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Abstract  

 

More and more devices are exchanging data via the Internet of Things (IoT), which increases the quality of IoT 

facilities. There are various vulnerabilities, security weaknesses, and attack vectors in IoT systems that represent 

a long-term security issue. To realise the full potential of IoT applications, billions of linked devices must be 

secured. Information on IoT is vulnerable to threats, assaults, and flaws. To solve IoT-related security, privacy, 

and vulnerability challenges, a strong security solution is required. Many scientists have previously suggested 

solutions for security in IoT. Deep Learning is one of the most promising techniques for protecting IoT systems 

in recent years, and Reinforcement Learning is gaining popularity in this regard. Unlike other deep learning 

approaches, reinforcement learning may learn the environment with a little amount of data about the parameters 

to be learnt. Deep reinforcement learning (DRL) methods may be capable of dealing with the aforementioned 

challenges related with IoT devices in the near future. In this paper, the Deep Reinforcement Learning (DRL) 

approach is introduced to increase IoT security. This study presents quantum computing for feature selection, 

and to securely transmit data, the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) method has been 

built for an IoT system, and its performance is compared with traditional approaches. The suggested solution 

allowed for safe and scalable data transmission. The accuracy obtained by the proposed system is higher when 

compared to the other approaches. 
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1. Introduction 

 

A physical and digital world are linked through the 

Internet of Things (IoT). Using this technology, 

machines communicate with each other to solve 

simple to difficult tasks (Olowononi et al. 2020). In 

the physical and digital world, data is transferred 

through sensors and actuators. As a result of 

sensors, data will be collected and analyzed so that 

a service can be offered to the user. By adding 

intelligence to machines, it has changed human 

living significantly, and it will eventually improve 

the standard of living. The IoT has significantly 

increased internet usage by connecting all physical 

devices within a network. IoT smart devices 

generate health information, geographic 

information, and security data. IoT can give 

services of the highest caliber via sharing data. 

Direct data interchange in the IoT, on the other 

hand, poses the following issues. Participants in 

data sharing, for example, find it difficult to trust 

one another. As a result, determining ways to 

assure the dependability of shared data may be 

difficult. Furthermore, due to privacy concerns (Jan 

et al. 2019), participants are unwilling to provide 

their personal data in the absence of suitable 

privacy preservation procedures. In order to ensure 

data dependability and data privacy, data sharing 

should provide both data security involves keeping 

the integrity, legitimacy, and validity of the 

information while safely preserving and 

transmitting it. The confidentiality of data can be 

maintained if only authorised individuals are 

permitted access (Tang et al. 2018). Protection 

strategies can be determined by analyzing the 

expectations, goals, and requirements. Machine 

learning-based privacy protection has gained a lot 

of interest with the advancement of AI 

(Meneghello et al. 2019). Uprety et al. 2021 

describe reinforcement learning as a machine 

learning method that optimizes numerical rewards 

through interactions with the environment. The 

human brain communicates with its circumstances, 

which it then uses to grasp and withstand existence 

in that context. RL employs the sensory perception 

system and brain as an example for environmental 

learning. The process involves an agent examining 

the entire system in order to comprehend it. It is not 

practical in many cases, as convergence and 

finding an optimal policy take a long time. 

Dimensionality is a curse on traditional RL. As the 

world becomes more complicated, the RL agent's 

constraints to learn increases exponentially. One 

alternative is deep reinforcement learning (DRL), a 

hybrid of deep learning model and reinforcement 

learning (RL). This research focuses on how RL 

has been used to protect IoT technology. The main 

contribution of the work is, 

 This study presented an attack 

detection approach based on feature 

selection and reinforcement learning 

that can effectively pick the optimal 

set of attributes and maximize the 

effectiveness of IoT attack 

identification, especially the 

prediction of unknown network 

attacks. 

 Introduced a quantum computing-

based algorithm for selecting features 

that quantizes particular functions of 

conventional feature selection 

algorithms in order to boost 

performance by converting 

conventional feature selection 

techniques to quantum counterparts. 

 A deep reinforcement learning model 

is developed for the detection and 

categorization of attack data in an IoT 

network, which accurately identifies 

unknown assaults. 

 Finally, Ciphertext-Policy Attribute-

Based Encryption algorithm is 

proposed for the encryption of data to 

securely transmit data within the 

network. 

The organization of the work is as follows, In 

Section 2 the related works are presented, Section 3 

describes the proposed methodology in detail, 

Section 4 presented the experimental results and 

Section 5 concludes the work.  

