ESTABLISHMENT OF 4-TUPLES CONCERNING INTEGERS WITH ELITE FEATURE

V. Pandichelvi ${ }^{1}$, B. Umamaheswari ${ }^{2}$
Department of Mathematics ${ }^{1}$
Urumu Dhanalakshmi College, Trichy-620 019, Tamil Nadu, India
(Affiliated to Bharathidasan University)
E-mail: mvpmahesh2017@gmail.com
Department of Mathematics ${ }^{2}$
Meenakshi College of Engineering, Chennai- 600 078, Tamil Nadu, India.
E-mail: bumavijay@gmail.com

Abstract

In this manuscript, a remarkable 4-tuples $(\alpha, \beta, \gamma, \delta)$ with elements are non-zero integers such that the arithmetic mean of any three elements among the four elements listed in this 4 -tuples yields a square number is appraised by applying several techniques in Mathematics.

Keywords: Diophantine quadruples, Ternary quadratic, Diophantine equation

1. Introduction

"A set of m positive integers $\left\{a_{1}, a_{2} \ldots a_{m}\right\}$ is called a Diophantine $m-$ tuple with the property $D(n), n-\{0\} \in Z$ if $a_{i} . a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$ ". In $[3,4]$, the authors initiated how to find Diophantine triples with suitable properties. In [5,6], the authors concentrated on evaluating Diophantine quadruples with an elegant property. For further review of quadruples one can refer $[1,2,7-9]$. In this paper, an integer quadruples ($\alpha, \beta, \gamma, \delta$) where α, β, γ and δ are non-zero integers where the average of any three elements amid the four numbers deliver a square number is explained by following different methods.

2. Procedures of Examinations.

Let $\alpha, \beta, \gamma, \delta$ be distinct non-zero integers such that the average of any three among these four elements stay a perfect square. Originate with the exact postulation as given below:

$$
\begin{align*}
& \alpha+\beta+\gamma=3 p^{2} \tag{1}\\
& \alpha+\beta+\delta=3 q^{2} \tag{2}\\
& \alpha+\gamma+\delta=3 r^{2} \tag{3}\\
& \beta+\gamma+\delta=3 s^{2} \tag{4}
\end{align*}
$$

concurrently with the supplementary proposition that

$$
\begin{equation*}
\alpha+\beta+\gamma+\delta=z^{2} \tag{5}
\end{equation*}
$$

By making simple arithmetical calculations in the simultaneous equations (1), (2), (3) and (4), the values of α, β, γ and δ are declared as follows

$$
\begin{align*}
& \alpha=p^{2}+q^{2}+r^{2}-2 s^{2} \tag{6}\\
& \beta=p^{2}+q^{2}+s^{2}-2 r^{2} \tag{7}\\
& \gamma=p^{2}+r^{2}+s^{2}-2 q^{2} \tag{8}\\
& \delta=q^{2}+r^{2}+s^{2}-2 p^{2} \tag{9}
\end{align*}
$$

Addition of all the above four equations from (6) to (9) offers the successive equation

$$
\begin{equation*}
\alpha+\beta+\gamma+\delta=p^{2}+q^{2}+r^{2}+s^{2} \tag{10}
\end{equation*}
$$

Comparing equation (5) and (10), it is noted that

$$
\begin{equation*}
z^{2}=p^{2}+q^{2}+r^{2}+s^{2} \tag{11}
\end{equation*}
$$

Procedure 1.

Undertaking the new linear modifications $p=m+n, q=m+7 n, r=m-n, s=m-7 n$ where $m \neq n \neq 0$ in (6), (7), (8) and (9), the corresponding values of α, β, γ and δ in two variables are offered subsequently by

$$
\begin{align*}
& \alpha=m^{2}-47 n^{2}+42 m n \tag{12}\\
& \beta=m^{2}+97 n^{2}+6 m n \tag{13}\\
& \gamma=m^{2}-47 n^{2}-42 m n \tag{14}\\
& \delta=m^{2}+97 n^{2}-6 m n \tag{15}
\end{align*}
$$

Relieving the same conversions in (11) ensurethe following famous Pythagoreans equation

$$
\begin{equation*}
z^{2}=(2 m)^{2}+(10 n)^{2} \tag{16}
\end{equation*}
$$

The process of executing the quadruples $(\alpha, \beta, \gamma, \delta)$ wherethe average of three among four elements stand for a square number by solving (16) in two different proposals are enlightened below.

Proposal 1.1.

