

## PRIMARY DECOMPOSITION IN NEAR SUBTRACTION SEMIGROUPS

Rajitha Vangala<sup>1</sup>, G.Upender Reddy<sup>2</sup>

<sup>1</sup>Research Scholar, Department of Mathematics, Osmania University, Hyderabad, Telangana, India,

rajivan07@gmail.com <sup>2</sup>Associate Professor of Mathematics, Nizam College(A),Osmania University, Basheerbagh,Hyderabad, Telangana, India, yuviganga@gmail.com

**Abstract**: The present research article has to initiate the content of primary decomposition in Near subtraction semigroup. Also investigated the properties of prime ideals of a near subtraction semigroup. The investigator also developed the new concept of Noetherian semigroup and Artinian semigroup and duo Noetherian near subtraction semigroup and some of the results were proved.

**Keywords:**duo Noetherian near subtraction semigroup, primary decomposition in Near subtraction semigroup, Noetherian semigroup, Artinian semigroup.

2010 AMS Subject Classification: 20M07, 20M11, 20M12

### DOI: 10.48047/ecb/2023.12.6.295 1. Introduction:

The concept of primary ideals in semigroup was studied by A. Anjaneylu in 1980 **[1]** about the primary ideals in semigroups. Later D.Madhusudana Rao[10] was introduced the same concept to gamma semigroups in 2010. Further A.GangadharRao[16] extended the concept to duo-gamma semigroups. Now in this paper we used the same concept to study the primary ideals in near subtraction semigroups.

## 2. Preliminaries:

For preliminaries refer the reference [2] and their references

## 3. PRIMARY DECOMPOSITION IN NEAR SUBTRACTION SEMIGROUPS

**DEFINITION 3.1**:Let P be prime ideal in a near subtraction semigroup X. A primary ideal

A in X is said to be **P-primary**or P is a prime ideal belonging to A provided  $\sqrt{A} = P$ .

## THEOREM 3.2 : If A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub> are P-primary ideals in a near subtraction semigroup

**X**, then  $\bigcap_{i=1}^{n}$  A<sub>i</sub> is also a P-primary ideal.

**Proof :**Let 
$$A = \bigcap_{i=1}^{n} A_i$$
. Then  $\sqrt{A} = \sqrt{\bigcap_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \sqrt{A_i} = \bigcirc P = P$ .

Suppose that  $\langle a \rangle \langle b \rangle \subseteq A$  and  $b \notin A$ .  $b \notin A$  implies  $b \notin A_i$  for some *i*.  $\langle a \rangle \langle b \rangle \subseteq A_i$  and  $b \notin A_i$ , since  $A_i$  is a primary ideal, we have  $a \in \sqrt{A_i} = P = \sqrt{A} \Rightarrow a \in \sqrt{A}$ . So A is left primary ideal. Similarly we can show that A is right primary ideal. Thus A is a primary ideal. Hence A is P-primary ideal.

**DEFINITION 3.3** :An ideal A in a near subtraction semigroup X is said to have **left primary decomposition** if  $A = A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n$  where each  $A_i$  is a left primary ideal. If no  $A_i$  contains  $A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_{i-1} \cap A_{i+1} \cap \ldots \cap A_n$  and the radicals  $P_i$  of the ideals  $A_i$  are all distinct, then the left primary decomposition is said to be **reduced**. If  $P_i$  is minimal in the set { $P_1, P_2, P_3, \ldots, P_n$ } then  $P_i$  is said to be**isolated prime**.

**DEFINITION 3.4** :An ideal A in a near subtraction semigroup X is said to have **right primary decomposition** if  $A = A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n$  where each  $A_i$  is a right primary ideal. If no  $A_i$  contains  $A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_{i-1} \cap A_{i+1} \cap \ldots \cap A_n$  and the radicals  $P_i$  of the ideals  $A_i$  are all distinct, then the right primary decomposition is said to be **reduced**. If  $P_i$  is minimal in the set { $P_1, P_2, P_3, \ldots, P_n$ } then  $P_i$  is said to be**isolated prime**.

**DEFINITION 3.5** :An ideal A of a near subtraction semigroup X is said to have a **primary decomposition** if  $A = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n$  where each  $A_i$  is a right primary ideal. If no  $A_i$  contains  $A_1 \cap A_2 \cap A_3 \cap \dots \cap A_{i-1} \cap A_{i+1} \cap \dots \cap A_n$  and the radicals  $P_i$  of the ideals  $A_i$ are all distinct, then the primary decomposition is said to be **reduced**. If  $P_i$  is minimal in the set { $P_1, P_2, P_3, \dots, P_n$ } then  $P_i$  is said to be**isolated prime**.

