and𝑜𝑑𝑚(𝐺) = 𝑏. Thus we assume 

0⁡ ≤ ⁡𝑎 ≤ ⁡⁡𝑏, 𝑏 ≥ 2. 
 Let 𝑃: 𝑥, 𝑦be a path on two vertices and 

𝑃𝑖 : 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖(1⁡ ≤ ⁡𝑖⁡ ≤ ⁡𝑎)  be a copy of a path on 3 

vertices. Let 𝐻be the graph obtained from 

𝑃and 𝑃𝑖(1⁡ ≤ ⁡𝑖⁡ ≤ ⁡𝑎)  and introduce a vertex 𝑤 

and introduce the edges 𝑥𝑥𝑖(1⁡ ≤ ⁡𝑖⁡ ≤ ⁡𝑎),
𝑦𝑧𝑖(1⁡ ≤ ⁡𝑖⁡ ≤ ⁡𝑎)⁡⁡⁡and 𝑤𝑥𝑖(1⁡ ≤ ⁡𝑖⁡ ≤ ⁡𝑎), 

𝑤𝑧𝑖(1⁡ ≤ ⁡𝑖⁡ ≤ ⁡𝑎). Let 𝐺 be the graph obtained 

from 𝐻 by     adding the new 

vertices𝑣1, 𝑣2, 𝑢𝑗(1⁡ ≤ ⁡𝑗 ≤ ⁡𝑏 − 𝑎 − 2)and 

introducing the edges 𝑦𝑢𝑗(1⁡ ≤ ⁡𝑗 ≤ ⁡𝑏 − 𝑎 − 3), 

𝑥𝑢𝑏−𝑎−2, 𝑤𝑣1 and 𝑤𝑣2.The graph 𝐺is shown in 

Figure 2.2. 

First we prove that  𝑜𝑑𝑚(𝐺) = 𝑏.Let𝑋 =
{𝑢1, 𝑢2, … , 𝑢𝑏−𝑎−2, 𝑣1, 𝑣2}be the set of all 

extreme vertices of 𝐺. By Theorem1.1,𝑋 

contains every minimum 𝑜𝑑𝑚-set of 

𝐺, 𝑜𝑑𝑚(𝐺) ≥ 𝑏 − 𝑎 − 2 + 2 = 𝑏 − 𝑎. We observe 

that every minimum 𝑜𝑑𝑚-set contains exactly one 

vertex from 𝐻𝑖 = {𝑥𝑖 , 𝑧𝑖}(1⁡ ≤ ⁡𝑖⁡ ≤ ⁡𝑎).⁡Thus 

𝑜𝑑𝑚(𝐺) ≥ 𝑏 − 𝑎 + 𝑎 = 𝑏.  Let 𝑀 = 𝑋 ∪
{𝑥1, 𝑥2, … , 𝑥𝑎}.⁡⁡Then 𝑀is an 𝑜𝑑𝑚-set of 𝐺 so 

that 𝑜𝑑𝑚(𝐺) = 𝑏. Next we prove that 

𝑓𝑜𝑑𝑚(𝐺)=𝑎.Since every minimum 𝑜𝑑𝑚-set 

contains 𝑋, by Theorem 2.4, 𝑓𝑜𝑑𝑚(𝐺) ≤ odm(G) −
|X| = b − (b − a) = a. We prove that fodm(G)=a.  
On the contrary, suppose that fodm(G) < a. Now 

since odm(G) = b and every odm-set contains X 

and every odm-set of G contains at least one vertex 

from eachHi(1⁡ ≤ ⁡i⁡ ≤ ⁡a). It is easily seen that 

every odm-set M is of the X⁡ ∪ ⁡ {e1, e2, … , ea}, 
where ei ∈ Hi(1⁡ ≤ ⁡i⁡ ≤ ⁡a).Let Gbe any proper 

subset of M with |T| < 𝑎. Then there exists ej ∈

Hj(1⁡ ≤ ⁡j⁡ ≤ ⁡a) such that ej ∈ T. Let fj be the 

vertex of Hi(1⁡ ≤ ⁡i⁡ ≤ ⁡a)distinct from ej.Then 

M′ = (M − {ej}) ∪ {fj} is a odm-set of G properly 

containing T. Thus M is not the unique odm-set of 

G containing T so that T is not a forcing subset of 

M.  This is true for all odm-sets containing G so 

that  fodm(M) = a.   

  

 

 
 

2. Conclusion 

 

This paper exhibits the forcing open detour 

monophonic number of some standard graphs. 
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