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Abstract 

In this paper, constructing a three-species food web model involved using the interactions between diseased 

predator-prey models. The logistically growing prey population is split into two categories: susceptible and 

infected prey. Presumably, the prey population expands logistically in the absence of predators. In Crowley-

Martin-type interactions, it is assumed that interdependence between predators occurs regardless of whether 

an individual predator is searching for prey or handling prey at the time. Also, the prey refuge and prey 

harvesting of susceptible prey and infected prey has been considered. The positive invariance, positivity, and 

boundedness of the model are investigated. The conditions for the existence of all the biologically feasible 

equilibrium points are established. The criterion for the local and global stability of equilibrium points in the 

non-delay system is examined. Further, we investigate the Hopf-bifurcation analysis for the corresponding 

proposed model in the presence of the fear effect. Finally, we demonstrate some numerical simulation results 

to illustrate our main analytical findings. 
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1 Introduction 

Eco-epidemiological models are applied to study 

the relationship between predator and prey, 

infection in a population or susceptible and 

diseased prey populations. Mathematical models 

have become an important tool for analysing 

disease transmission and control. Since Kermack 

Mckendrick’s pioneering work on SIRS [12], 

epidemiological models have attracted much 

interest from researchers. Many investigators have 

studied the population ecology of prey, predators, 

or both. Ecology and epidemiology are two distinct 

and significant scientific fields. Predator-prey 

models developed by Lotka [13] and Volterra [21], 

are considered the first advances in modern 

mathematical ecology in coupled systems of non-

linear differential equations. Environmental 

epidemiology is the combined study of ecology 

and epidemiology. Eco-epidemiology has a 

significant environmental impact. It is the study of 

disease transmission between interacting 

organisms. Various mathematical and statistical 

tools are available for analysing eco-

epidemiological models. Many ecosystems around 

forests have predator-prey interactions between 

species, such as the deer-lion relationship. Prey and 

predator species abundance alters population 

growth and forest decline. Animal conservationists 

and mathematicians have long been interested in 

this investigation of changes in standard form. The 

mathematical dynamics of population growth 

models involving disease transmission are usually 

complex and non-linear. The main concern of these 

models is to investigate equilibrium points, their 

stability analysis, periodic solutions, bifurcations, 

chaotic behaviour, and so on. 

 

Alfred J. Lotka was the first to investigate the 

relationships between populations of predators and 

their prey. One of the most important components 

of predator-prey population modelling is the 

mathematical model of predator-prey interactions 

known as ”functional response”. There are several 

types of functional responses, including Holling 

type I-III [7], [8]; Hassell-Varley type [6]; 

Beddington-DeAngelis type [1], [4]; Crowley-

Martin type [3]. Crowley-Martin functional 

responses take both prey and predator into account. 

The Crowley-Martin functional response 

considered in this paper has the following form: 

, 

 

where β,η,µ are non-negative numbers that 

represent the effect of seeking rate, processing 

time, and the magnitude of impact among 

predators, respectively. In recent decades, more 

information on predator-prey systems with 

Crowley-Martin functional responses has become 

available. In the recent era, some eminent authors 

[19], [17], [16], [5], [2] have studied to understand 

the importance and interactions of prey. They used 

some functional responses, such as Crowley 

Martin-type functional responses, to make the 

model system more realistic and controllable in the 

ecosystem. Many researchers have begun to study 

the predator-prey model with infection in either 

prey or predator or both populations [9]. Kadhim 

and Azhar [10] two forms of disease in a predator 

population model, with a linear functional 

response involving a type II Holling function. In 

[20], studied a non-linear analysis of a predator-

prey model with discrete impacts. Global and local 

stability studies, including a bifurcation analysis 

for a ratio-dependent itraguild predation model, are 

discussed in [14]. Magudeeswaran et al. examined 

a prey-predator food web model with a type II 

Holling function [15]. Recently, several 

investigators have found a stable percentage of 

prey protected from predators by refuge. 

