BIOLOGICAL EVALUATION AND IN SILICO STUDIES OF PYRIDYLPYRAZOLECARBOXYLIC ACID: SYNTHESIS AND CHARACTERIZATION

P. Madhu ${ }^{\text {a }}$, S. Jeevitha ${ }^{\text {a }}$, Rajendran Sribalan ${ }^{\text {b }}$

Abstract

Pyridylpyrazolecarboxylic acid (PPC) was synthesized and the structure was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, Mass and FT-IR spectroscopic techniques. The in vitro antioxidant and anti-inflammatory activities were screened for PPC. It showed nearer anti-inflammatory and antioxidant activities towards the standard drugs. Further, the PPC was performed for molecular docking and molecular modelling to compare the biological activities for additional support.

Keywords: Pyridylpyrazolecarboxylic acid, Antioxidant, Anti-inflammatory, Molecular electrostatic potential, Molecular docking study.

Highlights

\square The biologically active PPC was synthesized and characterized by different spectroscopic techniques.
PPC showed nearer anti-inflammatory and antioxidant activities towards the standard drugs.Molecular electrostatic study and Molecular docking study supports the biological activity of PPC.

Graphical abstract

${ }^{\text {a }}$ Department of Chemistry, Thiruvalluvar Government Arts College, Rasipuram-637 401, Tamil Nadu, India
${ }^{\text {b }}$ Biochemie Innovations Laboratory, Tindivanam-604 001, Tamil Nadu, India

[^0]DOI: 10.53555/ecb/2023.12.12.261

1. Introduction

Many heterocyclic compounds are found in natural products and biomolecules, which play a vital role in biochemical processes [1-2]. Heterocyclic compounds used in the medicines are as amino acids like histidine, proline and tryptophan. Vitamins and coenzymes precursors such as pyridoxine, folic acid, thiamine, riboflavin, biotin and B12 were also containing heterocyclic units. There is numeral pharmacologically active heterocyclic compounds that have been synthesized and many of them are in regular clinical use [3]. Literature survey shows that many of the heterocyclic moieties such as thiazolidinones, thiazoles, pyrazolines show very good biological activities [4].
Amid, nitrogen containing heterocyclic compounds like pyridine and pyrazole has been used in several fields [5-6]. Pyrazole and its derivatives have widespread potential pharmacological activities (Fig. 1) such as antitumor [7], anti-inflammatory [8], antiviral [9] and antimicrobial activity [10]. Pyrazole derivatives of celecoxib [11] and deracoxib [12] are used as selective COX-2 inhibitors. Recently, Kasımogulları et al. described that pyrazole-3carboxylic acid derivative which is proven as antiproliferative [13]. Chuang et al. reported the pyrazole incorporated pyridine and arene sulfonyl
moiety exhibited anti-HBV agents in HepG2 cells [14]. Piyush N. Kalaria et al. synthesized biologically active fused heterocyclic compounds using pyrazole moiety [15]. Similar to pyrazole, pyridine nuclei have various pharmacological activities like anticancer [16], antibacterial [17], antifungal [18], anti-inflammatory [19], antidepressant [20] and antiviral activity [21].
Carboxylic acid plays a key role in living systems as well as in drug design. For instance, amino acids and prostanoids contain the carboxylic acid moiety. Several drugs containing carboxylic acid which have been marketed worldwide [22-23]. The strong electrostatic interactions and a hydrogen bonding interaction are the reason for the drug-target interactions of carboxylic acid.
Based on the importance of these active moieties, the research is focused to synthesize pyridylpyrazole carboxylic acid (PPC). This synthesized PPC was studied for their antiinflammatory and antioxidant activities. In silico studies such as molecular docking and quantum mechanical modelling were carried out for PPC. The experimental studies have been accompanied by computational studies, for understanding the behavior of the PPC and identification of the important information about the PPC.

Fig. 1. Pyrazole containing drugs

Experimental section Materials and Instrumentation

All chemicals were purchased from SigmaAldrich and Merck and used as received without further purification. The solvents used were analytical grade and double distilled water was used throughout the experiment. The progress of all the reactions was monitored by TLC using silica gel 60F254 and visualized under UV 254366 nm and iodine. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) were recorded on Bruker NMR instrument in CDCl_{3} and DMSO- d_{6} as solvents and TMS as an internal standard. Electron spray ionization mass spectra (ESI-MS) were recorded
on LCQ Fleet mass spectrometer (Thermo Fisher Instruments Ltd., US). Shimadzu UV-1800 UVVis spectrometer was used to record UV absorption spectra for biological activities.

Synthesis

The PPC was synthesized by following the reported method by Sribalan et al. [24]
Synthesis of ethyl 2,4-dioxo-4-(pyridin-4yl)butanoate (2)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, 2 H), 7.85 (d, J = $5.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.42(\mathrm{q}, \mathrm{J}=14.0$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.89,173.26,165.10$, 150.57, 137.70, 122.79, 61.75, 29.62, 14.15.