**DEFINITION 3.6** : A near subtraction semigroup X is said to be a **Noetherian semigroup** provided every ascending chain of ideals becomes stationary.

**DEFINITION 3.7** : A near subtraction semigroup X is said to be a **Artinian semigroup** provided every descending chain of ideals becomes stationary.

**THEOREM 3.8** : If an ideal A in a near subtraction semigroup X has a primary decomposition, then A has a reduced primary decomposition.

**Proof:** If  $A = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n$  where each  $A_i$  is primary ideal and some  $A_i$  contains  $A_1 \cap A_2 \cap A_3 \cap \dots \cap A_{i-1} \cap A_{i+1} \cap \dots \cap A_n$ ,

then  $A = A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_{i-1} \cap A_{i+1} \cap \ldots \cap A_n$  is also a primary decomposition.

By thus eliminating the superfluous  $A_i$  reindexing we have  $A = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_k$ with no  $A_i$  containing the intersection of other  $A_j$ . Let  $P_1$ ,  $P_2$ ,...,  $P_r$  be the distinct prime ideals in the set  $\sqrt{A_1}, \sqrt{A_2}, \dots, \sqrt{A_k}$ . Let  $A_i'$ ,  $1 \le i \le r$  be the intersection of all  $A_j$ 's belonging to the prime  $P_i$ . By theorem 3.2, each  $A_i^{-1}$  is primary for  $P_i$ . Clearly no  $A_i'$  contains the intersection of all other  $A_j'$ . Therefore  $A = \bigcap_{i=1}^k A_i = \bigcap_{i=1}^r A_i'$  and hence A has a reduced primary decomposition.

**NOTE 3.9** :It is well known that every ideal has a reduced primary decomposition in a commutative Noetherian near subtraction semigroup. But in the case of an arbitrary near subtraction semigroup it is not necessarily true that every ideal has a primary decomposition even if the near subtraction semigroup is finite and pseudo symmetric.

**Example 3.10 :** Assume that  $X = \{x, y, z\}$  in which '- 'and '.' are defined as follows:

| •  | x | у | Z  |
|----|---|---|----|
| x  | x | x | x  |
| у  | x | x | x  |
| Z. | x | у | Z. |



**DEFINITION 3.12** : A near subtraction semigroup X is said to bea *right duo near subtraction semigroup* provided every right ideal of X is a two sided ideal of X.

**DEFINITION 3.13** : A near subtraction semigroup X is said to be a *duo near subtraction semigroup* provided it is both a left duo near subtraction semigroup and a right duo near subtraction semigroup.

**REMARK 3.14:** Let A be a semipseudo symmetric ideal of a near subtraction semigroup X. Then the following are equivalent.

1) A<sub>1</sub>=The intersection of all completely prime ideals of X containing A.

- **2**)  $A_1^1$  = The intersection of all minimal completely prime ideals of X containing A.
- **3**)  $A_1^{11}$  = The minimal completely semiprime ideal of X relative to containing A.
- 4) A<sub>2</sub>= { $x \in X : x^n \in A$  for some natural number n}
- 5) A<sub>3</sub>= The intersection of all prime ideals of X containing A.
- 6)  $A_3^1$  = The intersection of all minimal prime ideals of X containing A.
- 7)  $A_3^{11}$  = The minimal semiprime ideal of X relative to containing A.
- 8)  $A_4 = \{x \in X : \langle x \rangle^n \subseteq A \text{ for some natural number } n\}$

**REMARK 3.15:** Let X be a near subtraction semigroup and A be an ideal in X. Then A is pseudo symmetric if and only if for all  $a \in X$  the set  $A_r(a) = \{x \in X : ax \in A\}$  is an ideal of X.

**REMARK 3.16:** If A is a pseudo symmetric ideal of a near subtraction semigroup X then A<sub>2</sub> = A<sub>4</sub>.

**THEOREM 3.17 :** Every left(right) duo near subtraction semigroup X is a pseudo symmetric near subtraction semigroup.

*Proof*:Let X be a left duo near subtraction semigroup and A be any ideal of X.