According to several studies and mathematical 

models, interactions between prey and predators 

can be stabilised by refugia. In [18], Maynard 

Smith discovered that the existence of a stable 

proportional refuge moderates the static behavior 

of the static equilibrium but not the dynamic 

stability of the neutrally stable Lotka-Volterra 

model. Tapan Kumar Kar [11] Holing type II 

response function is considered a predator model 

with integration and prey refuge. Commercial 

exploitation of biological resources to meet 

society’s increasing needs is a concern for 

ecologists, bioeconomists, and natural resource 

managers. Harvesting is extensively used in 

fisheries, forestry, and wildlife management. These 

investigations revealed various and intriguing 

dynamics, such as equilibrium points, Hopf-

bifurcation analysis, limit cycles, homoclinic 

loops, Bogdanov-Takens bifurcation, and even 

catastrophe. In eco-epidemiology, we explore 

predator-prey models that incorporate disease 

dynamics. We seek to explore the dynamics of the 

predator-prey model using this functional 

response. 

 

In eco-epidemiology, we study predator-prey 

models along with disease dynamics. Several 

investigations have been conducted on the 

dynamical behaviour of Crowley-Martin 

ecoepidemiological models. To our knowledge, 

few scholars have investigated three species of 

prey-predator models that include species 

interaction, such as Crowley-Martin disease in 

prey populations. This work examines the 
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dynamics of a Crowley-Martin eco-

epidemiological model involving prey refuge and 

prey harvesting. The rest of the paper is structured 

as follows: In Section 2, we present the 

mathematical analysis of the study. In Section 3, 

some preliminary aspects of the model are 

examined. Section 4 deals with boundary 

equilibrium points and their stability. In Sections 5 

and 6, we determine the existence of the interior 

equilibrium point E∗(u∗,v∗,w∗) and investigate its 

local and global stability. The occurrence of Hopf-

bifurcation is shown in Section 7. Numerical 

simulations are studied for the proposed model in 

Section 8. The conclusion of the paper and the 

biological implications of our mathematical results 

are found in Section 8, which concludes the paper. 

 

2 Mathematical Model Formation 

The model explains the relationship between the 

structure of the infected prey and the following 

equations. The proposed framework was used to 

explore a non-linear prey and predator 

mathematical model, 

 

  (2.1) 

 

and the positive conditions are described as S0 ≥ 

0,I0 ≥ 0 and P0 ≥ 0. 

The table displays the specific biological meanings 

of the parameters. 

It is appropriate to modify the variables as follows 

in order to decrease the number of system Table 1: 

Biological representation of the model 

 
Parameters Units Biological representation 

S Number per unit area (tons) Susceptible Prey 

I Number per unit area (tons) Prey with infection 

P Number per unit area (tons) Predator 

R Per day (T−1) Prey growth rate 

K Number per unit area (tons) Environmental carrying capacity 

α1 Per day (T−1) Infection rate 

a1 Per day (V ) Half-saturation constant 

θ Per day (V −1) Refuge constant of prey 

β1 Per day (T−1) Susceptible prey to predator’s rate of consumption 

η1 per day Time for handling a predator 

µ1 Per day Interaction between predators on a large scale 

b1 Per day (T−1) Capture rate by predator 

H1 Per day The catchability coefficient of the susceptible prey 

H2 Per day The catchability coefficient of the infected prey 

E Per day Harvesting effort 

c Per day Prey to predator conversion rate 

D1 Per day (T−1) Mortality rate Diseased prey 

D2 Per day (T−1) Mortality rate among predator 

 

variables s = K
S ,i = K

I ,p = K
P , and to consider the dimension time t = λKT. Now, we applying the following 

transformations 

(2.1) 

 

The equation (2.1) can be expressed as non-dimensional form using the above transformations. 

  (2.2) 
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3 Preliminaries 

Here, the following preliminary properties of solutions of the proposed system are discussed. 

 

3.1 Positivity 

Theorem 3.1 All solutions of (2.2) are positive in  . 

Proof. Since s0,i0, and p0 are all greater than or equal to zero, the system (2.2) becomes, 

, 

then the solution of (2.2) are non-negative. 

  

3.2 Positive Invariance 

Let γ ≡ (s(t),i(t),p(t))T and U(γ) = (U1(γ),U2(γ),U3(γ))T, where 

 
 

Then, the system (2.2) can be written as dγ
dt = U(γ) where  with . 

