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Abstract 

The advantages of a two distinct units’ system are explored using the regeneration point approach and the semi-

Markov process in this research. There is a single server that comes to the system as soon as it is needed and 

stays with it until both units are operating. When the primary unit (Unit A) fails, it is given priority for repair 

over the non-identical unit (Unit B). 

After repair, Unit A goes through an activation procedure, but Unit B does not require any form of activation. 

When unit B fails, the server inspects it to see if it needs minor or large repairs. After repairs, both devices are 

as good as new. Both units' failure times, unit A's repair time, and unit B's inspection time are exponentially 

distributed. Whereas activation time of unit A, and repair times of unit B follow the general distribution. 

Outcomes of the system model are exhibited graphically for constant values. 
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1. Introduction 

In the present scenario, the cost-effectiveness of a 

system plays a key role. Demand for the system 

remains high if it is more profitable in its class. To 

increase the profit, many researchers analyzed the 

reliability of numerous systems under several 

assumptions. Such as, Goel et. al. (1985) analyzed 

a two-unit cold standby system under different 

weather conditions, Mokkadis et. al. (1989) 

examined a two dissimilar unit standby system with 

three modes and administrative delay in repair, 

Goel and Sharma (1989) studied a two-unit standby 

system stochastically considering the concept of 

two failure modes and slow switch, Gupta and Goel 

(1991) analyzed the profit of a two-unit cold 

standby system with abnormal weather condition, 

Malik et. al (2004) stochastically analyzed a non-

identical units reliability models with priority and 

different failure modes, Kumar and Gupta (2007) 

conducted the cost benefit analysis of a distillery 

plant, Malik et. al (2008) studied an operative 

system stochastically with two types of inspection 

subject to degradation, Pawar et. al (2010 A and B) 

studied the reliability system with different repair 

policies in different weather conditions, Gupta et. 

al.  (2010) analyzed the profit of a two duplicate 

unit parallel system with repair/replacement and 

correlated life times of the units, Pawar and Malik 

(2011) measured the performance of a single-unit 

system subject to different failure mode in normal 

weather condition, Pawar et. al (2013) analyzed 

weathering server system operations, Kumar et. al 

(2017) examined the reliability of a two non-

identical unit system with inspection and different 

repairs/replacement policies, Rathee et. al. (2018) 

completed the modeling and analyzed a parallel 

unit system with priority to repair/replacement 

subject to maximum operation and repair times. 

 

Under the following assumptions, we designed and 

assessed a two non-identical units system 

employing regeneration point approach and semi-

Markov process. 

• There are two distinct units A and B in the 

system. Unit A is operational at first, while unit 

B is in cold standby mode. 

• Unit A has four modes – normal operative, 

complete failure, under repair, and under 

activation after repair. 

• Unit B has four modes – normal operative, 

complete failure, under inspection, and under 

repair. 

• If one of the two units is operational, the system 

will be operational. 

• After repair unit A requires activation before 

starting the operation. 

• A single server comes to the system as soon as it 

is needed and stays with it until both units are 

operating. 

• Priority to repair and activation is given to unit A 

over unit B. 

• The system remains partially failed when unit A 

is under activation and unit B is completely 

failed. 

• When Unit B fails, it is inspected to see if it needs 

minor or severe repairs. 

• Both units' failure times, as well as unit A's repair 

time and unit B's inspection time, are 

exponentially distributed whereas the activation 

time of unit A and repair times of unit B follows 

general distribution. 

 

A system advantage analysis is performed for 

constant values of various parameters, and graphs 

are generated to represent the system's behaviour. 

 

2. Notations 

Ao /Ar /Aa  :  Unit A is in normal operation/ under                 

repair/ activation 

Bo / Bcs      : Unit B is in normal operation/ in cold 

standby mode. 

Bwi / Bfui    : Unit B is failed and waiting for 

inspection/ under inspection. 

Bwr1/ Br1    : Unit B is failed and waiting for minor 

repair/ under minor repair. 

