

ESTABLISHMENT OF 4-TUPLES CONCERNING INTEGERS WITH

ELITE FEATURE

V. Pandichelvi¹, B. Umamaheswari² Department of Mathematics¹ Urumu Dhanalakshmi College, Trichy-620 019, Tamil Nadu, India (Affiliated to Bharathidasan University) E-mail: <u>mvpmahesh2017@gmail.com</u> Department of Mathematics² Meenakshi College of Engineering, Chennai- 600 078, Tamil Nadu, India. E-mail: <u>bumavijay@gmail.com</u>

Abstract

In this manuscript, a remarkable 4-tuples $(\alpha, \beta, \gamma, \delta)$ with elements are non-zero integers such that the arithmetic mean of any three elements among the four elements listed in this 4-tuples yields a square number is appraised by applying several techniques in Mathematics.

Keywords: Diophantine quadruples, Ternary quadratic, Diophantine equation

1. Introduction

"A set of *m* positive integers $\{a_1, a_2, ..., a_m\}$ is called a Diophantine *m* – tuple with the property D(n), $n - \{0\} \in Z$ if $a_i.a_j + n$ is a perfect square for all $1 \le i < j \le m$ ". In [3,4], the authors initiated how to find Diophantine triples with suitable properties. In [5,6], the authors concentrated on evaluating Diophantine quadruples with an elegant property. For further review of quadruples one can refer [1, 2, 7 - 9]. In this paper, an integer quadruples $(\alpha, \beta, \gamma, \delta)$ where α, β, γ and δ are non-zero integers where the average of any three elements amid the four numbers deliver a square number is explained by following different methods.

2. Procedures of Examinations.

Let α , β , γ , δ be distinct non-zero integers such that the average of any three among these four elements stay a perfect square. Originate with the exact postulation as given below:

$$\alpha + \beta + \gamma = 3p^2 \tag{1}$$

$$\alpha + \beta + \delta = 3q^2 \tag{2}$$

$$\alpha + \gamma + \delta = 3r^2 \tag{3}$$

$$\beta + \gamma + \delta = 3s^2 \tag{4}$$

concurrently with the supplementary proposition that

$$\alpha + \beta + \gamma + \delta = z^2 \tag{5}$$

By making simple arithmetical calculations in the simultaneous equations (1), (2), (3) and (4), the values of α , β , γ and δ are declared as follows

$$\alpha = p^2 + q^2 + r^2 - 2s^2 \tag{6}$$

$$\beta = p^2 + q^2 + s^2 - 2r^2 \tag{7}$$

$$\gamma = p^2 + r^2 + s^2 - 2q^2 \tag{8}$$

$$\delta = q^2 + r^2 + s^2 - 2p^2 \tag{9}$$

Addition of all the above four equations from (6) to (9) offers the successive equation

$$\alpha + \beta + \gamma + \delta = p^2 + q^2 + r^2 + s^2 \tag{10}$$

Comparing equation (5) and (10), it is noted that

$$z^2 = p^2 + q^2 + r^2 + s^2 \tag{11}$$

Procedure 1.

Undertaking the new linear modifications p = m + n, q = m + 7n, r = m - n, s = m - 7n

where $m \neq n \neq 0$ in (6), (7), (8) and (9), the corresponding values of α , β , γ and δ in two variables are offered subsequently by

$$\alpha = m^2 - 47 \, n^2 + 42 \, mn \tag{12}$$

$$\beta = m^2 + 97 \, n^2 + 6 \, mn \tag{13}$$

$$\gamma = m^2 - 47 \, n^2 - 42 \, mn \tag{14}$$

$$\delta = m^2 + 97 \, n^2 - 6 \, mn \tag{15}$$

Relieving the same conversions in (11) ensure the following famous Pythagoreans equation

$$z^2 = (2m)^2 + (10n)^2 \tag{16}$$

The process of executing the quadruples $(\alpha, \beta, \gamma, \delta)$ where the average of three among four elements stand for a square number by solving (16) in two different proposals are enlightened below.

Proposal 1.1.