 

Literature survey 

To identify and avoid Sybil assaults in an IoT 

environment, Thuluva et al. (2021) suggested 

combining the traditional Caesar Cipher Algorithm 

(CCA) with the lightweight encryption algorithm 

(LEA) and the Received Signal Strength Indicator 

(RSSI). The proposed method identifies the 

dishonest nodes in a specific route by broadcasting 

the assault on a different node. Furthermore, it 

stops the onslaught by sending data packets to the 

designated users in a different manner. To provide 

identity, confidentiality, and information veracity, 

the lightweight encryption approach with a 64-bit 

key is used with AODV as the routing protocol. 

Jebri et al. (2021) developed a lightweight secure 

IoT system using Pseudonym Based 

Cryptography, Elliptic Curve Cryptography, 

and Identity Based Encryption. The proposed 

method covers the great majority of security 

problems while also allowing for trust registration 

and anonymous authentication mechanisms. 

Furthermore, by utilising connection direction 

anonymity, the solution tackles the intractability 

problem between IoT nodes. Jian et al. (2021) 

proposed Hybrid Internet Of Things Data 

Transmission Security as an alternative to Device 
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Verification. Every Iot systems were identified and 

recognized independently. 

Kandhoul et al. (2021) proposed a novel defence 

strategy for GFRSA,  A Green Forwarding ratio,  

OppIoT, and RSA (Rivest, Shamir, and Adleman)-

based safe routing mechanism. The next hops is 

determined by the node's forwarding activity, 

present energy levels, and information transmission 

probability estimation. To strengthen the protocol's 

reliability, messages are encrypted prior 

transmission through asymmetric cryptography. 

Mondal et al. (2022) proposed a secure and energy-

efficient healthcare monitoring system to reduce 

the data gathering system's energy usage and 

transmission expenses. On the other hand, it also 

allows safe data transfer by implementing a 

lightweight security mechanism based on Cipher 

Block Chaining (CBC). The suggested algorithms 

proven to be a viable option for safeguarding and 

prolonging the lifetime of the IoMT network. 

Refaee et al. (2022) proposed an IoT architecture 

for secure and efficient medical data transmission 

by enhanced routing protocol. To minimize the 

data dimensionality, K-nearest Neighbor (KNN) 

imputation and principal component analysis 

(PCA) are utilised. Using local binary patterns that 

have been tweaked, the preprocessed data is 

utilised to extract the features (MLBP). The fuzzy 

dynamic trust-based RPL (FDT-RPL) strategy 

significantly enhances data transmission reliability 

by integrating the butter ant optimization (BAO) 

and fuzzy dynamic trust-based RPL algorithm for 

constrained and lossy networks. 

Sankar and Karthiga (2020) created a framework 

for safe data transfer from an IoT wireless body 

sensor network (WBSN). Authentication, security, 

and load balancing are the three steps of 

implementation. For secure data transfer, optimized 

elliptical curve cryptography (OECC) is used. Load 

balancing is used to allow numerous users on the 

network by employing krill herd load balancing 

(KHLB). 

Quantum walks (QWs) were recommended by El-

Latif et al. (2021) as a cryptographic strategy to 

protect the authenticity of images on smart devices. 

They used QW to permute and integrate the 

original image into the source images after first 

replacing the original image. The proposed visually 

meaningful quantum walks cryptosystem is based 

on this structure and enables safe visual data 

transit. Simulation-based tests show how well the 

presented model performs in relation to visual 

quality, effectiveness, durability, and key space 

sensitivity, as well as its capacity to protect 

intelligent systems. 

Sokol et al. 2021 described a technique for 

decreasing the quantity of data exchanged between 

a server and a Sensor node, with an emphasis on 

transmission security,  bandwidth, and IoT device 

resources. Data compression and the replacement 

of the SSL/TLS cryptographic system with the 

lightweight cryptography which is based on 

Vernam cypher concept accomplish necessary 

reduction. Only device management applications 

continue to use the traditional SSL/TLS protocol. 

An effective method for IIoT outlier identification 

in energy-efficient secured data transmission was 

proposed by SakthidasanSankaran and Kim in 

2023. The primary goal of this technology is to 

provide a safe and private data transit mechanism 

for industrial IoT. The network accomplishes this 

through categorizing assaults using a Robust Multi-

cascaded CNN (RMC-CNN) technique. The 

information is encrypted by the dynamic honeypot 

encryption technique using a key generation 

mechanism. 