Suppose  $a \in X$ . Let  $A_l(a) = \{ x \in X : xa \in A \}$ .

Let  $x, y \in A_l(a) \Rightarrow xa, ya \in A$ .

 $(x - y)a = xa - ya \in A$ , since A is an ideal of X and  $xa, ya \in A$ .

Therefore  $x - y \in A_l(a)$  and hence  $A_l(a)$  is a sub algebra of X.

Let  $x \in A_l(a) \Rightarrow xa \in A$ .  $xa \in A$ , A is an ideal  $\Rightarrow sxa \in A$  for all  $s \in X$ 

 $\Rightarrow$  sx  $\in$  A<sub>l</sub>(*a*) for all s  $\in$  X. Therefore A<sub>l</sub>(*a*) is a left ideal of X for all *a*  $\in$  X.

Since X is a left duo near subtraction semigroup,  $A_l(a)$  is an ideal of X.

So by Remark 3.16, A is a pseudo symmetric ideal of X.

Therefore X is a pseudo symmetric Semigroup.

## **COROLLARY 3.18:** Every duo near subtraction semigroup is a pseudo symmetric near subtraction semigroup.

*Proof* :By theorem 3.17, we conclude that every duo near subtraction semigroup X is a pseudo symmetric near subtraction semigroup.

# **THEOREM 3.19 :** Every ideal in a (left, right) duo noetherian near subtraction semigroup X has a reduced (left, right) primary decomposition.

**Proof**: Let  $\Sigma$  be the collection of all ideals in X which has no primary decomposition.

If  $\Sigma$  is nonempty, then since S is Noetherian,  $\Sigma$  contains maximal elements. Let C be a maximal element in  $\Sigma$ . Clearly C is not primary. Suppose C is not left primary, then there exists elements a, b in X such that  $\langle a \rangle \langle b \rangle \subseteq C$ ,  $b \notin C$  and  $a \notin \sqrt{C}$ . Since X is a duo near subtraction semigroup, By theorem 3.18, C is a semi pseudo symmetric ideal, and hence by the remark 3.14,  $\sqrt{C} = \{x \in X : x^n \in C \text{ for some natural number } n\}$ . Therefore  $a^n \notin C$  for any natural number *n*. For any natural number *n*, write  $B_n = \{x \in X : a^n x \in C\}$ . Now  $B_1 \subseteq B_2 \subseteq$ ,.... is an ascending chain of ideas in X. Since X is Noetherian, there is a natural number ksuch that  $B_k = B_i$  for all  $i \ge k$ . Since  $b \in B_k$ , we have  $B_k$  contains C properly. Write  $D = a^k S \cup C$ . Now  $a^{k+1} \in D$ . Since X is a duo near subtraction semigroup, D is an ideal in X and containing C properly. Now we prove that  $C = B_k \cap D$ . Cleary  $C \subseteq B_k \cap D$ . If  $x \in B_k \cap D$ . and  $x \notin C$ , then  $x = a^k y$  for some  $y \in X$ . Now  $x \in B_k \Longrightarrow a^k x \in C$ . Therefore  $a^{2k}y = a^k a^k y = a^k x \in C$ . Therefore  $y \in B_{2k} = B_k$ . Thus  $y \in B_k \Rightarrow x = a^k y \in C \Rightarrow x \in C$ . It is a contradiction. Thus C is left primary. Similarly, we can show that C is right primary. Hence C is primary. Therefore  $\Sigma$  is empty. Thus, every ideal in a duo Noetherian near subtraction semigroup has a primary decomposition and hence by the known result, every ideal has a reduced primary decomposition.

# **COROLLARY 3.20 :** Every ideal in a generalized commutative Noetherian near subtraction semigroup has a right reduced primary decomposition.

**Proof**: Since every generalized commutative near subtraction semigroup is a left duo near subtraction semigroup, and hence the proof follows from theorem 3.19.

**NOTATION 3.21**: Let A and B be two ideals in a near subtraction semigroup X. Then we denote  $A^{l}(B) = \{x \in X : \langle x \rangle B \subseteq A\}$  and  $A^{r}(B) = \{x \in X : B \langle x \rangle \subseteq A\}$ . Clearly  $A^{l}(B)$  and  $A^{r}(B)$  are ideals of X containing A.

