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I. INTRODUCTION  

       Proportional-integral-derivative (PID) 

controllers are used frequently in industry 

because they have worked well in the past. 

As many practical system are MIMO in 

nature, the PID controllers are mostly 

designed via (i) decentralized control (ii) 

decoupler based PID control. However, if 

the system is heavily coupled or the 

interaction is significant the compensated 

system frequently suffers from a lack of 

resilience and performance. Because of the 

addition of the decoupler, the overall 

compensator becomes more complex. 

 

Designing a multivariable PID controller, a 

2 DOF helicopter system is considered [1], 

from which the systems dynamics and state 

space model is found. A multi-input multi-

output system's linear quadratic regulator 

(LQR) approach [2] has been utilised in 

attempts to create coupled or MIMO PID 

controllers for multivariable PID 

controllers. Similar to the characteristics of 

a helicopter, the twin rotor multiple-input 

and multiple-output (MIMO) system 

(TRMS) is a two-input, two-output, highly 

non-linear and unstable system. By 

developing a decentralised controller, [3] 

one desirable objective for controlling such 

a system is attained. If the off-diagonal 

terms are high, it affects the output 

performance of the system. The MIMO 

system is approximated as an advantage of 

independent SISO systems. For this 

purpose, first design the PID controller then 

transform it to static output feedback 

system[4].There are also some results 

available in [5-11]. In summary, the 

method calls for either a state observer, a 

particular plant model, or a plant that has a 

certain state space description. In order to 

compute the state feedback gain by use of a 

centralised controller that is modelled after 

a linear quadratic regulator (LQR). 

 

 

II. 2 DOF HELICOPTER 

          

   A standard laboratory model for the 

theoretical study of helicopter controls and 

the verification of the control algorithm is 

the two-degrees-of-freedom (DOF) 

helicopter system. It possesses certain 

similarities to the features of a helicopter, 

such as the fact that it is mounted on a 

stationary base and has two propellers that 

are powered by two DC motors. As 

indicated in figure, the forward propeller is 

responsible for elevating the nose of the 

helicopter about the pitch axis, while the 

rear propeller is responsible for controlling 

the movement of the helicopter laterally 

around the yaw axis.-1. The movement of 

the helicopter in a side-to-side direction is 

controlled by the rear propeller, which 

rotates about the yaw axis. The front 

propeller is responsible for elevating the 

nose of the helicopter on the pitch axis. The 

position of the controller's pitch and yaw 

angles will be controlled by it. This is the 

controller's primary function. 

 

 

Figure 1: Dynamics of heliopter system 

 

 Though it is a multi input multi output 

system it is difficult to control, so to design 

the controller the dynamics of the system is 

needed. Using the Eulers-lagrange formula, 

the nonlinear equations of the motion of the 

system is found, and then linearised about 

the equilibrium point to get the linear state 

space model of the system. 
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III. TRANSFER FUNCTION OF THE 

MODEL 

 

The linearised system can be written as 
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Where we can get the values of A, B, C, D 

matrices from [1]. Table 1 listed below the 

main parameters associated with the model. 

 

Table 1 

Symbol Description Values 

PB  It represent the 

viscoelastic damping 

equal along the pitch 

axis 

0.8 

yB  It represent the 

viscoelastic damping 

about the yaw axis 

0.318 

peqJ _  Moment of inertia (MI) 

about the pitch axis 

0.0384 

yeqJ _  Total MI about yaw 

axis 

0.0432 

helim  Total moving mass of 

the helicopter 

1.3872 

cml  Center of mass length 

along helicopter 

0.0186 

PPK  Thrust force constant 

of yaw motor/propeller 

0.204 

PYK  Thrust torque constant 

acting on pitch axis         

0.0068 

yyK  Thrust torque constant 

acting on yaw axis            

0.072 

 

The correspondence helicopter state space 

matrices are 
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The transfer function of plant matrix can be 

calculated as follows, 

 
1

P C sI A B D


    




































234

2

234

2

234

2

234

2

2925.327475.12

3101.77894.0

2925.327475.12

2744.00787.0
2925.327475.12

2343.82401.0

2925.327475.12

2343.83613.2

sss

ss

sss

ss
sss

ss

sss

ss

 

 

         It can be seen that from the 

denominator part of the transfer function 

that two poles are at origin. Thus the 

system is an unstable system. It also 

obvious that, there is a strong relationship 

between the input of the main rotor ( 1u ) 

and the yaw angle ( ). 

 

IV. DESIGN OBJECTIVE 

   Objective is to design the controller on 

the basis of the linear model. The system's 

nonlinear equations are then linearized 

about the operational point. The internal 
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workings of the MIMO PID controller are 

shown in Figure 2. 

 
Fig.2. MIMO PID controller 

 

Consider the linear time invariant plant 

         
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The system's control input equation is 

written as 
0

( )

t

p i d

dq
u K q K r t dt K

dt
      (2) 

   

 Where, u  Rm denotes control input, p 

Rn  denotes state vector, and q Rn 

denotes output vector in fig 1. r Rp is the 

reference vector and Kp, Ki and Kd Rm p 

are the gains that need to be designed into 

the matrices. 