In order to transmit secure data in IoT based 

healthcare systems, Kumar et al. 

(2023) developed a Blockchain-orchestrated Deep 

Learning technique . A new scalable blockchain 

design is initially suggested to guarantee data 

integrity and secure information exchange. ZKP, or 

zero knowledge proof, is a method used in this 

design and the InterPlanetary File System (IPFS) 

for off-chain storage to control the expenses of the 

data storage, and an Ethereum platform program to 

handle data security challenges. 

Premkumar and SathyaPriya (2022) developed an 

effective Service Constraint NCBQ (Network 

Condition and Behavior Quality) Trust Orient 

Secure Transmission Protocol (SCNCQB-TSTP). 

The Service Constraint Blockchain Model (SCBM) 

is used in this technique to safeguard data by 

classifying services. The service information was 

encrypted using both specific scheme and key 

based on the service selected by the user. 

Furthermore, information has been kept in a block 

chain for data transit. 

Jan et al. (2021) created a successful data 

protection information embedding technique for a 

cyber-physical system. CLoG, a novel efficacious 

edge detector relying on the Canny and Laplacian 

of Gaussian detectors, was developed in this 

research and is used to find edge regions in digital 

pictures. The surreptitious data was encoded in the 

edges that were discovered. The suggested detector 

identifies finer edge features than existing 

detectors, allowing for more information to be 

disguised in a cover image. As a result, the number 

of cover images needed to transfer secret data is 

reduced, fulfilling the needs of resource-

constrained systems such as IoT. 

Hurrah et al. (2019) developed a security method 

on several levels based on data concealment and 

chaos theory. The approach proposed is based on 

Random Coefficient Selection and Mean 

Modification (RCSMMA). RCSMMA utilizes a 

number of discrete cosines. Transform coefficients 



Section A-Research paper 
Secure data transmission in IoT using Reinforcement learning and 

 Ciphertext-Policy Attribute-Based Encryption 

 
 

Eur. Chem. Bull. 2023, 12 (1), 1299 – 1311                                                                                                                     1302  

drawn at random from two separate blocks to 

guarantee that information is distributed evenly 

over the cover image.  

 

2. Methodology 

 

This section provides an in-depth description of the 

recommended strategy for maintaining information 

security during communication in IoTs. Data 

confidentiality is a crucial need that may be 

fulfilled by using a secure encryption mechanism 

because data in an IoT network goes via several 

hops. This is necessary because to the varied 

variety of IoT networks, applications, and devices 

that operate and interact via a flood of data and 

pose a considerable danger of privacy violation due 

to how easy it is to obtain data there. The 

challenges presented by a growing number of 

skilled cyber attackers are forcing attack detection 

model to depend more and more on automated and 

intelligent network intrusion detection techniques 

(Hou et al. 2020). The flow of the presented work 

is illustrated in Figure 1.

 

 

 
Figure 1 Flow of the proposed work 

 

2.1 Dataset 

For the purposes of this research, the NSL-KDD 

dataset is utilised, although there are several 

datasets available for network intrusion detection. 

An enhanced form of the KDD CUP 99 dataset 

developed by the DARPA intrusion detection 

assessment programme, consists of NSL-KDD, a 

dataset that simulates four categories of attacks: 

root-to-user (U2R), local-to-local (R2L), denial of 

service (DoS), and probing. NSL-KDD dataset is 

better suited to evaluating intrusion detection 

techniques because it eliminates duplicates and 

duplicate features from KDD Cup 99. As shown in 

Table 1, the dataset contains the following details.

 

 

Table 1 Details of the Dataset 

Dataset 
Training set Testing set 

Normal Attack Normal Attack 

NSL-KDD 67343 58630 12833 9711 

 

2.2 Preprocessing of Data 

An anomaly-based intrusion detection method, 

which uses statistical or machine-learning methods 

to determine if data is normal or anomalous, 

considers data preprocessing to be essential. Data 

representation, quantity, and quality has the 

considerable impact on the recognition technique's 

computational performance and accuracy. When 

working with a dataset that has a significant 

number of duplicate and/or redundant 

characteristics, knowledge discovery is likely to be 

more challenging. To eliminate or decrease 
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undesired traits, input data should be processed 

prior to the training process. Techniques used to 

prepare data include discretizing, normalizing, 

reducing dimensionality, and sampling. 