#### **THEOREM 3.22 : Let A and B be two ideals of a near subtraction semigroup X.**

- 1) If A is a left primary ideal of X, then  $A^{l}(B)$  is a left primary ideal.
- 2) If A is a right primary ideal of X, then  $A^{r}(B)$  is a right primary ideal.

**Proof :**(1)If  $B \subseteq A$ , then clearly  $A^{l}(B) = X$ . Suppose  $B \not\subset A$ . Let  $b \in B \setminus A$  and  $x \in A^{l}(B)$ .  $x \in A^{l}(B)$  implies  $\langle x \rangle B \subseteq A$ . So  $\langle x \rangle \langle b \rangle \subseteq A$ .

Since  $b \notin A$ , we have  $x \in \sqrt{A}$ , therefore  $A^{l}(B) \subseteq \sqrt{A}$ .

Since 
$$A \subseteq A^{l}(B) \subseteq \sqrt{A} \Rightarrow \sqrt{A} \subseteq \sqrt{A^{l}(B)} \subseteq \sqrt{\sqrt{A}}$$

$$\Rightarrow \sqrt{A} \subseteq \sqrt{A^{l}(B)} \subseteq \sqrt{A} \Rightarrow \sqrt{A} = \sqrt{A^{l}(B)} \text{. Let } \langle x \rangle \langle y \rangle \subseteq A^{l}(B) \text{ and } y \notin A^{l}(B)$$

Now  $\langle x \rangle \langle y \rangle B \subseteq A$ . If  $x \notin \sqrt{A^{l}(B)} = \sqrt{A}$  then  $\langle y \rangle B \subseteq A$  and hence  $y \in A^{l}(B)$ .

This is a contradiction. So  $x \in \sqrt{A^l(B)}$ . Therefore  $A^l(B)$  is a left primary ideal. (2) The proof is similar to (1).

**THEOREM 3.23 :** If Q is a P-primary ideal and if  $A \not\subset P$ , then  $Q^l(A) = Q^r(A) = Q$ . And also if  $A \subseteq P$  and  $A \not\subseteq Q$ , then  $\sqrt{Q^l(A)} = \sqrt{Q^r(A)} = \sqrt{Q}$ .

**Proof:**Clearly  $Q \subseteq Q^{l}(A)$ . Let  $x \in Q^{l}(A)$ . Then  $\langle x \rangle A \subseteq Q$ . Since  $A \not\subseteq P$ , there exists  $a \in A \setminus P$ . Now  $\langle x \rangle \langle a \rangle \subseteq Q$  and  $a \notin \sqrt{Q}$ . So  $x \in Q$ . Hence  $Q^{l}(A) \subseteq Q$ . Therefore  $Q = Q^{l}(A)$ . Similarly we can show that  $Q^{r}(A) = Q$ . Therefore  $Q^{l}(A) = Q^{r}(A) = Q$ .

Hence clearly by the theorem 3.22,  $\sqrt{Q'(A)} = \sqrt{Q'(A)} = \sqrt{Q}$ .

#### THEOREM 3.24 : If A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>, B are ideals of a semigroup X, then

$$\begin{bmatrix} \bigcap_{i=1}^{n} A_{i} \end{bmatrix}^{l} (B) = \bigcap_{i=1}^{n} (A_{i})^{l} (B)$$
  
**Proof :**Let  $x \in \begin{bmatrix} \bigcap_{i=1}^{n} A_{i} \end{bmatrix}^{l} (B)$ . Then  $\langle x \rangle B \subseteq \bigcap_{i=1}^{n} A_{i} \Rightarrow \langle x \rangle B \subseteq A_{i}$  for  $i = 1, 2, ..., n$ 

 $\Rightarrow x \in A_i^{l}(B) \text{ for } i = 1,2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ Therefore } \bigcap_{i=1}^{n} (A_i)^{l}(B) \subseteq \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ Similarly we can show that } \bigcap_{i=1}^{n} (A_i)^{l}(B) \subseteq \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ Similarly we can show that } \prod_{i=1}^{n} (A_i)^{l}(B) \subseteq \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ Similarly here} = \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ Similarly here} \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n. \Rightarrow x \in \bigcap_{i=1}^{n} (A_i)^{l}(B) \text{ for } i = 1, 2, \dots, n.$ 

THEOREM 3.25 : (UNIQUENESS THEOREM) Suppose an ideal A in a near subtraction semigroup X has two reduced (one sided) primary decompositions  $A = A_1 \cap A_2 \cap \ldots \cap A_k = B_1 \cap B_2 \cap \ldots B_s$ , where A<sub>i</sub> is P<sub>i</sub>-primary and B<sub>j</sub> is Q<sub>j</sub>-primary. Then k = s and after reindexing if necessary, P<sub>i</sub> = Q<sub>i</sub> for i = 1, 2, 3, ..., k. Further if each P<sub>i</sub> is an isolated prime, then A<sub>i</sub> = B<sub>i</sub> for i = 1, 2, 3, ..., n.