 

V. PROBLEM FORMULATION 

To calculate the gain values, we transfer the 

PID control problem to static output 

feedback control by introducing a new state 

variable. This new state variable, 

0

( )

t

r q dt    in conjunction with system 

(1), produces an augumentated system, 

which is presented in the following 

equation. 
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Then by substituting q cp  in equation (2) 

we get, 

p i du K Cp K K Cp                            (3) 

 

Now by substituting p Ap Bu  in (3) we 

have, 

   
1

d p p iu I K CB K C K Cp p K 

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From which we obtain the PID parameters 

as 

  ,i d iK I K CB K     

 p d pK I K CB K  ,  

 
1

d d dK K I CBK


                  (4)                

The information presented above makes it 

clear that translation from PID to control to 

state feedback control is feasible when both 

(I- KdCB) and (I+ KdCB) are invertible. 

This is necessary for the transformation to 

take place. It is the necessary condition as 

well as the sufficient one. 

 

Consider the Linear time invariant system  

,z Az Bu Er

q Cz

  


                (5) 

 Linear quadratic method is an easy method 

to find out the gains of the system. Here we 

have to find a state feedback control law 

u=Kz which minimises the quadratic 

performance cost weighted matrix, which is 

a positive matrix. The optimal gain vector 

is obtained by solving the Where Q is state 

weighted matrix, which is a positive semi 

definite matrix and R is control algebraic 

Riccati equation (ARE) for system (5) with 

r =0. 
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For 0TPP  , then the optimal gain 

vectors is 
1 TK R B P                 (7) 

The minimal cost is denoted by 

)0()0(* PzzJ T , where z(0) is the vector 

representing the beginning state. The 

MATLAB programme 'lqr' can be used to 

quickly and easily resolve the issue 

described above. 

 Now from equation (4) we get our gains in 

vector from. As we can see the gains are 

now in matrix form off-diagonal terms are 

not zero, we are having enhance tunable 

parameter which will help to satisfy the 

better performance than decentralized 

controller. 

 

 VI. SIMULATION RESPONCE  

 To ensure the stability, the above designed 

PID block was studied through simulations 

 

Fig:-output1 is for step input for 1(t) and 

output 2 is for step input for 2(t-1000). 

 

Here is a example of the robustness  

response of  quadraple tank[2] is shown in 

fig:-3. 

 

Fig:-3  

     

   From the output response of the system 

we can see that when one output is 

controlled, another output is not affected 

which yields decoupling behavior of the 

proposed control design. On other hand, the 

decentralized controller fails to guaranty 

decoupling behavior.  

 

VII. CONCLUSION 

The helicopter system will operate to LQR 

standards, the I-PD controller was 

developed for it. According to the findings 

of the simulation, the suggested controller 

is capable of achieving decoupling in the 

responses, as well as improved  transient 

and steady-state performance than the 

decentralized PID controller. 

 

REFERENCES 

[1] Quanser.Q4/Q8 User Manual 

[2] Pradhan J.K, Ghosh. A: ‘Multi-input 

and Multi-output proportional-integral-

derivative controller design via linear  

quadratic regulator-linear matrix inequality 

approach’, IET Control Theory & 

Applications, 2015,vol 9., pp.2140-

2145. 

[3] Pradhan J.K., Ghosh A.: ‘Design and 

implementation of decoupled 

compensation for a twin rotor multiple-

input and multiple-output system’, IET 

Control Theory & 

Applications,2012,vol 7, pp.282-289 

[4] Ge, M., Chiu, M.S., Wang, Q.G.: 

‘Robust PID controller design via LMI 

approach’, J. Process. Control, 2002, 

vol. 12, pp. 3–13 

[5] Wang, Q.G., Ye, Z., Cai, W.J., Hang, 

C.C.: ‘PID control for multivariable 

processes’ Vol. 373, (Springer, 2008) 

[6] Zhang, Y., Shieh, l.S., Dunn, A.C.: 

‘PID controller design for disturbed 

multivariable  systems’, IEE Proc. 

Control Theory Appl., 2004, 151, pp. 

567–576 

[7] Mukhopadhyay, S.: ‘P.I.D. equivalent 

of optimal regulator’, Electron. Lett., 

1978, vol 14, pp. 821–822 



Multivariable I-PD compensation of helicopter system 
 

Section A-Research paper 

  

Eur. Chem. Bull. 2023, 12(Special Issue 9), 2239-2244                         2244 

[8] Silva, E.I., Erraz, D.A.: ‘An LQR based 

MIMO PID controller synthesis 

method for unconstrained lagrangian 

mechanical systems’. IEEE Conf. on 

Decision and Control, San Diego, CA, 

USA, December 2006, pp. 6593–6598 

 

 