The Pythagorean equation (16) is fulfilled by

$$m = \frac{(r^2 - s^2)}{2}$$
(17)

$$n = \frac{75}{10} \tag{18}$$

Meanwhile our concern is to treasure the parameters in integers, it is experiential that m and n are integers for the ensuing options of r and s

r = 2R and s = 10S

These selections of r and s reduce (17) and (18)as

$$m = 2R^2 - 50S^2$$
$$n = 4RS$$

Replacement of the above values of m and n in (12), (13), (14) and (15) convert the preferable

values of α , β , γ and δ as follows

$$\alpha = 4R^{4} + 336R^{3}S - 952R^{2}S^{2} - 8400RS^{3} + 2500S^{4}$$

$$\beta = 4R^{4} + 48R^{3}S + 1352R^{2}S^{2} - 1200RS^{3} + 2500S^{4}$$

$$\gamma = 4R^{4} - 336R^{3}S - 952R^{2}S^{2} + 8400RS^{3} + 2500S^{4}$$

$$\delta = 4R^{4} - 48R^{3}S + 1352R^{2}S^{2} + 1200RS^{3} + 2500S^{4}$$

The table below contains numerical values for a few parameters that support the proposal.

R	S	α	β	γ	δ	$\alpha + \beta + \gamma$	$\alpha + \beta + \delta$	$\alpha + \gamma + \delta$	$\beta + \gamma + \delta$
						3	3	3	3
2	3	-277244	187588	613828	314884	$(418)^2$	$(274)^2$	$(466)^2$	$(610)^2$
3	2	-177404	62788	189508	115204	$(158)^2$	$(14)^2$	$(206)^2$	$(350)^2$
4	1	-23804	23428	388	26884	$(2)^2$	(94) ²	$(34)^2$	$(130)^2$
6	2	-349952	203008	166144	276736	$(80)^2$	$(208)^2$	$(176)^2$	$(464)^2$

Proposal 1.2.

Let us designate an additional solution of (16) be

$$m = rs$$

Eur. Chem. Bull. 2023,12(10), 13392-13404

(19)

$$n = \frac{(r^2 - s^2)}{10} \tag{20}$$

For receiving an integer solution of equation (16), let us prefer the fortuitous of r and s as given below.

r = 10R and

$$s = 10S$$

Hence,(19) and (20) are developed into

m = 100RS $m = 10R^2 - 10S^2$

$$n = 10K = 10.5$$

Substituting the above-mentioned values of m and n in (12), (13), (14) and (15)), the

comparable values of α , β , γ and δ are turned into

$$\begin{aligned} \alpha &= -4700R^4 + 42000R^3S + 19400R^2S^2 - 42000RS^3 - 4700S^4 \\ \beta &= 9700R^4 + 6000R^3S - 9400R^2S^2 - 6000RS^3 + 9700S^4 \\ \gamma &= -4700R^4 - 42000R^3S + 19400R^2S^2 + 42000RS^3 - 4700S^4 \\ \delta &= 9700R^4 - 6000R^3S - 9400R^2S^2 + 6000RS^3 + 9700S^4 \end{aligned}$$

Algebraic Computations of an essential triples are enumerated below for few chances of the newly introduced parameters *R* and *S*.

R	S	α	β	γ	δ	$\frac{\alpha + \beta + \gamma}{2}$			$\frac{\beta + \gamma + \delta}{2}$
						3	3	3	3
2	3	-1017500	422500	1502500	782500	$(550)^2$	$(250)^2$	$(650)^2$	(950) ²
3	2	1502500	782500	-1017500	422500	$(650)^2$	(950) ²	$(550)^2$	$(250)^2$
4	1	1622500	2702500	-3417500	1982500	$(550)^2$	(1450) ²	$(250)^2$	$(650)^2$
6	2	12755200	13676800	-19500800	9068800	$(1520)^2$	$(3440)^2$	$(880)^2$	$(1040)^2$

Procedure 2.