BWr2/ Br2   : Unit B is failed and waiting for major 

repair/ under major repair. 

1 / 1      : Unit A / B, constant failure rate. 

 :    Inspection at a constant rate. 

a/ b            : Probability that the failed unit B will be 

repaired minor/ major. (a + b = 1) 

1             : Constant repair rate of unit A. 

G1 (),G2(): c. d. f. of time to minor / major repair 

of unit A. 

H ()         : c. d. f. of time to activation of unit A. 

,i jq     : The likelihood that the system will 

transition from state Si to state Sj at or 

before time 't'. 

iy             :  The estimated time for which the system 

stays in state Si before migrating to any 

other state is described as the mean 

sojourn time in state Si. If Ti is the time 

spent in state Si, then the mean time 

stateinspent Si equals is 

( )i iP T t dty = >ò
 

iz        :  The likelihood that the system will remain 

in state Si until time t.
 mi,j     : The average time spent by the system in 

state Si when the system is about to 
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enter a regenerative state Sj i.e. 

, , ( )i j i jm t q t dt= ò
 

⃰      :      Symbol of Laplace Stieltjes Transformation 

(LST)/Laplace Transformation (LT). 

©/ ( )s /’(desh) : Symbols for Laplace Convolution 

/ Stieltjes Convolution  /derivative of 

the function. 

 

Figure 1 depicts the model's probable transition between states as well as the transition rate. 

 
 

3. Probabilities of Transition and Mean Sojourn Time: 

The probability of a steady-state transition are calculated as follows: 

 

, ,lim ( )i j i j
t

p q t
® ¥

= ; ( ) ( )

, ,lim ( )k k

i j i j
t

p q t
® ¥

=  

Therefore, 

0,1p = 1

1 1

a

a + l
;  

1
0,2

1 1

p
l

=
l + a

; 
1

1,4

1 1

p
b

=
b + l

;  
(3) 1
1,6

1 1

p
b

= 1-
l + b

 

2,6 1p = ;  4,0 1( )p H= l% ;  
(5)

4,7 11 ( )p H= - l% ; 6,7 1p =  

1
7,2

1

p
a

=
a + q

;  7,8

1

a
p

q
=

a + q
;  7,9

1

b
p

q
=

a + q
;  8,0 1 1( )p G= a%  

8,10 1 11 ( )p G= - a% ; 9,0 2 1( )p G= a% ; 9,12 2 11 ( )p G= - a% ; 10,11 1p =  

11,18 1p = ;  12,13 1p = ;  13,9 1p = . 

 

Thus, it can be verified that: 

0,1 0,2p p+ = 1,4p + (3)

1,6p = 2,6p = (5)

4,0 4,7p p+ 6,7p=  7,2 7,8 7,9p p p= + + = 1 

8,0p 8,10p+ 9,0 9,12p p= + = 10,11p = 11,18p = 12,13p = 13,9 1p =  

 

4. Mean Sojourn Time ( iy ) in the state Si are: 

0

1 1

1
y =

l + a
;  1

1 1

1
y =

l + b
;  2

1

1
y =

b
; 1

4 ( )ue H u du
- l

y = ò  

6 ( )H u duy = ò ; 7

1

1
y =

q+ a
;  1

8 1( )
ue G u du- a

y = ò ; 1
9 2 ( )

ue G u du- a
y = ò  
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1
10

1

1u
e du

- b
y = =

bò ; 11 ( )H u duy = ò ; 12

1

1
y =

b
; 13 ( )H u duy = ò . 

 

5. Reliability and Mean Time to System Failure 

(MTSF): 

To measure the system's dependability ( )iR t  when 

it first starts from the state iS EÎ , we suppose the 

failed state 2 3 5 6 10 11 12, , , , , , ,S S S S S S S  and 13S of the 

system as absorbing. We may demonstrate that 

0 ( )R t  is the total of the following contingencies 

using basic probabilistic considerations. 