The Pythagorean equation (16) is fulfilled by

$$
\begin{align*}
& m=\frac{\left(r^{2}-s^{2}\right)}{2} \tag{17}\\
& n=\frac{r s}{10} \tag{18}
\end{align*}
$$

Meanwhile our concern is to treasure the parameters in integers, it is experiential that m and n are integers for the ensuing options of r and s

$$
r=2 R \text { and } s=10 S
$$

These selections of r and s reduce (17) and (18)as

$$
\begin{aligned}
& m=2 R^{2}-50 S^{2} \\
& n=4 R S
\end{aligned}
$$

Replacement of the above values of m and n in (12),(13), (14) and (15) convert the preferable values of α, β, γ and δ as follows

$$
\begin{aligned}
& \alpha=4 R^{4}+336 R^{3} S-952 R^{2} S^{2}-8400 R S^{3}+2500 S^{4} \\
& \beta=4 R^{4}+48 R^{3} S+1352 R^{2} S^{2}-1200 R S^{3}+2500 S^{4} \\
& \gamma=4 R^{4}-336 R^{3} S-952 R^{2} S^{2}+8400 R S^{3}+2500 S^{4} \\
& \delta=4 R^{4}-48 R^{3} S+1352 R^{2} S^{2}+1200 R S^{3}+2500 S^{4}
\end{aligned}
$$

The table below contains numerical values for a few parameters that support the proposal.

R	S	α	β	γ	δ	$\frac{\alpha+\beta+\gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha+\gamma+\delta}{3}$	$\frac{\beta+\gamma+\delta}{3}$
2	3	-277244	187588	613828	314884	$(418)^{2}$	$(274)^{2}$	$(466)^{2}$	$(610)^{2}$
3	2	-177404	62788	189508	115204	$(158)^{2}$	$(14)^{2}$	$(206)^{2}$	$(350)^{2}$
4	1	-23804	23428	388	26884	$(2)^{2}$	$(94)^{2}$	$(34)^{2}$	$(130)^{2}$
6	2	-349952	203008	166144	276736	$(80)^{2}$	$(208)^{2}$	$(176)^{2}$	$(464)^{2}$

Proposal 1. 2.

Let us designate an additional solution of (16) be

$$
\begin{equation*}
m=r s \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
n=\frac{\left(r^{2}-s^{2}\right)}{10} \tag{20}
\end{equation*}
$$

For receiving an integer solution of equation (16), let us prefer the fortuitous of r and s as given below.

$$
\begin{aligned}
& r=10 R \text { and } \\
& s=10 S
\end{aligned}
$$

Hence, (19) and (20) are developed into

$$
\begin{aligned}
& m=100 R S \\
& n=10 R^{2}-10 S^{2}
\end{aligned}
$$

Substituting the above-mentioned values of m and n in (12), (13), (14) and (15)), the comparable values of α, β, γ and δ are turned into

$$
\begin{aligned}
& \alpha=-4700 R^{4}+42000 R^{3} S+19400 R^{2} S^{2}-42000 R S^{3}-4700 S^{4} \\
& \beta=9700 R^{4}+6000 R^{3} S-9400 R^{2} S^{2}-6000 R S^{3}+9700 S^{4} \\
& \gamma=-4700 R^{4}-42000 R^{3} S+19400 R^{2} S^{2}+42000 R S^{3}-4700 S^{4} \\
& \delta=9700 R^{4}-6000 R^{3} S-9400 R^{2} S^{2}+6000 R S^{3}+9700 S^{4}
\end{aligned}
$$

Algebraic Computations of an essential triples are enumerated below for few chances of the newly introduced parameters R and S.

R	S	α	β	γ	δ	$\frac{\alpha+\beta+\gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha+\gamma+\delta}{3}$	$\frac{\beta+\gamma+\delta}{3}$
2	3	-1017500	422500	1502500	782500	$(550)^{2}$	$(250)^{2}$	$(650)^{2}$	$(950)^{2}$
3	2	1502500	782500	-1017500	422500	$(650)^{2}$	$(950)^{2}$	$(550)^{2}$	$(250)^{2}$
4	1	1622500	2702500	-3417500	1982500	$(550)^{2}$	$(1450)^{2}$	$(250)^{2}$	$(650)^{2}$
6	2	12755200	13676800	-19500800	9068800	$(1520)^{2}$	$(3440)^{2}$	$(880)^{2}$	$(1040)^{2}$

Procedure 2.