 

2.2.1 Feature Discretization 

By dividing a continuous collection into recesses 

and assigning categorical or minimal values to each 

interval, discretization turns a continuous collection 

of features into a finite discrete set. Using a 

discretization technique, the constant 

characteristics A in S would be divided into d 

discrete intervals I = {[i0, i1], [i1, i2],..., [id−1, id]}, 

where d0 is the lowest value of A and id is the 

largest value and ij< ij+1, for j = 0, 1,...,d – 1. The 

discrete set d is known as a discretization system 

on feature A, and the set of feature A's cut points is 

denoted by P = {i1, i2,...,id−1}.Discretization aims to 

enhance knowledge discovery by simplifying data 

representation and making some learning 

algorithms (such as those that only take nominal 

data) easier to employ. 

 

2.2.2 Feature Normalization 

Normalization or standardisation of numerical 

features refers to the process of handling large 

variances because the presence of numerical 

characteristics in training and validation sets may 

lead to biases in learning algorithms. The min-max 

normalisation linearly converts a d-dimensional 

feature vector z = (z1, z2, ...,zd), into a normalised 

feature vector z∗ = (z∗
1, z∗

2, ... , z∗
d), and zi is 

translated to the range [0, 1] by the following 

expression: 

 

𝑧𝑖
∗ =

𝑧𝑖 − 𝑧𝑖
𝑚𝑖𝑛

𝑧𝑖
𝑚𝑎𝑥 − 𝑧𝑖

𝑚𝑖𝑛
,    𝑖 = 1, 2, … , 𝑑, 

 

(1) 

where 𝑧𝑖
𝑚𝑎𝑥𝑎𝑛𝑑𝑧𝑖

𝑚𝑖𝑛  are the least and extreme 

values for the ith attribute in z.   

The suggested technique makes use of deep 

reinforcement learning (DRL) networks. Nodes in a 

network are divided into two types: routers and 

hosts. The router is the component that connects 

users to hosts. Hosts are the sources and sinks of 

network traffic, since routers carry packets from 

host to host. Due to their significantly greater 

vulnerability to compromise than routers, hosts 

should not be trusted.  

 

2.3 Quantum based feature selection 

Feature selection can be sped up by quantization, 

which transforms a conventional approach into a 

quantum version. Here, feature selection is 

quantified. An objective function g is maximized 

by picking a subset of qualities that maximize it. 

Adding or eliminating a feature i to determine the 

aim function of the feature set. By requesting 

Oracle's simplification competence g, one requests 

the feature set F ∪ {i } or F − {i }. Gf and Gb are 

executed with diverse quantum classifiers. The 

prominent machine learning algorithm quantum 

least-squares support vector machine (LSSVM) is 

proposed by He et al. (2018). A quantum computer 

might be used to efficiently implement a support 

vector machine. Algorithm 1 covers the complete 

method of feature adding from the candidate 

feature set C-F to the selected attribute set F that 

optimizes generalization potential, where D is the 

complete attribute set and F ⊆ C.  

 

With Grover's algorithm, the attribute i from the 

candidate attribute set must satisfy g(F ∪ {j }) 

>gmax, where g(F ∪ {j}) is the adaptability 

potential of the feature set- F ∪ {j }. As soon as 

such a feature j is found, gmax is updated to g(F ∪ 

{j }). A new algorithm is then run until either a 

high probability of finding feature i is achieved or 

no feature j is found. Quantum feature selection is 

performed by forward selection, as described in 

Algorithm 2. The feature set S is created by starting 

with an empty set of features. In each iteration, 

algorithm fea_add (F, C) is used to select feature i∗ 

from candidate feature set C − F and added to the 

nominated feature set S. The process concludes 

when the number of features in S equals p. η ∈ {0, 

1}d is a vector size that specifies which 

characteristics are picked by the algorithm, where 

value 1 denotes the associated characteristic is 

considered and rather value is 0 (He et al. (2018).

 

 

Algorithm 1 f ea_add(F, C) 

Input: D: the complete feature set; F: the chosen feature set where F ⊆C. 

Output: the feature index j∗. 

1: gmax← 0, j∗ = 0 

2: repeat 

3: discover the feature iin C − F which achieves g(F ∪ {j}) >gmaxusing Grover’s algorithm, where g(F ∪{j}) is 

the simplification ability of the classifier accomplished with the feature set F ∪{j}; 

4: update gmax= g(F ∪ {j}) and j∗ = j; 

5: until no new jhas been found 

6: return j∗ 
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Algorithm 2 f ea_sel_ f or(d, p): forward selection-based quantum feature selection 

Input: d: the quantity of characteristics; p: the quantity of characteristics in the finally chosen subset; C: the full 

set 

where C = {1, 2, . . . , c}; 

Output: η ∈ {0, 1}c: the chosen attribute set. 