**Proof**: Let  $P_k$  be the maximal element in the set  $P_1, P_2, ..., P_k, Q_1, Q_2, ..., Q_s$ . Now we show that  $P_k$  occurs among  $Q_1, Q_2, ..., Q_s$ . For this it is enough to show that  $P_k \subseteq Q_j$  for some j.

If 
$$A_k \subseteq Q_j$$
 for some j, then  $P_k = \sqrt{A_k} \subseteq Q_j$ .

Suppose  $A_k \not\subseteq Q_j$  for all j, then by the known result  $B_j^l = B_j \forall j$ .

Now 
$$A^{l}(A_{k}) = (B_{1} \cap B_{2} \cap \dots \cap B_{s})^{l}(A_{k}) = B_{1}^{l}(A_{k}) \cap B_{2}^{l}(A_{k}) \cap \dots \cap B_{s}^{l}(A_{k}) = A$$

But on the other hand if  $1 \le i < k$ , then  $P_k \not\subseteq P_i$  and therefore  $A_k \not\subseteq P_i$ , so that  $A_i^l(A_k) = A_i$  and  $A_k^{l}(A_k) = S$ . We have

$$A^{l}(A_{k}) = (A_{1} \cap A_{2} \cap \dots \cap A_{k})^{l}(A_{k}) = A_{1}^{l}(A_{k}) \cap A_{2}^{l}(A_{k}) \dots \cap A_{k}^{l}(A_{k}) = A_{1} \cap A_{2} \cap \dots \cap A_{k-1}^{l}(A_{k}) = A_{1} \cap A_{1} \cap A_{2} \cap \dots \cap A_{k-1}^{l}(A_{k}) = A_{1} \cap A_{1} \cap A_{k-1}^{l}(A_{k}) = A_{1} \cap A_{1} \cap A_{k-1}^{l}(A_{k}) = A_{1} \cap A_{k-$$

 $\therefore A = A_1 \cap A_2 \cap \dots \cap A_{k-1}$ . It is a contradiction to the fact that given decomposition is reduced. Thus  $A_k \subseteq Q_j$  for some j and hence  $P_k \subseteq Q_j$ . Therefore  $P_k = Q_j$ . Without loss of generality we may assume that  $P_k = Q_s$ . Let  $B = A_k \cap B_s$ .

By the theorem 3.2,B is a primary ideal and  $P_k = Q_s = P$  (say) is a prime ideal belonging to B. Since  $P \not\subseteq P_i$  for all i,  $1 \le i < k$  and  $B \subseteq A_k$ . We have  $A_i^l(B) = A_i$  and  $A_k^l(B) = S$ .

Therefore  $A^{l}(B) = A_{1} \cap A_{2} \cap \dots \cap A_{k-1}$ .

Similarly, we can show that,  $A^{l}(B) = B_{1} \cap B_{2} \cap \dots \cap B_{s-1}$ .

Therefore  $A^{l}(B) = A_{1} \cap A_{2} \cap \dots \cap A_{k-1} = B_{1} \cap B_{2} \cap \dots \cap B_{s-1}$  are two reduced primary decompositions for A<sup>l</sup>(B). By continuing the above process, we get k = s and P<sub>i</sub> = Q<sub>i</sub> for

i = 1, 2, ..., k. Suppose  $P_i$  s are isolated primes. If  $A_1 \subseteq B_1$ , then since  $B_1$  is primary and  $A_1A_2...A_k \subseteq B_1 \cap B_2 \cap ... \cap B_k \subseteq B_1$ , we have  $A_2A_3...A_k \subseteq \sqrt{B_1} = P_1$ .

Now  $P_2P_3...P_k = \sqrt{A_2A_3...A_k} = P_1$ . Since  $P_1$  is a prime ideal  $P_i \subseteq P_1$  for some  $1 < i \le k$ . This is a contradiction to the fact that  $P_1$  is an isolated prime. So  $A_1 \subseteq B_1$ . Similarly we can show that  $B_1 \subseteq A_1$ . By continuing in this way we get  $A_i = B_i$  for i = 1, 2, ..., k. This completes the proof of the theorem.