A tactic of an alternative translations $p=m+n, q=m-n, r=m+3 n$ and $s=m-3 n$ where $m \neq n \neq 0$ in (6), (7), (8) and (9)deliver the assessment of α, β, γ and δ as follows

$$
\begin{equation*}
\alpha=m^{2}-7 n^{2}+18 m n \tag{21}
\end{equation*}
$$

$$
\begin{align*}
& \beta=m^{2}-7 n^{2}-18 m n \tag{22}\\
& \gamma=m^{2}+17 n^{2}+6 m n \tag{23}\\
& \delta=m^{2}+17 n^{2}-6 m n \tag{24}
\end{align*}
$$

Reservation of the same alterations in (11)leads to an equation of the form as below

$$
\begin{equation*}
z^{2}=(2 m)^{2}+20 n^{2} \tag{25}
\end{equation*}
$$

Applying few methods of solving (25), an estimation of a gorgeous integer quadruple fulfilling the condition that the average of three quantities stays a square number is established as follows.

Proposal 2. 1.

By considering the general solutions to the equation of the form $z^{2}=D x^{2}+y^{2}$ where D is a square free integer, the choice of m, n and z attained from (25) are as given below

$$
\begin{align*}
& m=\frac{1}{2}\left[a^{2}-20 b^{2}\right] \\
& n=2 a b \tag{26}\\
& z=a^{2}+20 b^{2}
\end{align*}
$$

In order to find out an integer solution, striking the replacement as $a=2 A$ and b is an arbitrary value in (26), the equivalent values m, n and z are revealed by

$$
\begin{aligned}
& m=2 A^{2}-10 b^{2} \\
& n=4 A b \\
& z=4 A^{2}+20 b^{2}
\end{aligned}
$$

Exchanging the values of m and n in (21), (22), (23) and (24), the exact chances of the non-zero parameters α, β, γ and δ are turned out to be

$$
\begin{aligned}
& \alpha=4 A^{4}+144 A^{3} b-152 A^{2} b^{2}-720 A b^{3}+100 b^{4} \\
& \beta=4 A^{4}-144 A^{3} b-152 A^{2} b^{2}+720 A b^{3}+100 b^{4} \\
& \gamma=4 A^{4}+48 A^{3} b+232 A^{2} b^{2}-240 A b^{3}+100 b^{4} \\
& \delta=4 A^{4}-48 A^{3} b+232 A^{2} b^{2}+240 A b^{3}+100 b^{4}
\end{aligned}
$$

Numerical illustrations for some positive values of \boldsymbol{A} and \boldsymbol{b} filling the supposition are presented in the below table.

A	b	α	β	γ	δ	$\frac{\alpha+\beta+\gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha+\gamma+\delta}{3}$	$\frac{\beta+\gamma+\delta}{3}$
2	3	-32732	38116	4708	28324	$(58)^{2}$	$(106)^{2}$	$(10)^{2}$	$(154)^{2}$
3	2	-13052	5956	7108	13444	$(2)^{2}$	$(46)^{2}$	$(50)^{2}$	$(94)^{2}$
4	1	5028	-7644	6948	2724	$(38)^{2}$	$(6)^{2}$	$(70)^{2}$	$(26)^{2}$
6	2	12544	-42752	49408	30976	$(80)^{2}$	$(16)^{2}$	$(176)^{2}$	$(112)^{2}$

Proposal 2.2.

Subcase 2.2.1.

Factorization of (25) provides the following equation

$$
\begin{equation*}
(z+2 m)(z-2 m)=20 n^{2} \tag{27}
\end{equation*}
$$

The overhead equation can be inscribed in the fraction form as

$$
\begin{equation*}
\frac{(z-2 m)}{(20 n)}=\frac{(n)}{(z+2 m)}=\frac{a}{b}, b \neq 0 \tag{28}
\end{equation*}
$$

Modify (28) into the subsequent form of double equations

$$
\begin{align*}
& z b-2 b m-20 a n=0 \tag{29}\\
& a z+2 a m-b n=0 \tag{30}
\end{align*}
$$

Resolving (29) and (30) by cross multiplication rule, the values of m, nand z needed for accomplishing an integer solution of (25) are furnished as

$$
\begin{aligned}
& m=-20 a^{2}+b^{2} \\
& n=4 a b \\
& z=40 a^{2}+2 b^{2}
\end{aligned}
$$