Here, Un∈C∞(R) for n = 1,2,3. Therefore, the function U is Lipschitzian and continuous on . The system 

(2.2) has positive initial conditions, so it can be demonstrated that these solutions exist. As a result, in the 

region , (2.2) is an invariant. 

 

3.3 Boundedness of the solutions 

Theorem 3.2 The system (2.2) solutions starting at  are all positive and bounded. 

Proof. Let s(t),i(t),p(t) be any solution of the system with positive initial conditions, 

, 

 

we have, limsupt→∞ s(t) ≤ 1. 

Let ϕ = s + i + p. 

 

 (since , 

 where ζ = min {h1,d + h2,δ}. 

Hence, we have 

. 

 

The differential inequality theorem is used to determine 

. 

For t→∞, we have 0 . Hence, each and every one of the model (2.2) are confined to non-negative 

initial conditions around Ω, where Ω = .  
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4 Existence of Equilibrium points 

In this section, we explore the possible equilibrium points (2.2). The system (2.2) exhibits the following 

equilibrium points based on observation. 

, 

1. The trivial equilibrium point is E0(0,0,0). 

2. The diseased prey free and predator-free equilibrium point E1(s,0,0) exists if h1 < r, where . 

3. The predator-free equilibrium point E2(s,ˆ ˆi,0), where 

 and . 

E2 exists for d+h2 < α,θ < 1,h1 < r, (d+h2)((1−θ)+a) < (1−θ)α, and (d+h2)((1−θ) < ar + (1 − θ)α. 

4. The infection-free equilibrium point E3(¯s,0,p¯), where ¯  and ¯

 . 

 

Thus, the conditions must exist for the infection-free equilibrium point E3 are  and

 (assume h1 < r(1 − s) and s < 1). 

 

5. The endemic equilibrium point E∗(s∗,i∗,p∗), where 

, 

, 

Thus, the conditions must exist for the endemic equilibrium point E∗ are , 

. 

 

5 Stability analysis 

In order to determine local stability around various equilibrium points, we compute the Jacobian matrix. At 

each given point (s,i,p), the Jacobian matrix is given by 

 
 

Where, 

. 
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Theorem 5.1 The trivial equilibrium point E0(0,0,0) is always unstable. 

Proof. Now, the Jacobian matrix of system (2.2) is given by 

 
 

Therefore, eigenvalues of the characteristic equation of J(E0) are r − h1, −d − h2, −δ. Hence, 

E0 is locally asymptotically stable only if r < h1 and unstable otherwise.  

 

Theorem 5.2 The diseased prey free and predator-free equilibrium point E1(1,0,0) is locally asymptotically 

stable if α(1 − θ)(r − h1) < (d + h2)(ar + (1 − θ)(r − h1)) and βc(r − h1) < δ(r + η(r − h1)). 

Proof. The Jacobian matrix of system (2.2) at 0) is given by 

 
 

Where, 

. 

 

Therefore, eigenvalues of the characteristic equation of  ), and 

0 i.e., h1 < r, λ2 < 0, i.e., α(1−θ)(r −h1) < (d+h2)(ar +(1− θ)(r − h1)) and λ3 < 0, 

i.e., βc(r − h1) < δ(r + η(r − h1)). Thus E1 is locally asymptotically stable if α(1 − θ)(r − h1) < (d + h2)(ar + (1 

− θ)(r − h1)) and βc(r − h1) < δ(r + η(r − h1)). □ 

 

Theorem 5.3 The predator-free equilibrium point E2(s,ˆ ˆi,0) is locally asymptotically stable if X11 > 0, X12 > 

0 and . 

Proof. The Jacobian matrix of system (2.2) is given by 

 
 

Where, 

, 

, 

 

Therefore, the characteristic equation of J(E2) is (N7 − λ)(λ2 + X11λ + X12) = 0, where X11 = 

−(N1 + N5) and X12 = N1N5 − N2N4. 

In the above characteristic equation, we get one of the eigenvalue is N7, which is negative as  

and the other two eigenvalues should be negative if X11 > 0 and X12 > 0. 

Hence, E2 is locally asymptotically stable if X11 > 0, X12 > 0 and  .  
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Theorem 5.4 The equilibrium point E3 is locally asymptotically stable if Y11 > 0, Y12 > 0 and 

. 