1: F ← ∅, η ← 0; 

2: repeat 

3: identify the attribute j∗ by j∗ = f ea_add(F, C); 

4: F ← F ∪ {j∗}; 

5: until |F| = p 

6: Set ηk= 1 for k ∈F; 

7: return η; 

 

The features selected by the quantum algorithm is 

used for training the reinforcement learning model 

for the detection of malicious data.  

2.4 Reinforcement Learning based attack 

detection 

The suggested system is implemented using a 

distributed architecture to execute multiple IDS 

components. Attention learning networks in the 

core IDS learn to pay attention to agents. An IDS 

receives learned representations of packets (agent 

output) and prioritizes them. A central IDS 

determines whether a packet is malicious or not. 

Agents are compensated for feedback received 

from the environment by the central IDS. They 

learn and update their weights as a result of these 

rewards. Identifying the most rewarding path is the 

purpose of reinforcement learning. Generally, it 

works like this: 

𝑅𝑡 = ∑∞
𝑘=0 𝛾𝑘𝛶𝑡 + 𝑘                                                

(2)  

where Rt is the total cumulative, discounted 

possible return received by the agent at time t,  

𝛶𝑡+𝑘the rewards of each future time step and 

discount factorγ ∈ (0; 1). Continually and 

discretely, the long-term calculation is carried out 

for future time states. As Vπ (s) is a measure of 

state s, and expectation at state s, E (Rt| st = s). The 

value function is determined by the policy π that 

governs how the agent decides to behave. An ideal 

value-function with the greatest value among all 

feasible functions, indicated as V*(s) = maxπ Vπ 

(s), where π* = arg maxπ Vπ(s) is the ideal policy 

that maximises the value of action                                                                                                                                                                                                                                                                                                                  

attainable for state s. Reinforcement learning 

created a function called Q function that accepts 

state and action pair inputs and outputs the value of 

rewards. As a result, we can rewrite the expression 

as: 𝜋∗ = 𝑄∗(𝑆, 𝑎), where Q* is the greatest ideal 

value for Q. The Bellman equation then yields a 

recursive formulation for the optimum Q function 

as: 

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾𝐸𝑠′[𝑉∗(𝑠′) = 𝑅(𝑠, 𝑎) +

𝛾 ∑𝑠′∈𝑠 𝑃(𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)        (3) 

where R(s, a) is the instantaneous projected reward 

upon action a at state s and 𝐸𝑠′[𝑉∗(𝑠′)] is the 

discounted, anticipated, cumulative future reward 

following the transition to the next state s'. The 

following is a thorough discussion of several DRL 

components and core IDS. 

 

Agent: A minimum of one DRL agent per network 

context is deployed according to the network 

topology. It is common practice to place IDS 

agents on routers that are k hops away from the 

central IDS. In R(k), routers that are directly 

connected to hosts within k hops of the central IDS 

are included. 

 

State: The state s is a vector that includes the 

classification vector (the output of the classifier 

employed by the agent) and the feature vector. 

Thresholding is used to create the classification 

vector from the confidence vector. The confidence 

vector is made up of the classifier's prediction. 

 

Action: In the context of attack classification, an 

action is a decision made by an agent during a 

particular time window. Action vectors are created 

as a result of this process. This state vector s guides 

the construction of an action vector as follows: The 

state vector s is provided to the deep Q-network. A 

deep Q-network in the agents produces Q-values. A 

feature vector is classified as an attack if its Q-

value is greater than a certain threshold value 

called the Q-threshold value. The decision vector is 

created by combining these classifications. A 

decision vector and a categorization vector are 

expressed as a logical AND operation by the action 

vector. Action vector is another term for agent 

result. 

 

Reward: Rewards are abstract terms used to 

describe environmental inputs. Depending on an 

agent's confidence vector, reward vectors r may 

differ. Classifiers receive positive rewards when 

their classification results match real-life outcomes. 