Synthesis of ethyl 3-(pyridin-4-yl)-1H-pyrazole-5carboxylate (3)
${ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-D $_{6}$) $\delta 14.36(\mathrm{~s}, 1 \mathrm{H})$, 8.64 (d, J = $5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.51 (s, 1H), 4.36 (q, J = 14.0, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.34 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO$\left.\mathrm{D}_{6}\right) \delta 163.78,150.81,135.88,127.73,120.08$, 107.35, 61.33, 14.68.

Synthesis of 3-(pyridin-4-yl)-1H-pyrazole-5carboxylic acid (PPC)
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-D $_{6}$) $\delta 8.93$ (bs, 2H), 8.47 (d, J = $5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.80(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-D ${ }_{6}$) $\delta 160.58,148.04$, 142.48, 122.51, 109.74. ESI-Mass: calculated m / z 189.05 found $190.11(\mathrm{M}+1)^{+}$. IRcm $^{-1}: 3190,3120$, 2960, 2860, 1700, 1630, 1430, 829, 746.

Biological studies

Anti-inflammatory activity:

The anti-inflammatory procedure was carried out by following the reported literature [25].

Antioxidant activity:

The antioxidant procedure was carried out by following the reported literature [25].

Molecular docking study

The molecular docking studies were performed by using Autodock software [30]. The threedimensional structure of PPC was constructed using ChemBio 3D ultra 13.0 software, and then they were energetically minimized using MMFF94 with a maximum number of iterations of 5000 and a minimum RMS gradient of 0.10 [31]. The crystal structures of Protein (PDB ID: 1PGG and 4-COX) were taken from the Protein Data bank (www.rcsb.org). The docked complexes were visualized using the discovery studio 4.1 client.

DFT Calculation and Molecular electrostatic map potential:

The computational calculations of the Highest occupied molecular orbital (HOMO) and Lowest unoccupied molecular orbital (LUMO) in the checkpoint files were performed with Gaussian 09 W program using density functional theory [32]. The chemical structure of the compound was optimized with B3LYP/6.311 ++ G (d,p) basis set. To visualize the computed structures including HOMO, LUMO and Molecular electrostatic potential (MEP) representations the Gauss view software package was used.

Results and discussions Chemistry

The PPC was synthesized by following the reported method which is described in scheme 1 [24]. The precursor 4-acetylpyridine reacts with diethyloxalate in the presence of sodium hydride giving the intermediate 2 . The reaction of intermediate 2 with hydrazine hydrate yielded pyridylpyrazole ester 3. The acid hydrolysis of ester 3 gave PPC. The PPC was characterized by different spectroscopic techniques. The ${ }^{1} \mathrm{H}$ NMR clearly showed that the PPC contains 3 sets of protons (Pyrazole NH and Carboxylic acid may not appear). The peaks appeared at 8.93 and 8.46 ppm due to the presence of a pyridyl unit. The singlet at 7.80 ppm showed the presence of pyrazolyl CH unit. The ${ }^{13} \mathrm{C}$ NMR showed 5 sets of carbon signals (2 quaternary carbon signals may not appear). The peak at 160.57 ppm showed the presence of carboxylic acid carbon. In the ESI-Mass spectrum, the parent ion peak appears at 190.11 in the positive mode. The IR spectrum also gave some additional evidence for the PPC formation. The stretching frequency at $3190 \mathrm{~cm}^{-1}$ indicates the presence of pyrazolyl NH. The stretching frequency at $3120 \mathrm{~cm}^{-1}$ appeared due to the OH stretching frequency of carboxylic acid. The absorption band from 2860 to $3040 \mathrm{~cm}^{-1}$ indicates the presence of aromatic CH units. The sharp peak at $1700 \mathrm{~cm}^{-1}$ indicates the presence of carbonyl unit of carboxylic acid. The IR spectrum was also calculated theoretically and compared with the observed spectrum. The calculated and observed spectrum of PPC is given in Fig. S1. Calculated and observed frequencies are given in Table S1.

Reagents and conditions: (i) NaH , Diethyloxalate, DMF, 1h, RT; (ii) $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, ethanol, 24 h , RT ; (ii) 6 N HCl , 6 h, refux

Scheme 1: Synthetic route of the PPC

Biological studies

In vitro Anti-Inflammatory activity (BSA denaturation and egg albumin denaturation technique)

BSA denaturation technique

Protein denaturation is a loss of biological properties of protein molecules. Protein denaturation is responsible for the cause of inflammation like rheumatoid arthritis. The protein denaturation mechanism is involved in the alteration of electrostatic force, hydrogen bond, hydrophobic and disulfide bonds. Hence the prevention of protein denaturation may be used in preventing inflammation [25].
The present study showed that the BSA antidenaturation activity of PPC on inhibiting the BSA denaturation is shown in Fig. 2. Their
absorbance was measured at 660 nm by using a UV-visible spectrophotometer. The experimental results were compared with diclofenac sodium drug at different concentrations such as $10,25,50$, 100 and $200 \mu \mathrm{M}$ respectively. The maximum inhibition of 84.53 \% was observed in PPC at the concentration of $200 \mu \mathrm{M}$ which is equal to the standard drug diclofenac sodium. Moreover, various concentrations of the synthesized compound showed equal activity to the standard diclofenac sodium drug. From these observations, the PPC showed very good anti-denaturation activity.