Transmitting the values of m and n in (21), (22),(23) and (24), the precise options of α, β, γ and δ are converted into

$$
\begin{aligned}
& \alpha=400 a^{4}-144 a^{3} b-152 a^{2} b^{2}+72 a b^{3}+b^{4} \\
& \beta=400 a^{4}+144 a^{3} b-152 a^{2} b^{2}-72 a b^{3}+b^{4} \\
& \gamma=400 a^{4}-480 a^{3} b+232 a^{2} b^{2}+24 a b^{3}+b^{4}
\end{aligned}
$$

$$
\delta=400 a^{4}+480 a^{3} b+232 a^{2} b^{2}-24 a b^{3}+b^{4}
$$

Examples for few positive values of \boldsymbol{a} and \boldsymbol{b} gratifying the proposition are given in the succeeding table.

a	b	α	β	γ	δ	$\frac{\alpha+\beta+\gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha+\gamma+\delta}{3}$	$\frac{\beta+\gamma+\delta}{3}$
2	3	-29663	31681	4609	25057	$(47)^{2}$	$(95)^{2}$	$(1)^{2}$	$(143)^{2}$
3	5	-168575	166225	29425	141025	$(95)^{2}$	$(215)^{2}$	$(25)^{2}$	$(335)^{2}$
4	1	8097	191841	75489	136737	$(303)^{2}$	$(335)^{2}$	$(271)^{2}$	$(367)^{2}$
6	2	-122096	1115152	3456616	758032	$(668)^{2}$	$(764)^{2}$	$(572)^{2}$	$(860)^{2}$

Subcase 2.2.2.

Rewrite (27) in the ratio as

$$
\frac{(z-2 m)}{n}=\frac{20 n}{(z+2 m)}=\frac{a}{b}, b \neq 0
$$

Applying the same technique as explained in subcase (i), the particular selections of the elements in the quadruple are expressed by

$$
\begin{aligned}
& \alpha=a^{4}-72 a^{3} b-152 a^{2} b^{2}+1440 a b^{3}+400 b^{4} \\
& \beta=a^{4}+72 a^{3} b-152 a^{2} b^{2}-1440 a b^{3}+400 b^{4} \\
& \gamma=a^{4}-24 a^{3} b+232 a^{2} b^{2}+480 a b^{3}+400 b^{4} \\
& \delta=a^{4}+24 a^{3} b+232 a^{2} b^{2}-480 a b^{3}+400 b^{4}
\end{aligned}
$$

Some models are acknowledged in the subsequent table.

a	b	α	β	γ	δ	$\frac{\alpha+\beta+\gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha+\gamma+\delta}{3}$	$\frac{\beta+\gamma+\delta}{3}$
2	3	102976	-49088	66112	15424	$(200)^{2}$	$(152)^{2}$	$(240)^{2}$	$(104)^{2}$
3	5	746161	-314399	479041	125521	$(551)^{2}$	$(431)^{2}$	$(671)^{2}$	$(311)^{2}$
4	1	-624	-2928	4752	3984	$(20)^{2}$	$(12)^{2}$	$(52)^{2}$	$(44)^{2}$
6	2	23824	-52208	53776	28432	$(92)^{2}$	$(4)^{2}$	$(188)^{2}$	$(100)^{2}$

Subcase 2.2.3.

Redraft (27) as

$$
\frac{(z+2 m)}{20 n}=\frac{n}{(z-2 m)}=\frac{a}{b}, b \neq 0
$$

By manipulating the identical procedure as clarified in subcase (i), the specific collections of the elements in an essential quadruples are articulated by

$$
\begin{aligned}
& \alpha=400 a^{4}+1440 a^{3} b-152 a^{2} b^{2}-72 a b^{3}+b^{4} \\
& \beta=400 a^{4}-1440 a^{3} b-152 a^{2} b^{2}+72 a b^{3}+b^{4} \\
& \gamma=400 a^{4}+480 a^{3} b+232 a^{2} b^{2}-24 a b^{3}+b^{4} \\
& \delta=400 a^{4}-480 a^{3} b+232 a^{2} b^{2}+24 a b^{3}+b^{4}
\end{aligned}
$$

The following table offered numerical values for limited choice of the parameters rewarding the hypothesis.