If this is not the case, it will receive a negative 

reward. Based on the confidence vector, the reward 

is scaled. 
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The estimate of squared error of the total of the 

reward and the discounted estimated optimal future 

Q-value and old Q-value by the loss function, 

𝐿(𝜃) = 𝐸[(𝑇𝑎𝑟𝑔𝑒𝑡𝑄 − 𝑄(𝑠, 𝑎;  𝜃))2]                                      
(4) 

𝑇𝑎𝑟𝑔𝑒𝑡𝑄 = 𝛾𝑄(𝑠′𝑎′; 𝜃)                                            

(5) 

 

2.5 Secure Data Transmission using Ciphertext-

Policy Attribute-Based Encryption 

Step 1: A few security settings are input into the 

CP-ABE technique, resulting in the production of a 

public key (PK) and a master key (MK). 

Step 2: A functional master key file (MKF) and a 

functional public key file (PKF) are generated 

using the functional encryption technique, security 

attributes are used as input 

Step 3: Function f(i) is the input to KeyGen(MK,S) 

of functional encryption, which generates a secret 

key SK[f(i)], where i = 1, 2, ..., n. F(i) is defined as 

fi(S) = ssi(KeyGen(MK,S), where ssi(s) is a 

function that generates the share when (n, k) used 

to share secrets. PKF and SK [fi] are sent over the 

secure channel by the data owner to the data users 

and the i-th authority, respectively, after the setup 

algorithm is executed. It uses the precomputed 

subkeys of a large number, which are used for both 

encryption and decryption 

 

2.5.1 Encryption Process 

A positive integer value is supplied to parameter A, 

resulting in A≠ k×257, where k varies from 1 to n. 

Assume the array T, which has integers ranging 

from 0 to 255, resulting in 256 distinct integers. On 

the basis of A and T, a new array R is created using 

linear mapping, as shown in Equation (6): 

𝑅(𝑖)  =  𝑚𝑜𝑑((𝐴 ×  (𝑇(𝑖)  +  1)), 257)                               

(6) 

where i varies from 1 to 256. T(i) has values 

ranging from 0 to 255; positive integers A fulfils 

A≠ k×257, and k has a value larger than 0. There 

are two non-integer numbers that are not divisible 

by 257: (A/257) and (T(i) + 1)/257. This implies 

that mod ((A (T(i) + 1)), 257) is greater than zero. 

When R(i) is divided by R(i), then it has a range 

from 0 to 255, where I is between 1 and 256. To 

construct the first S-box, transform and multiply R 

= [R(i)] into a matrix Rb of 2D dimensions. Once 

the tent-logistic map has been repeated L times, a 

chaotic sequence of length L is formed. It is 

possible to increase the intensity of the chaotic 

series by removing the first (L-256) items, which 

leads to a novel chaotic series X with length 256. 

The sorting of X results in an index array J (which 

consists of J(1), J(2),..., J(256). Regardless of 

whether the series is periodic or ergodic, it always 

returns J(i) ≠ J(j), assuming I ≠ j. 

Encryption is used on all data to protect data 

privacy using public and private keys (PKi, SKi). 

MAE calculates the value of each stream and 

exchanges Hj through MAE (mi) and MAE (Hj). 

The distributed ledger keeps track of every 

permitted transaction. Equation (7) provides MAE: 

𝑀𝐴𝐸(𝑚𝑖) =
1

𝑛
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑓(𝑥𝑖)|                                       

(7) 

Here, n denotes the entire sum of users, and xi 

represents transmission and processing expenses, 

respectively. Sharing personal data is risky for data 

providers because of distinct security threats. The 

problem can be avoided by simply providing the 

data to the requester with the correct details and 

protecting the holders' privacy at the same time. 

 

3. Experimental result and discussion 

 

The simulation is done on a computer running 

Windows7, with an Intel core i7 processor, a CPU 

frequency of 6.4 GHZ, and the Python 

programming language used to test the 

effectiveness of the suggested approach. In this 

part, we shall assess the proposed network 

efficiency. The performances of the proposed 

classifier for attacks detection on IoT are compared 

withDeep Learning Neural Network (DLNN), 

Modified Adaptive neuro fuzzy inference system 

(MANFIS) classifier, Q-learning-based neural 

network with privacy preservation method (DQ-

NNPP), andDeep Learning Modified Neural 

Network (DLMNN). 

A number of parameters were selected for analysis. 