A tactic of an alternative translations p = m + n, q = m - n, r = m + 3n and s = m - 3n where $m \neq n \neq 0$ in (6), (7), (8) and (9) deliver the assessment of α, β, γ and δ as follows

$$\alpha = m^2 - 7 n^2 + 18 mn \tag{21}$$

$$\beta = m^2 - 7 n^2 - 18 mn \tag{22}$$

$$\gamma = m^2 + 17 \, n^2 + 6 \, mn \tag{23}$$

$$\delta = m^2 + 17 \, n^2 - 6 \, mn \tag{24}$$

Reservation of the same alterations in (11)leads to an equation of the form as below

$$z^2 = (2m)^2 + 20n^2 \tag{25}$$

Applying few methods of solving (25), an estimation of a gorgeous integer quadruple fulfilling the condition that the average of three quantities stays a square number is established as follows.

Proposal 2.1.

By considering the general solutions to the equation of the form $z^2 = Dx^2 + y^2$ where D is a square free integer, the choice of m, n and z attained from (25) are as given below

$$m = \frac{1}{2} [a^{2} - 20 b^{2}]$$

$$n = 2ab$$

$$z = a^{2} + 20 b^{2}$$
(26)

In order to find out an integer solution, striking the replacement as a = 2A and b is an arbitrary value in (26), the equivalent values m, n and z are revealed by

$$m = 2A^{2} - 10b^{2}$$
$$n = 4Ab$$
$$z = 4A^{2} + 20b^{2}$$

Exchanging the values of *m* and *n* in (21), (22), (23) and (24), the exact chances of the non-zero parameters α , β , γ and δ are turned out to be

$$\alpha = 4A^{4} + 144A^{3}b - 152A^{2}b^{2} - 720Ab^{3} + 100b^{4}$$

$$\beta = 4A^{4} - 144A^{3}b - 152A^{2}b^{2} + 720Ab^{3} + 100b^{4}$$

$$\gamma = 4A^{4} + 48A^{3}b + 232A^{2}b^{2} - 240Ab^{3} + 100b^{4}$$

$$\delta = 4A^{4} - 48A^{3}b + 232A^{2}b^{2} + 240Ab^{3} + 100b^{4}$$

Numerical illustrations for some positive values of *A* and *b* filling the supposition are presented in the below table.

A	b	α	β	γ	δ	$\frac{\alpha + \beta + \gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha + \gamma + \delta}{3}$	$\frac{\beta + \gamma + \delta}{3}$
2	3	-32732	38116	4708	28324	(58) ²	(106) ²	(10) ²	(154) ²
3	2	-13052	5956	7108	13444	$(2)^2$	$(46)^2$	$(50)^2$	(94) ²
4	1	5028	-7644	6948	2724	$(38)^2$	$(6)^2$	$(70)^2$	(26) ²
6	2	12544	-42752	49408	30976	(80) ²	(16) ²	$(176)^2$	(112) ²

Proposal 2.2.

Subcase 2.2.1.

Factorization of (25) provides the following equation

$$(z+2m)(z-2m) = 20n^2$$
(27)

The overhead equation can be inscribed in the fraction form as

$$\frac{(z-2m)}{(20n)} = \frac{(n)}{(z+2m)} = \frac{a}{b}, b \neq 0$$
(28)

Modify (28) into the subsequent form of double equations

$$zb - 2bm - 20an = 0 \tag{29}$$

$$az + 2am - bn = 0 \tag{30}$$

Resolving (29) and (30) by cross multiplication rule, the values of m, n and z needed for accomplishing an integer solution of (25) are furnished as

$$m = -20a^{2} + b^{2}$$
$$n = 4ab$$
$$z = 40 a^{2} + 2b^{2}$$

Transmitting the values of *m* and *n* in (21), (22), (23) and (24), the precise options of α , β , γ and δ are converted into

$$\alpha = 400a^4 - 144a^3b - 152a^2b^2 + 72ab^3 + b^4$$

$$\beta = 400a^4 + 144a^3b - 152a^2b^2 - 72ab^3 + b^4$$

$$\gamma = 400a^4 - 480a^3b + 232a^2b^2 + 24ab^3 + b^4$$

$$\delta = 400a^4 + 480a^3b + 232a^2b^2 - 24ab^3 + b^4$$

Examples for few positive values of *a* and *b* gratifying the proposition are given in the succeeding table.