 

Proof. The Jacobian matrix of system (2.2) at E3(¯s,0,p¯) is given by, 

 
 

Where, 

, 

 

Now, the characteristic equation for J(E3) is (P4−λ)(λ2+Y11λ+Y12) = 0, where Y11 = −(P1+P7) and Y12 = P1P7 − 

P3P5. 

 

In the above characteristic equation, we get one of the eigenvalue is P4, which is negative as 

 and the other two eigenvalues should be negative if Y11 > 0 and Y12 > 0. 

 

So, the infection-free equilibrium point E3(¯s,0,p¯) is locally asymptotically stable if d + h2 > 

0, otherwise the system (2.2) will be unstable.  

 

Theorem 5.5 The equilibrium point E∗ is locally asymptotically stable if Z1 > 0, Z2 > 0, and Z1Z2 − Z3 > 0. 

Proof. Now, the Jacobian matrix of system (2.2) at E∗(s∗,i∗,P∗) is given by 

 
 

Where, 

, 

 

At the endemic equilibrium point E∗, the Jacobian matrix’s characteristic equation is 

 λ3 + Z1λ2 + Z2λ + Z3 = 0. (5.1) 

 

Where, 

Z1 = −(Q11 + Q22 + Q33), 

Z2 = −(Q12Q21 + Q13Q31 + Q23Q32 − Q11Q22 − Q11Q33 − Q22Q33), 

Z3 = −(Q11Q22Q33 + Q12Q23Q31 + Q13Q21Q32 − Q13Q31Q22 − Q12Q21Q33 − Q11Q23Q32). 
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According to Routh-Hurwitz criterion, Z1, Z2, and Z1Z2 − Z3 must all be positive, the characteristic of all the 

roots be negative. Hence, E∗ is locally asymptotically stable.  

 

6 Global stability analysis 

Here, we study the global stability of the model (2.2) around the endemic equilibrium E∗(s∗,i∗,p∗). A function 

of Lyapunov form 

), 

where L2,L3 are positive constants. 

Here, L1(s,i,p) ≥ 0 since ψ − 1 ≥ ln ψ for ψ > 0 and L1(s∗,i∗,p∗) = 0. Differentiating L1 with respect to t, we 

obtain 

 
 

After some simplifications we get, 

 
 

Now, we see that  is negative definite in the region: 

G = {(s,i,p) : s > s∗,i > i∗ and p > p∗) or s < s∗,i < i∗ and p < p∗} and Consequently, for all solutions in G, L is 

a Lyapunov function. Summarising our previous discussions, we arrive at the following conclusion: 

Theorem 6.1 If E∗ is globally asymptotically stable then E∗ is globally asymptotically stable in G = {(s,i,p) : s 

> s∗,i > i∗ and p > p∗) or s < s∗,i < i∗ and p < p∗}. 

 

7 Hopf-bifurcation analysis 

Theorem 7.1 If the critical value for the bifurcation parameter h1 is exceeded, the model (2.2) experiences the 

Hopf-bifurcation. The existence of the following 

Hopf-bifurcation criteria at , 

1. , 

2.  , where λ is the zero of the characteristic equation corresponds to the non-

negative equilibrium point. 

 

Proof. For , let the characteristic equation (5.1) implies that 

 . (7.1) 

 

) and ) be the zeros of the above equation (7.1). The following transver- 

sality requirement must be satisfied in order to achieve the Hopf-bifurcation at . 
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. 

 

For all h1, the general roots of the form 

λ1(h1) = r(h1) + is(h1), λ2(h1) = r(h1) − is(h1), and λ3(h1) = −A1(h1). Now, we check the condition 

. 

 

Let, λ1(h1)= r(h1) + is(h1) in (7.1), we get 

ζ1(h1) + iζ2(h1) = 0, 

 

where, ζ1(h1) =r3(h1) + r2(h1)U(h1) − 3r(h1)s2(h1) − s2(h1)U(h1) + r(h1)V(h1) + U(h1)V(h1), ζ2(h1) =3r2(h1)s(h1) 

+ 2r(h1)s(h1)U(h1) − s3(h1) + s(h1)V(h1). 