**Conclusion:** Mainly in this research article, we studied primary decomposition in Near subtraction semigroup.

#### **References:**

- A.Anjaneyulu , On primary semigroups. (English).Czechoslovak Mathematical Journal, vol. 30 (1980), issue 3, pp. 382-386
- Balakrishnan R. and Seyadalifathima S. 2012 S<sub>1</sub>-Near subtraction semigroups Ultra Scientist 24 (3) 578–584.
- M.JayaRamireddy, P.SivaPrasad, D.MadhusudanaRao, Pseudo integral near subtraction semi groups, Nat.Volatiles& Essent.Oils, 2021; Volume-8(Issue no-5): PP:5422-542
- 4. **P. Dheena and G. Satheesh Kumar**, On strongly regular near subtraction semigroups, Common Korean Math. Soc., 22 (2007), 323 330.
- P. Dheena and G. Satheesh Kumar, Weakly prime left ideals in near subtraction semigroups, Common Korean Math. Soc.,23 (2008), 325 - 331.

- 6. **BOURNE S.G.,**Ideal theory in a commutativesemigroup -Dissertation, John Hopkins University (1949).
- Clifford A. H. and Preston G. B., The algebraic theory of semigroups Vol-I, American Mathematical Society, Providence (1961).
- 8. **Clifford A. H. and Preston G. B.,**The algebraic theory of semigroups –Vol-II, American Mathematical Society, Providence (1967).
- Giri R.D and Wazalwar A. K., Primeideals and prime radicals in noncommutative semigroups -Kyungpook Mathematical Journal, Vol.33, No.1, 37-48, June 1993.
- 10. **D. Madhusudhana Rao, A. Anjaneyulu** and **A. Gangadhara Rao.,** Prime Γ-ideals in Γ-semigroups International eJournal of Mathematics and Engineering 138 (2011) 1250-1259.
- D. Madhusudhana Rao, A. Anjaneyulu and A. Gangadhara Rao., Pseudo Symmetric Γ-ideals in Γ-semigroups - International eJournal of Mathematics and Engineering 166 (2011) 1074-1081.
- D. Madhusudhana Rao, A. Anjaneyulu and A. Gangadhara Rao., Semipseudo Symmetric Γ-ideals in Γ-semigroups – International Journal of Mathematical Sciences, Technology and Humanities 18 (2011) 183-192.
- D. Madhusudhana Rao, A. Anjaneyulu and A. Gangadhara Rao., N(A)-Γsemigroup- Indian Journal of Mathematics and Mathematical Sciences Vol. 7, No. 2, (December 2011) : 75-83.
- 14. D. Madhusudhana Rao, A. Anjaneyulu and A. Gangadhara Rao., Pseudo Integral Γ-semigroup – International Journal of Mathematical Sciences, Technology and Humanities 12 (2011) 118-124.
- 15. D. Madhusudhana Rao, A. Anjaneyulu and A. Gangadhara Rao., Primary and Semi primaryΓ-ideals in Γ-semigroups - International Journal of Mathematical Sciences, Technology and Humanities 29 (2012) 282-293.
- D. Madhusudhana Rao, A. Anjaneyulu and A. Gangadhara Rao., Prime Γ-ideals in Duo Γ-semigroups-International eJournal of Mathematics and Engineering 174 (2012) 1642-1653.
- D. Madhusudhana Rao, A. Anjaneyulu and A. Gangadhara Rao., Primary Decomposition in A Γ-semigroup-International Journal of Mathematical Science, Technology and Humanities 46 (2012) 466-479.
- P.Siva Prasad ,C.Sreemannarayana,D.MadhusudanaRao,T.Nageswara RaoOn Le-Ternary Semigroups-I, International Journal of Recent Technology and Engineering (IJRTE),ISSN:2277-3878,Volume-7 Issue-ICETESM-Mar-2019
- 19. **P.Siva Prasad ,C.Sreemannarayana,D.MadhusudanaRao,T.Nageswara Rao**On Le-Ternary Semigroups-II ,International Journal of Recent Technology and Engineering (IJRTE),ISSN:2277-3878,Volume-7 Issue-ICETESM-Mar-2019 \*\*\*\*