а	b	α	β	γ	δ	$\frac{\alpha + \beta + \gamma}{\alpha + \beta}$	$\frac{\alpha+\beta+\delta}{\alpha}$	$\frac{\alpha + \gamma + \delta}{2}$	
						3	3	3	3
2	3	-29663	31681	4609	25057	$(47)^2$	(95) ²	$(1)^2$	$(143)^2$
3	5	-168575	166225	29425	141025	(95) ²	$(215)^2$	$(25)^2$	$(335)^2$
4	1	8097	191841	75489	136737	$(303)^2$	$(335)^2$	$(271)^2$	$(367)^2$
6	2	-122096	1115152	3456616	758032	$(668)^2$	$(764)^2$	$(572)^2$	$(860)^2$

Subcase 2.2.2.

Rewrite (27) in the ratio as

$$\frac{(z-2m)}{n} = \frac{20n}{(z+2m)} = \frac{a}{b}, b \neq 0$$

Applying the same technique as explained in subcase (i), the particular selections of the elements in the quadruple are expressed by

$$\alpha = a^{4} - 72a^{3}b - 152a^{2}b^{2} + 1440ab^{3} + 400b^{4}$$

$$\beta = a^{4} + 72a^{3}b - 152a^{2}b^{2} - 1440ab^{3} + 400b^{4}$$

$$\gamma = a^{4} - 24a^{3}b + 232a^{2}b^{2} + 480ab^{3} + 400b^{4}$$

$$\delta = a^{4} + 24a^{3}b + 232a^{2}b^{2} - 480ab^{3} + 400b^{4}$$

Some models are acknowledged in the subsequent table.

а	b	α	β	γ	δ	$\alpha + \beta + \gamma$	$\alpha + \beta + \delta$	$\alpha + \gamma + \delta$	$\beta + \gamma + \delta$
						3	3	3	3
2	3	102976	-49088	66112	15424	$(200)^2$	$(152)^2$	(240) ²	$(104)^2$
3	5	746161	-314399	479041	125521	$(551)^2$	$(431)^2$	$(671)^2$	(311) ²
4	1	-624	-2928	4752	3984	$(20)^2$	$(12)^2$	$(52)^2$	$(44)^2$
6	2	23824	-52208	53776	28432	(92) ²	$(4)^2$	$(188)^2$	$(100)^2$

Subcase 2.2.3.

Redraft (27) as

$$\frac{(z+2m)}{20n} = \frac{n}{(z-2m)} = \frac{a}{b}, b \neq 0$$

By manipulating the identical procedure as clarified in subcase (i), the specific collections of the elements in an essential quadruples are articulated by

$$\alpha = 400a^{4} + 1440a^{3}b - 152a^{2}b^{2} - 72ab^{3} + b^{4}$$

$$\beta = 400a^{4} - 1440a^{3}b - 152a^{2}b^{2} + 72ab^{3} + b^{4}$$

$$\gamma = 400a^{4} + 480a^{3}b + 232a^{2}b^{2} - 24ab^{3} + b^{4}$$

$$\delta = 400a^{4} - 480a^{3}b + 232a^{2}b^{2} + 24ab^{3} + b^{4}$$

The following table offered numerical values for limited choice of the parameters rewarding the hypothesis.

а	b	α	β	γ	δ	$\frac{\alpha + \beta + \gamma}{2}$	$\frac{\alpha + \beta + \delta}{3}$	$\frac{\alpha + \gamma + \delta}{3}$	$\frac{\beta + \gamma + \delta}{3}$
						Э	Э	3	3
2	3	17169	-5583	11121	3537	(87) ²	$(71)^2$	(103) ²	(55) ²
3	2	102976	-49088	66112	15424	$(200)^2$	$(152)^2$	$(248)^2$	$(104)^2$
3	4	152464	-130928	113296	18832	$(212)^2$	$(116)^2$	$(308)^2$	$(20)^2$
6	3	1390689	-452223	900801	286497	$(783)^2$	$(639)^2$	(927) ²	(495) ²

Subcase 2.2.4.