(i) Up to time t, the system remains in state S0 

without transitioning to any other state. The 

likelihood of this occurrence is 
( )1 1

0 ( )
t

e z t
- a + l

= , 

say 

(ii) The system initially reaches state S1 from state 

S0 during (u, u + du), u t£ , and then stays up 

continuously for the remaining period ( )t u- , 

the probability of this contingency is 

0,1 1 0,1 1

0

( ) ( ) ( ) ( )

t

q u du R t u q t R t- = ãò  

Thus, we have 

0 0 0,1 1( ) ( ) ( ) ( )R t z t q t R t= + ã  

Similarly, 

1 1 1,4 4( ) ( ) ( ) ( )R t z t q t R t= + ã  

4 4 4,0 0( ) ( ) ( ) ( )R t z t q t R t= + ã  

Taking Laplace Transform of above relations, and 

solving for
*

0 ( )R s , we have 

* 1
0

1

( )
( )

( )

N s
R s

D s
=                         (5.1) 

Using the inverse Laplace transformation of 

equation (5.1), we can determine the system's 

dependability when it first starts from state S0. 

 

The average time it takes for a system to fail 

(MTSF) is given by *

0
0

lim ( )
s

R s
®

. Thus 

MTSF
1 1

1 1

(0)

(0)

N N

D D
= =  

Where,
1 0 0,1 1 4 1,4( )N p p= y + y + y and 

1 0,1 1,4 4,01D p p p= - .
 

 

6. Steady-State Availability 

Let ( )iA t  be the probability that the system is up, 

due to a subsystem is operative at epoch t, when it 

initially starts from State  iS EÎ . We can easily 

obtain the following recurrence relations among   

( )iA t : 

       
,

,

( ) (t) ( )i i i j j

i j

A t z q A t= + Óå                            (6.1) 

where, j=1,2; 4,6 ;6 ;0,7 ;7 ;2,8,9 ;0,10 ;0,12 ;11 ;8 

;9; for i = (0; 1; 2 ;4 ;6 ;7 ;8 ;9 ;10 ;11 ;12) 

respectively and 

( )iz t = 0 for i = (2, 6, 10, 11, 12), while 

( )1 1
0 ( )

t
z t e

- l + a
= ; 

( )1 1
1( )

t
z t e

- l + b
= ; 

2 ( ) tz t e- b= ;  1
4 ( ) ( )

t
z t e H t

- l
= ×  

6 ( ) ( )z t H t= ;  
( )1

7 ( )
t

z t e
- a + q

= ; 

1
8 1( ) ( )

t
z t e G t

- a
= ; 1

9 2( ) ( )
t

z t e G t
- a

= × ;
 

1
10 ( )

t
z t e

- b
= ;  11( ) ( )z t H t= ; 

1
12 ( )

t
z t e

- b
= ;  13 ( ) ( )z t H t= . 

 

Taking Laplace Transform of relation (6.1) and 

solving for 
*

0 ( )A s , the steady-state availability can 

be determined as; 

0 0lim ( )
t

A A t
® ¥

= *

0
0

lim ( )
s

sA s
®

= 2

0
2

( )
lim

( )s

N s
s

D s®
=

 

The 2 (0) 0D = , therefore by applying the L-

Hospital Rule, 2 2
0

2 2

(0)

(0)

N
A

D D

N
= =

¢ ¢
 

 

Where, 
(5) (3)

2 9,12 8,10 0 7,2 1 0,1 7,2 0,1 7 1,4 4,7 1,6

(5)

0,1 1,4 4 0,2 7 0 0,1 1 7,2 0 0,1 1 0,1 1,4 4 4,7 8

(3)

0,1 1,6 0,2 7,8 8 0,2 7 8,10 7,9 9 1,4 4

(1 )[ { (1 ) (1 ) ( )

} { } ( )

( ) ] (1 )[ {(

N p p z p z p p p z p p p

p p z p z z p z p z p z p p z p z

p p p p z p z p p z p p

= - - + - - - +

- - + + + - - + +

+ + + + - (5) (3)