a	b	α	β	γ	δ	$\frac{\alpha+\beta+\gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha+\gamma+\delta}{3}$	$\frac{\beta+\gamma+\delta}{3}$
2	3	17169	-5583	11121	3537	$(87)^{2}$	$(71)^{2}$	$(103)^{2}$	$(55)^{2}$
3	2	102976	-49088	66112	15424	$(200)^{2}$	$(152)^{2}$	$(248)^{2}$	$(104)^{2}$
3	4	152464	-130928	113296	18832	$(212)^{2}$	$(116)^{2}$	$(308)^{2}$	$(20)^{2}$
6	3	1390689	-452223	900801	286497	$(783)^{2}$	$(639)^{2}$	$(927)^{2}$	$(495)^{2}$

Subcase 2.2.4.
Alternate (27) as

$$
\frac{(z+2 m)}{n}=\frac{20 n}{(z-2 m)}=\frac{a}{b}, b \neq 0
$$

As in subcase (i), the gathering of the elements in the crucial quadruple are expressed by

$$
\begin{aligned}
& \alpha=a^{4}+72 a^{3} b-152 a^{2} b^{2}-1440 a b^{3}+400 b^{4} \\
& \beta=a^{4}-72 a^{3} b-152 a^{2} b^{2}+1440 a b^{3}+400 b^{4} \\
& \gamma=a^{4}+24 a^{3} b+232 a^{2} b^{2}-480 a b^{3}+400 b^{4}
\end{aligned}
$$

$$
\delta=a^{4}-24 a^{3} b+232 a^{2} b^{2}+480 a b^{3}+400 b^{4}
$$

Numerical characters for selected choices of \boldsymbol{a} and \boldsymbol{b} gratifying the proposal are presented in the below table.

a	b	α	β	γ	δ	$\frac{\alpha+\beta+\gamma}{3}$	$\frac{\alpha+\beta+\delta}{3}$	$\frac{\alpha+\gamma+\delta}{3}$	$\frac{\beta+\gamma+\delta}{3}$
2	3	-2496	2112	576	2112	$(8)^{2}$	$(24)^{2}$	$(8)^{2}$	$(40)^{2}$
3	2	-29663	31681	4609	25057	$(47)^{2}$	$(95)^{2}$	$(1)^{2}$	$(143)^{2}$
3	4	-188111	349297	46321	225457	$(263)^{2}$	$(359)^{2}$	$(167)^{2}$	$(455)^{2}$
6	3	-202176	171072	46656	171072	$(72)^{2}$	$(216)^{2}$	$(72)^{2}$	$(360)^{2}$