Alternate (27) as

$$\frac{(z+2m)}{n} = \frac{20n}{(z-2m)} = \frac{a}{b}, b \neq 0$$

As in subcase (i), the gathering of the elements in the crucial quadruple are expressed by

$$\alpha = a^{4} + 72a^{3}b - 152a^{2}b^{2} - 1440ab^{3} + 400b^{4}$$
$$\beta = a^{4} - 72a^{3}b - 152a^{2}b^{2} + 1440ab^{3} + 400b^{4}$$
$$\gamma = a^{4} + 24a^{3}b + 232a^{2}b^{2} - 480ab^{3} + 400b^{4}$$

$\delta = a^4 - 24a^3b + 232a^2b^2 + 480ab^3 + 400b^4$

Numerical characters for selected choices of *a* and *b* gratifying the proposal are presented in the below table.

а	b	α	β	γ	δ	$\frac{\alpha + \beta + \gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha + \gamma + \delta}{3}$	$\frac{\beta + \gamma + \delta}{3}$
2	3	-2496	2112	576	2112	(8) ²	(24) ²	(8) ²	(40) ²
3	2	-29663	31681	4609	25057	(47) ²	(95) ²	$(1)^2$	(143) ²
3	4	-188111	349297	46321	225457	$(263)^2$	(359) ²	$(167)^2$	(455) ²
6	3	-202176	171072	46656	171072	$(72)^2$	(216) ²	$(72)^2$	(360) ²

The Python Program for the authentication of the needed quadruples fulfilling our statement is epitomized below.

```
import mat \Box
w \square ile True:
   T = input("Enter your c \square oice part A of B :")
   if T in ('A'):
        c = input("Enter c \square oice(1/2):")
        if c in ('1', '2'):
            r = int(input('Enter a Number r : '))
            s = int(input('Enter t \square e second number s : '))
        if (c == '1'):
            m = 2 * r * 2 - 50 * s * 2
            n = 4 * r * s
        elif(c == '2'):
            m = 100 * r * s
            n = 10 * r * 2 - 10 * s * 2
        else:
            print('Invalid Input')
            break
        p = m * 2 - 47 * n * 2 + 42 * m * n
        q = m * 2 + 97 * n * 2 + 6 * m * n
        r = m * 2 - 47 * n * 2 - 42 * m * n
        s = m * 2 + 97 * n * 2 - 6 * m * n
        a1 = (p + q + r)/3
        a2 = (p + q + s)/3
```

```
a3 = (p + r + s)/3
a4 = (q + r + s)/3
if (a1 < 0):
    a11 = -1 * a1
    x = pow(a11, 1/2)
else:
    x = pow(a1, 1/2)
if (a1 < 0):
    x = -x
if (a2 < 0):
    a21 = -1 * a2
    y = pow(a21, 1/2)
else:
    y = pow(a2, 1/2)
if (a2 < 0):
   y = -y
if (a3 < 0):
    a31 = -1 * a3
    z = pow(a31, 1/2)
else:
    z = pow(a3, 1/2)
if (a3 < 0):
    z = -z
if (a4 < 0):
    a41 = -1 * a4
    xx = pow(a41, 1/2)
else:
    xx = pow(a4, 1/2)
if (a4 < 0):
    xx = -xx
print('p:',p)
print('q:',q)
print('r:',r)
print('s:',s)
print('(p+q+r)/3: ', int(x), '^2)
print('(p+q+s)/3: ', int(y), '^2)
print('(p + r + s)/3 : ', int(z), '^2)
print('(q + r + s)/3 : ', int(xx), '^2)
```

```
elif T in ('B'):
    c = input('Enter your c \square oice 3/4/5/6/7 : ')
    if c in ('3', '4', '5', '6', '7'):
       a = int(input('Enter a Number a : '))
       b = int(input('Enter t \square e second number b : '))
    if(c = 3'):
       m = -10 * b * * 2 + 2 * a * * 2
       n = 4 * a * b
    elif(c == '4'):
       m = b * 2 - 20 * a * 2
       n = 4 * a * b
    elif(c == '5'):
       m = -a **2 + 20 * b **2
       n = 4 * a * b
    elif(c == '6'):
       m = -20 * a * 2 + b * 2
       n = -4 * a * b
    elif(c == 7'):
       m = -a * 2 + 20 * b * 2
       n = -4 * a * b
    else:
       print('Invalid Input')
       break
    p = m * 2 - 7 * n * 2 + 18 * m * n
    q = m * 2 - 7 * n * 2 - 18 * m * n
    r = m * 2 + 17 * n * 2 + 6 * m * n
    s = m * 2 + 17 * n * 2 - 6 * m * n
    a1 = (p + q + r)/3
    a2 = (p + q + s)/3
    a3 = (p + r + s)/3
    a4 = (q + r + s)/3
    if (a1 < 0):
       a11 = -1 * a1
       x = pow(a11, 1/2)
```

```
else:
    x = pow(a1, 1/2)
if (a1 < 0):
    x = -x
if (a^2 < 0):
    a21 = -1 * a2
    y = pow(a21, 1/2)
else:
    y = pow(a2, 1/2)
if (a2 < 0):
    y = -y
if (a3 < 0):
    a31 = -1 * a3
    z = pow(a31, 1/2)
else:
    z = pow(a3, 1/2)
if (a3 < 0):
    z = -z
if (a4 < 0):
    a41 = -1 * a4
    xx = pow(a41, 1/2)
else:
    xx = pow(a4, 1/2)
if (a4 < 0):
    xx = -xx
print('p:',p)
print('q:',q)
print('r:',r)
print('s:',s)
print('(p+q+r)/3: ', int(x), '^2)
print('(p+q+s)/3: ', int(y), '^2)
print('(p + r + s)/3 : ', int(z), '^2)
print('(q + r + s)/3 : ', int(xx), '^2)
```