 , (7.2) 

 , (7.3) 

 

where, 

ϕ1(h1) = 3r2(h1) + 2r(h1)U(h1) − 3s2(h1) + V(h1), ϕ2(h1) = 6r(h1)s(h1) + 2s(h1)U(h1), ϕ3(h1) = r2(h1)U′(h1) − 

s2(h1)U′(h1) + W′(h1) + V′(h1)r(h1), 

′ ′ ϕ4(h1) = 2r(h1)s(h1)U (h1) + s(h1)V (h1). 

On multiplying (7.2) and (7.3) by ϕ1(h1) and ϕ2(h1) respectively, 

  (7.4) 

Substituting r(h1) = 0 and ) and ϕ4(h1) we 

obtain 

. 

The equation (7.4), implies 

 , (7.5) 

If , which implies that 

, 

and 

 

If = 0, is ensured if the transversality criterion holds, and at this 

point, the model (2.2) enters the Hopf-bifurcation at . □ 

 

8 Numerical Analysis 

We show some numerical simulations of the model 

(2.2) in this section. To accomplish this, we use 

Diethelm et al.’s predictor-corrector approach to 

solve the proposed model. The rate of harvesting 

h1, and refuge coefficient (θ) are the main 

characteristics applied as control parameters in this 

study. Since no field data is available, the 

simulations are carried out with the following 

assumed parameter values: 

 

Table 2:The system (2.2) parametric values 

Parameters Numerical Value Parameters Numerical Value 

r 2 α 0.7 

a 0.6 β 0.2 

η 0.1 µ 0.1 

d 0.1 b 0.55 

h2 0.1 δ 0.1 

c 0.5   

θ variable h1 variable 
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8.1 Effect of changing the harvesting rate h1 

Let us fix the parameter values in Table 2 with θ = 

0.2 and h1 = 0.2. The positive equilibrium point 

E∗(0.7331,0.119554,0.230971) exists for 0.01 < h1 

< 0.3, respectively. Figure (1) illustrates the 

stability of E∗ for h1 = 0.08, while Figure (2) 

illustrates the stability of E∗ for h1 = 0.2. 

Figure 3(a), Figure 3(b), and Figure 3(c) show that 

increasing the harvesting rate of suscepti- 

 

 
Figure 1: Time analysis for the system (2.2) of susceptible prey, infected prey, and phase portrait for (θ = 

0.2, and h1 = 0.08.) 

 

ble prey leads to a decrease in the population of 

vulnerable prey and predators while increasing the 

population of diseased prey. 

 

8.2 Effect of changing the refuge constant θ 

Let us fix the parameter values in Table 2 with h1 = 

0.2. The positive equilibrium point 

E∗(0.17331,0.119554,0.230971) exists for 0.1 < θ 

< 0.5, respectively. 

 

 
Figure 2: Time analysis of susceptible prey, infected prey and phase portrait for the system (2.2) when (θ = 

0.2, and h1 = 0.2.) 

 

From Figure 3, it shows that increasing the refuge 

rate of vulnerable prey leads to an increase in the 

population of susceptible prey while decreasing the 

population of diseased prey. 

 

9 Conclusion 

In this study, we investigated the refuge and 

harvesting rates in a Crowley-Martin eco-

epidemiological model with infection in a 

population of prey where a predator attacked 

susceptible and infected prey. Local stability (2.2) 

is applied to each set of biologically possible 

equilibrium points of the system. It is used to 

modify the refuge rate (θ) and the harvesting rate 

(h1) as control parameters. In addition, we 

investigated the local stability of the proposed 

model (2.2) and studied the Hopf-bifurcation 

phenomenon. As a result, we found that modifying 

the harvesting rate h1 significantly affects the 

stability of the proposed model (2.2). The 

analytical and numerical findings demonstrate that 

refuge coefficient and harvesting rate have a 

significant effect on each population. The 

susceptible prey density increases as the refuge 

from infection decreases, whereas the infected 

prey density decreases. A decrease in the 

population of susceptible prey and an increase in 

infected prey population density are the effects of 

increasing the harvesting rate. This study shows 

the complex behavior of the proposed model. 
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