,7 1,6 0,1 0,2) }]p p p+ +

 

2 7,2 8,0 9,0 0 0,1 8,0 9,0 7,2 1 7,2 0,1 1,4 8,0 9,0 2

8,0 9,0 0,1 1,4 4,0 7 7,8 9,0 0,1 1,4 4,0 3 7,9 8,0 0,1 1,4 4,0 4

[(1 ) ] ( (1 )] [(1 ) )]

[ (1 )] ( (1 )] [ (1 )]

D p p p p p p p n p p p p p n

p p p p p p p p p p n p p p p p n

¢= - y + - + -

+ - y + - + -
 

 

The expected-up time of the system during (0, t) 

due to a subsystem is given by 0

0

( ) ( )

t

up t A u dum = ò
,    so that      

*
* 0

0

( )
( )

( )

t

up

A s
s

s
m = ò
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7. Busy Period Analysis 

(a) When the server is busy repairing a failed 

unit A: 

Let ( )r

iB t be the likelihood that the server is engaged 

fixing a completely failed unit A at instant time 't', 

when the system first begins from state Si. We have 

the following recursive relations for ( )r

iB t  using 

simple probabilistic arguments: 

 

,

,

( ) ( ) ( ) ( )r r

i i i j j

i j

B t z t q t B t= + ãå      (7.1) 

j=1,2; 4,6; 6 ;0,7 ;7 ;2,8,9 ;0,10 ;0,12 ;11 ;8 ;13 ;9 

for i = (0, 1, 2, 4, 7, 8, 9, 10, 11, 12,13) respectively 

and ( )iz t = 0 for i = (0, 4, 6, 7, 8, 9, 11, 13) while 

1 2 10 12( ), ( ), ( ), ( )z t z t z t z t  have been define already. 

 

Taking Laplace Transformation of relations (7.1) 

and solving for 0 ( )rB s*
. The busy period of the 

server can be obtained as 
0 0

0
( ) lim ( )r r

s
B s B s* *

®
¥ =  

 

Therefore, 
0 3 2

rB N D* ¢= , where 

(5) (3)

3 9,12 8,10 0,1 1 7,2 0,1 7,2 1,4 4,7 1,6 0,2 2

(5) (3)

0,1 10 7,8 8,10 1,4 4,7 1,6 0,2 7,8 8,10 10 8,10

(5) (3)

0,1 12 7,9 9,12 1,4 4,7 1,6 0,2 7,9 9,12 12

(1 )[(1 ){ (1 ) ( ) }

( ) ] (1 )

[ ( ) ]

N p p p p p p p p p p

p p p p p p p p p p

p p p p p p p p p

= - - y - + + + y

+ y + + y + -

y + + y

 

 

(b) when the server is engaged with activating 

unit A: 

Let ( )a

iB t be the chance that the server is busy 

activating unit A at instant time 't' when the system 

first begins from state 
iS EÎ . We have the 

following recursive relations for ( )a

iB t using simple 

probabilistic arguments: 

 

,

,

( ) ( ) ( ) ( )a a

i i i j j

i j

B t z t q t B t= + ãå            (7.2) 

;0,12;0,10;8,9;2;7;0,7;6;4,6where, j=1,2

;11,8,13,9 for i = (0, 1, 2, 4, 7, 8, 9, 10, 11, 12, 13) 

respectively and ( )iz t = 0 for i = (0, 1, 2, 7, 8, 9, 10, 

12) while 4 6 11 13( ), ( ), ( ), ( )z t z t z t z t have been defined 

already. 