Conclusion.

In this communication, the quadruple $(\alpha, \beta, \gamma, \delta)$ in which the average of any three numbers remains a square of an integer is examined. To conclude, one can explore stimulating quadruples and quintuples such that geometric mean of two or three numbers is a square of an integer.

References.

- Dickson, L.E., History of Theory of Numbers, Vol.2, Chelsea Publishing company, NewYork, 1952.
- [2] Mordell LJ. Diophantine Equations, Academic Press, New York, 1969.
- [3] M.N.Deshpande, Families of Diophantine triplets, Bulletin of the Marathwada Mathematical Society, 4(2003), Pp.19-21
- [4] Y.Bugeaud, A.Dujella and M.Mignotte, on the family of Diophantine triples $\{k-1, k+1, 16k^3 4k\}$, Glasgow Math. J. 49(2007), Pp.333-344
- [5] M. A. Gopalan, V. Geetha, V. Kiruthika, "On Two Special Integer Triples in Arithmetic Progression", Open Journal of Applied & Theoretical Mathematics (OJATM), Vol. 2, No. 1, March 2016, Pp 01-07.
- [6] M. A. Gopalan, V. Sangeetha, "An Interesting Diophantine Problem", Open Journal of Applied & Theoretical Mathematics (OJATM), Vol. 2, No. 2, June 2016, Pp 42-47.
- [7] V. Pandichelvi and P.Sivakamasundari, Evaluation of an attractive integer triple, Assian Journal of Science and technology, Vol.8, issue 11, Pp.6534-6540, 2017.
- [8] V. Pandichelviand P.Sandhya, Fabrication of Gorgeous integer quadruple, Journal of Engineering, Computing and Architecture, Vol.10. Issue 4, Pp.115-123, 2020.
- [9] V. Pandichelvi and S.Saranya, Classification of an exquisite Diophantine 4-tuples bestow with an order, Malaya Journal of Matematik, Vol. 9, No. 1, Pp.612-615, 2021