The Python Program for the authentication of the needed quadruples fulfilling our statement is epitomized below.

```
import mat
w}\squareile True
    T = input("Enter your c\squareoice part A of B :")
    if T in ('A'):
    c = input("Enter c\squareoice(1/2): ")
    if c in ('1', '2'):
        r= int(input('Enter a Number r : ))
        s=\operatorname{int(input('Enter t\squaree second number s: ))}
    if (c== '1'):
        m=2*r ** 2-50*s** 2
        n=4*r*s
    elif(c== '2'):
        m=100*r*s
        n=10*r**2-10*s**2
    else:
        print('Invalid Input')
        break
    p=m**2-47*n**2+42*m*n
    q=m**2+97*n**2+6*m*n
    r=m**2-47*n**2-42*m*n
    s=m**2+97*n**2-6*m*n
    a1=(p+q+r)/3
    a2=(p+q+s)/3
```

```
a3=(p+r+s)/3
a4=(q+r+s)/3
if (a1<0):
    a11=-1*a1
    x = pow(a11,1/2)
else:
    x = pow(a1,1/2)
if (a1<0):
    x=-x
if (a2<0):
    a21 = -1 *a2
    y=pow(a21,1/2)
else:
    y=pow(a2,1/2)
if (a2<0):
    y= -y
if (a3<0):
    a31=-1*a3
    z=pow(a31,1/2)
else:
        z=pow(a3,1/2)
if (a3<0):
        z=-z
if (a4<0):
    a41 = -1*a4
    xx = pow(a41,1/2)
else:
        xx = pow(a4,1/2)
if (a4<0):
    xx = -xx
print('p:',p)
print('q:',q)
print('r:',r)
print('s:',s)
print('(p+q+r)/3: ',int(x), '^2')
print('(p+q+s)/3: ',int(y), '^2')
print('(p+r+s)/3: ',int(z),`^2')
print('(q+r+s)/3: ', int(xx),'^2')
```

```
elif \(T\) in ('B'):
    \(c=\operatorname{input}(\) 'Enter your \(c \square\) oice 3/4/5/6/7 : )
    if c in ('3', '4', '5', '6', '7):
        \(a=\operatorname{int}(\) input('Enter a Number \(a: ~ '))\)
        \(b=\operatorname{int}(\) input('Enter \(t \square\) e second number \(b:\) ))
    if \(\left(c=={ }^{\prime} 3^{\prime}\right)\) :
        \(m=-10 * b * * 2+2 * a * * 2\)
        \(n=4 * a * b\)
    elif( \(c=={ }^{\prime} 4\) ):
        \(m=b * * 2-20 * a * * 2\)
        \(n=4 * a * b\)
    \(\operatorname{elif}(c==15)\) :
        \(m=-a * * 2+20 * b * * 2\)
        \(n=4 * a * b\)
    elif( \(c==\) '6):
        \(m=-20 * a * * 2+b * * 2\)
        \(n=-4 * a * b\)
    elif( \(c==\) '7):
        \(m=-a * * 2+20 * b * * 2\)
        \(n=-4 * a * b\)
    else:
        print('Invalid Input')
        break
    \(p=m * * 2-7 * n * * 2+18 * m * n\)
    \(q=m * * 2-7 * n * * 2-18 * m * n\)
    \(r=m * * 2+17 * n * * 2+6 * m * n\)
    \(s=m * * 2+17 * n * * 2-6 * m * n\)
    \(a 1=(p+q+r) / 3\)
    \(a 2=(p+q+s) / 3\)
    \(a 3=(p+r+s) / 3\)
    \(a 4=(q+r+s) / 3\)
    if \((a 1<0)\) :
        \(a 11=-1 * a 1\)
        \(x=\operatorname{pow}(a 11,1 / 2)\)
```

```
else:
    x = pow(a1,1/2)
if (a1<0):
        x=-x
if (a2<0):
        a21=-1*a2
        y=pow(a21,1/2)
else:
        y=pow(a2,1/2)
if (a2<0):
        y= -y
if (a3<0):
        a31=-1*a3
        z = pow(a31,1/2)
else:
        z=pow(a3,1/2)
if (a3<0):
        z=-z
if (a4<0):
        a41 = -1 *a4
        xx = pow(a41,1/2)
else:
        xx = pow(a4,1/2)
if (a4<0):
    xx = -xx
print('p:',p)
print('q:',q)
print('r:',r)
print('s:',s)
print('(p+q+r)/3: ',int(x), '^2')
print('(p+q+s)/3: ',int(y), '^2')
print('(p+r+s)/3: ',int(z), '^2')
print('(q+r+s)/3: ',int(xx), '^2)
```


Conclusion.

In this communication, the quadruple $(\alpha, \beta, \gamma, \delta)$ in which the average of any three numbers remains a square of an integer is examined. To conclude, one can explore stimulating quadruples and quintuples such that geometric mean of two or three numbers is a square of an integer.

References.

[1] Dickson, L.E., History of Theory of Numbers, Vol.2,Chelsea Publishing company, NewYork, 1952.
[2] Mordell LJ. Diophantine Equations, Academic Press, New York, 1969.
[3] M.N.Deshpande, Families of Diophantine triplets, Bulletin of the Marathwada Mathematical Society, 4(2003), Pp.19-21
[4] Y.Bugeaud, A.Dujella and M.Mignotte, on the family of Diophantine triples $\left\{k-1, k+1,16 k^{3}-4 k\right\}$, Glasgow Math. J. 49(2007), Pp.333-344
[5] M. A. Gopalan, V. Geetha, V. Kiruthika, "On Two Special Integer Triples in Arithmetic Progression", Open Journal of Applied \& Theoretical Mathematics (OJATM), Vol. 2, No. 1, March 2016, Pp 01-07.
[6] M. A. Gopalan, V. Sangeetha, "An Interesting Diophantine Problem", Open Journal of Applied \& Theoretical Mathematics (OJATM), Vol. 2, No. 2, June 2016, Pp 42-47.
[7] V. Pandichelvi and P.Sivakamasundari, Evaluation of an attractive integer triple, Assian Journal of Science and technology, Vol.8, issue 11, Pp.6534-6540, 2017.
[8] V. Pandichelviand P.Sandhya, Fabrication of Gorgeous integer quadruple, Journal of Engineering, Computing and Architecture, Vol.10. Issue 4, Pp.115-123, 2020.
[9] V. Pandichelvi and S.Saranya, Classification of an exquisite Diophantine 4-tuples bestow with an order, Malaya Journal of Matematik, Vol. 9, No. 1, Pp.612-615, 2021