These included sensitivity, accuracy, specificity, f1 

score, encryption time, communication overhead, 

and decryption times. The accuracy of this 

approach measures the ability to make accurate 

predictions. The formulation for accuracy is 

specified in Equation (8): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇−+𝑇+

𝑇−+𝑇++𝐹−+𝐹+                                                 

(8) 

As defined in Equation (9), sensitivity is calculated 

by the percentage of true positives, which 

represents the right identification during testing. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇+

𝑇++𝐹−                                                      

(9) 

Similarly, specificity is determined as the ratio of 

true negatives indicated in Equation (10), which 

indicates the classifier's correct identification. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇−

𝑇−+𝐹+                                                      

(10) 

Finally, the F1-score assessment is essential to find 

a compromise between accuracy and recall, as 

shown in Equation (11). 

𝐹1 −  𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                   

(11) 

 



Section A-Research paper 
Secure data transmission in IoT using Reinforcement learning and 

 Ciphertext-Policy Attribute-Based Encryption 

 
 

Eur. Chem. Bull. 2023, 12 (1), 1299 – 1311                                                                                                                     1306  

Table 2 Accuracy of the algorithms 

Algorithms 
Accuracy 

With feature selection Without feature selection 

MANFIS Classifier 86.47 83.39 

DLNN 89.45 81.67 

DLMNN 91.98 86.56 

DQ-NNPP 93.86 89.45 

Proposed work 99.65 95.77 

Table 3 Sensitivity of the algorithms 

Algorithms Sensitivity 

With feature selection With feature selection 

MANFIS Classifier 82.48 79.37 

DLNN 83.78 81.49 

DLMNN 85.34 82.44 

DQ-NNPP 93.58 87.23 

Proposed work 96.37 91.45 

Table 4 Specificity of the algorithms 

Algorithms 
Specificity 

With feature selection Without feature selection 

MANFIS Classifier 86.49 82.52 

DLNN 89.45 84.35 

DLMNN 92.63 87.34 

DQ-NNPP 94.35 89.67 

Proposed work 96.36 92.49 

Table 5 F1 score of the algorithms 

Algorithms 
F1 score 

With feature selection Without feature selection 

MANFIS Classifier 89.38 83.89 

DLNN 91.46 86.45 

DLMNN 93.78 89.75 

DQ-NNPP 95.43 92.47 
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Proposed work 97.48 93.56 

 

The effectiveness of the proposed and existing 

algorithms is exposed in Table 2 to 5. The accuracy 

obtained by the proposed work is compared with 

other algorithms to evaluate the efficiency of the 

presented work. The accuracy obtained by the 

proposed system is 99.65% with feature selection 

and 95.77% without feature selection. By feature 

selection accuracy is 3.88% higher than without 

feature selection. Because of inappropriate and 

duplicate features are removed by the attribute 

selection procedure, the attribute dimension is 

reduced, hence improving the accuracy and 

efficacy of classification, and it also removes noisy 

data and minimises the overfitting in deep learning. 

The accuracy obtained by the other algorithms with 

feature selection are 86.47%, 89.45%, 91.98%, and 

93.86% by MANFIS Classifier, DLNN, DLMNN, 

and DQ-NNPP respectively. The accuracy obtained 

by MANFIS, DLNN, DLMNN, and DQ-NNPP 

without feature selection is 83.39%, 81.67%, 

86.56%, and 89.45% respectively. The sensitivity 

of MANFIS, DLNN, DLMNN, DQ-NNPP, and 

Proposed work with feature selection is 82.48%, 

83.78%, 85.34%, 93.58%, and 96.37% and 

sensitivity without feature selection is 79.37%, 

81.49%, 82.44%, 87.23%, 91.45% respectively.

 

 

 
Figure 2 Accuracy of the algorithms 

 

 
Figure 3 Sensitivity of the algorithms 
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Figure 4 Specificity of the algorithms 

 

 
Figure 5 F1 of the algorithms 

 

From the Figures 2 to 5, it is observed that the 

proposed work performs well in terms of accuracy, 

sensitivity, specificity and F1 score. The specificity 

with feature selection for MANFIS, DLNN, 

DLMNN, DQ-NNPP, and Proposed work is 

86.49%, 89.45%, 92.63%, 94.35%, and 96.36% 

respectively. Without feature selection the 

specificity is 82.52%, 84.35%, 87.34%, 89.67%, 

and 92.49% respectively. Also, the F1 score is 

improved with feature selection which is 89.38%, 

91.46%, 93.78%, 95.43%, and 97.48% by the 

MANFIS, DLNN, DLMNN, DQ-NNPP and the 

Proposed work. Without feature selection 83.89%, 

86.45%, 89.75%, 92.47%, and 93.56% of F1 score. 