Taking Laplace Transformation of relations (7.2) 

and solving for 0 ( )aB s*
. The busy period of the 

server can be obtained as 
0 0

0
( ) lim ( )a a

s
B s B s* *

®
¥ =  

 

Therefore, 0 4 2

aB N D* ¢= , where 

(5) (3)

4 9,12 8,10 1,4 4 0,1 0,2 7,2 0,1 6 1,4 4,7 7,2 1,6

(5) (3)

0,2 6 0,1 8,10 1,4 4,7 7,8 1,6 7,8 0,2 8,10 11 7,9 9,12 13

(5) (3)

8,10 0,1 9,12 13 1,4 4,7 1,6 7,9

(1 )[(1 ){ ( ) ( )}

( ) ( )]

(1 [ ( )

N p p p p p p p p p p p

p p p p p p p p p p p p

p p p p p p p

= - - y - - y +

y + + + y + y

+ - y +

 

 

(c) When the server is engaged in the inspection 

of unit B : 

Let ( )i

iB t be the chance that the server is engaged 

inspecting unit B at instant time 't' when the system 

first begins from state 
iS EÎ . We have the 

following recursive relations for ( )i

iB t using 

simple probabilistic arguments: 

 

,

,

( ) ( ) ( ) ( )i i

i i i j j

i j

B t z t q t B t= + ãå             (7.3) 

 

where, j = 1,2 ;4,6 ;6 ;0,7 ;7 ;2 ;8,9 ;0,10 ;0,12 

;11,8,13,9 for i = (0, 1, 2, 4, 7, 8, 9, 10, 11, 12, 13) 

respectively and ( )iz t = 0 for i = (0, 1, 2, 4, 6, 8, 9, 

10, 11, 12, 13) while 7 ( )z t has been defined 

already. 

Taking Laplace Transformation of relations (7.3) 

and solving for 0 ( )iB s*
. The busy period of the 

server can be obtained as 
0 0

0
( ) lim ( )i i

s
B s B s* *

®
¥ =  

Therefore, 0 5 2

iB N D* ¢= , 

where,   
(5) (3)

5 9,12 8,10 7 0,1 1,4 4,7 1,6 0,2(1 )(1 ) [ ( ) ]N p p p p p p p= - - y + +  

 

(d) When server is busy in minor repair of unit 

B : 

Let 
1( )iB t be the likelihood that the server is busy 

doing minor repairs on unit B at instant time 't' 
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when the system boots up from state 
iS EÎ . We 

may derive the following recursive relations using 

fundamental probabilistic arguments: 

 
1 1

,

,

( ) ( ) ( ) ( )i i i j j

i j

B t z t q t B t= + ãå               (7.4) 

 

where, j = 1,2 ;4,6 ;6 ;0,7 ;7 ;2 ;8,9 ;0,10 ;0,12 

;11,8,13,9 for i = (0, 1, 2, 4, 7, 8, 9, 10, 11, 12, 13) 

respectively and ( )iz t = 0 for i = (0, 1, 2, 4, 6, 7, 9, 

10, 11, 12, 13) while 8( )z t has been defined 

already. 

 

Taking Laplace Transformation of relations (7.4) 

and solving for
1

0 ( )B s*
. The busy period of the 

server can be obtained as 1 1

0 0
0

( ) lim ( )
s

B s B s* *

®
¥ =  

Therefore, 
1

0 6 2B N D* ¢=  

 

where,
(5) (3)

6 9,12 7,8 8 0,1 1,4 4,7 1,6 0,2(1 )( [ ( ) ]N p P p p p p p= - y + +  

 

(e) When the server is occupied with repairs to 

unit B: 

Let 
2 ( )iB t be the likelihood that the server is busy 

doing major repairs on unit B at instant time 't' 

when the system boots up from state 
iS EÎ . We 

may derive the following recursive relations using 

fundamental probabilistic arguments for 
2 ( )iB t : 

2 2

,

,

( ) ( ) ( ) ( )i i i j j

i j

B t z t q t B t= + ãå
           (7.5) 

 

where, j = 1,2 ;4,6 ;6 ;0,7 ;7 ;2 ;8,9 ;0,10 ;0,12 

;11,8,13,9 for i = (0, 1, 2, 4, 7, 8, 9, 10, 11, 12, 13) 

respectively and ( )iz t = 0 for i = (0, 1, 2, 4, 6, 7, 8, 

10, 11, 12, 13) while 9 ( )z t has been defined 

already. 