The increase in performance of the classifiers is 

due to selecting important features from the 

dataset,which can eliminate unnecessary features to 

enhance a classifier's classification performance 

and decrease training and inference time. 

 

Performance of the encryption algorithms 

Communication overhead, encryption time, and 

decryption time were chosen as factors for analysis. 

On the basis of these parameters, the proposed 

work was compared to three different conventional 

techniques, namely, MSCryptoNet, privacy-

preserving disease prediction (PPDP), the secure 

and anonymous biometric based user authentication 

scheme (SAB-UAS), anddeep Q-learning-based 

neural network with the privacy preservation 

method (DQ-NNPP) 

The proportion of overall packets (Npack) 

transferred from node x to node y in a lesser 

amount of time is defined as communication 

75

80

85

90

95

100

Sp
ec

if
ic

it
y

With feature
selection

Without feature
selection

75

80

85

90

95

100

F
1

 s
co

re

With feature
selection

Without feature
selection



Section A-Research paper 
Secure data transmission in IoT using Reinforcement learning and 

 Ciphertext-Policy Attribute-Based Encryption 

 
 

Eur. Chem. Bull. 2023, 12 (1), 1299 – 1311                                                                                                                     1309  

overhead (C). The communication overhead 

formula is stated in Equation (12): 

∑
𝑁𝑝𝑎𝑐𝑘

0 𝑥 → 𝑦                           (12) 

The Encryption Time (E) is the time allotted by the 

algorithms to convert plain text (P) into cypher text 

(C) using symmetrical or asymmetrical keys. 

Equation (13) defines the encryption time formula: 

𝐸 =  𝑇𝑖𝑚𝑒(𝑃 →  𝐶)                                                    

(13) 

Decryption Time (D) is the amount of time 

required by the algorithms to convert cypher text 

(P) to plain text (C) utilising symmetric or 

asymmetric keys. Equation (14) provides the 

encryption time formula: 

𝐷 =  𝑇𝑖𝑚𝑒(𝐶 →  𝑃)                                                  

(14) 

 

Table 6 Performance comparison of communication overhead, encryption and decryption time. 

Parameters SAB-UAS MSCryptoNet PPDP DQ-NNPP Proposed  

Communication 

Overhead (%) 

64.82 65.87 66.92  67.82 69.72 

Encryption Time 

(ms) 

66.49 64.28 63.67 61.73 58.83 

Decryption Time 

(ms) 

67.76 65.75 64.87 62.47 59.58 

 

 
Figure 6 Comparison of communication overhead 
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Figure 7 Comparison of encryption time 

 
Figure 8 Comparison of decryption time 

 

From the Table 6, the comparison of the proposed 

encryption algorithm with other algorithms are 

provided. The graphical representation is presented 

in the Figures 6 to 8. From the analysis, it is clearly 

apparent that the proposed work achieves well in 

all aspects. The communication overhead of the 

presented work is 69.72 % which is 4.9% higher 

than SAB-UAS, 3.9% higher than MSCryptoNet, 

2.8% higher than PPDP, and 1.9% higher than DQ-

NNPP. The encryption time of the proposed system 

is 58.83 ms which is less compared to other 

algorithms. The encryption time of SAB-UAS, 

MSCryptoNet, PPDP, and DQ-NNPP is 66.49 ms,

 64.28 ms, 63.67 ms and 61.73 ms 

respectively. The decryption time of SAB-UAS, 

MSCryptoNet, PPDP, DQ-NNPP, and Proposed 

system is 67.76 ms, 65.75 ms, 64.87 ms, 62.47 

ms and 59.58 ms respectively. 

 

4. Conclusion 

 

The most difficult concerns in IoT applications are 

security and privacy. This research developed a 

reinforcement learning approach for data security 

and a data encryption method for safely 

transmitting information over a network, which 

preserves data privacy when information is being 

shared. The NSL-KDD dataset is utilised for 

training the reinforcement learning algorithm, and 

the key characteristics are chosen from the dataset 

using the quantum computing model, which 

improves the trained model's performance. By 

using Ciphertext-Policy Attribute-Based 

Encryption, information is securely sent across the 

network. The sensitivity, accuracy, specificity, F1 

score, communication overhead, encryption time, 

and decryption time of the proposed system are all 

examined. Experimental results shows that the 

proposed system performed efficiently and the data 

is protected and securely transmitted in the 

network. 
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