Taking Laplace Transformation of relations (7.5) 

and solving for
2

0 ( )B s*
. The busy period of the 

server can be obtained as 2 2

0 0
0

( ) lim ( )
s

B s B s* *

®
¥ =  

Therefore, 
2

0 7 2B N D* ¢=  

 

where,
(5) (3)

7 8,10 9 7,9 0,1 1,4 4,7 1,6 0,2(1 ) [ ( ) ]N p p p p p p p= - y + +  

 

During (0, t), the projected busy period of the server 

in the mending of a total failed unit, activation of 

unit A, inspection, major and minor repair of unit 

B is provided by 

 
*

* 0 ( )
( )

r
r

b

B s
s

s
m = ; 

*
* 0 ( )
( )

a
a

b

B s
s

s
m = ; 

*
* 0 ( )
( )

i
i

b

B s
s

s
m = ;   

1*
1* 0 ( )

( )b

B s
s

s
m = ;   

2*
2* 0 ( )

( )b

B s
s

s
m =  

 

8. Cost benefit analysis 

The system's predicted profit during (0, t) is 

provided by, P(t) = Expected total revenue in (0, t) 

- Expected total repair cost in (0, t) 

 
1 2

0 1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )r a i

up b b b b bK t K t K t K t K t K t= m - m - m - m - m - m  

 

where, K0 is the revenue per unit up time by the 

system, K1, K2, K3, K4 and K5, are the amounts paid 

per unit of time for repair, activation, inspection, 

minor and major repair respectively. 

The expected profit per unit time in the steady state 

is given by: 
1 2

0 0 1 0 2 0 3 0 4 0 5 0

r a iP K A K B K B K B K B K B= - - - - -  

Where 
1 2

0 1 0 0 0 0, , , , andr a iA B B B B B  have been 

already defined. 

 

9. Particular Case: 

A specific situation is examined for the model 

under consideration where all of the repair time 

distributions are also exponential, i.e. 

 
1

1( ) 1
t

G t e
- m

= - ; 2
2( ) 1

t
G t e

- m
= - ; ( ) 1 rtH t e-= -  

The following changes have occurred in steady-state transition probabilities and mean sojourn times: 

4,0p =  
1

r

r + l
;  

(5)

4,7p 1

1r

l
=

+ l
;   6,7 1p = ; 

1
8,0

1 1

u
p

u
=

a +
;  1

8,10

1 1

p
u

a
=

a +
;  1

9,12

1 2

p
a

=
a + m

; 

11,8 1p = ;   13,9 1p = ;   4,0 2

1( )

r
m

r
=

+ l
; 
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(5)

4,7m =
2

1

1

( )

r

r r
-
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10. Simulation Study and conclusion: 

In this model of two distinguishable unit system is 

developed and its advantages are analyzed such as 

MTSF, steady-state availability, a busy period of 

repairman and profit function have computed by 

regenerative point technique and semi-Markov 

process. As a specific consideration, various 

parameters have been fixed as K0 = 25000,               

K1 = 5000, K2 = 2000, K3 = 1000, K4 = 1500 and 

K5 = 7000. The other parameters are kept fixed as 

b1 = 0.7, q = 0.7, p = 0.5, q = 0.5, m1 = 0.75, m2 = 

0.72 and g = 0.8. 

Figure-2 shows the behaviour of MTSF with 

respect to constant failure rate of unit A (a1). From 

the figure it can be observe that MTSF decreases as 

a1 increases from 0.01 to 0.15 and l1 (the failure rate 

of unit B) from 0.1 to 0.11. It is also observed that 

the MTSF increases if b1 (repair unit of unit A) 

increases. 

 

From figure 3, which shows the behaviour of profit 

w.r.t. a1. We can observe the same pattern as in case 

of MTSF. 
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