Fig. 2. Anti-inflammatory activity (BSA) of PPC.

Egg albumin denaturation technique

The PPC was also studied for in vitro antiinflammatory activity using the egg albumin denaturation technique. Different concentrations of PPC were prepared for this study
(10 to $200 \mu \mathrm{M}$). Diclofenac sodium drug is used as a standard to compare the activity of PPC.

Similar to the bovine serum albumin assay, the PPC showed nearer activity to standard. The \% inhibition was represented in Fig. 3. From these experiments, PPC has potent anti-inflammatory activity against bovine serum albumin and egg albumin.

Fig. 3. Protein denaturation of PPC (egg albumin)

In vitro Antioxidant activity (DPPH radical scavenging and $\mathrm{H}_{2} \mathrm{O}_{2}$ scavenging study)

DPPH radical scavenging activity
PPC was studied for antioxidant activity using DPPH radical scavenging assay. Generally, antioxidants react with DPPH which donates hydrogen and quench the DPPH radical. The color change was measured at 517 nm . The percentage of inhibition was tested for PPC along with standard ascorbic acid at different concentrations such as $10 \mu \mathrm{M}, 25 \mu \mathrm{M}, 50 \mu \mathrm{M}$, $100 \mu \mathrm{M}$ and $200 \mu \mathrm{M}$ respectively. Each test has
been evaluated twice and the percentage of inhibition was represented in Fig. 4. In $10 \mu \mathrm{M}$ concentration, the PPC showed 18.6 \% inhibition while the standard ascorbic acid showed low level percentage inhibition (7.18 \%). Similarly, an increased concentration of PPC from 10 to $25 \mu \mathrm{M}$ showed 32.87% inhibition. But the standard ascorbic acid showed 18.37 \%. Further increase in concentration enhanced the antioxidant activity than ascorbic acid. From the above results, it is clearly understood that the PPC has high DPPH free radical scavenging activity.

Fig. 4. Antioxidant activity (DPPH) of PPC.

$\mathrm{H}_{2} \mathrm{O}_{2}$ scavenging activity

Similarly, the PPC was tested against the $\mathrm{H}_{2} \mathrm{O}_{2}$ scavenging assay. The different concentrations of PPC and ascorbic acid were tested for this study $(10,25,50,100$, and $200 \mu \mathrm{M})$. The absorption of hydrogen peroxide is recorded at 230 nm . The \% of inhibition of the PPC was represented in Fig. 5.

From this experiment, the PPC showed nearer $\mathrm{H}_{2} \mathrm{O}_{2}$ scavenging activity to standard ascorbic acid at all concentrations.
The antioxidant activity results suggested that the PPC has very good DPPH radical scavenging activity and better $\mathrm{H}_{2} \mathrm{O}_{2}$ scavenging activity.

Fig. 5. Antioxidant activity $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ of PPC.

Frontier Molecular Orbital

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are used to determine the way of interaction of the molecule. The highest occupied molecular orbital act as an electron donor and the lowest unoccupied molecular orbital acts as an electron acceptor [26]. The HOMO and LUMO energy is 6.9387 and -2.1459 eV . These negative energies indicate that the PPC is a stable molecule. Here, the HOMO has leading contributions from the pyridine ring whereas LUMO has major contributions in the pyrazole ring and carboxylic acid group. Hard and soft nucleophiles and electrophiles are closely related to the energies of HOMO and LUMO. Hard nucleophile has a low energy HOMO and soft nucleophile have a high
energy HOMO, as well as hard electrophiles, have a high energy LUMO and soft electrophiles have a low energy LUMO [26]. PPC showed hard nucleophiles and electrophiles. Hardness and softness are used to measure the reactivity of the molecule and stability. PPC has a large HOMOLUMO band gap (4.7928 $\Delta \mathrm{E}$). This band gap indicated that the molecule has good stability and large chemical hardness [27]. The electrophilicity index is useful to explain the binding capacity of the molecule. Here, PPC exhibits the highest electrophilicity index which confirms its highest capacity to accept electrons. The HOMO and LUMO of the PPC are represented in Fig. 6 and the frontier molecular orbital parameters were represented in Table 1.

Fig. 6. Frontier molecular orbital of PPC
Table 1 DFT calculation of PPC

S.No	Compound Name	HOMO	LUMO	Band gap	Chemical potential	Electro negativity	Global hardness	Global softness	Electro philicity index
1	PPC	-6.9387	-2.1459	4.7928	-4.5423	4.5423	2.3964	0.2086	4.3049

Molecular Electrostatic potential

The molecular electrostatic potential is used for predicting the region of electrophilic and nucleophilic sites and it was used to analyze the binding region of the molecule. In molecular electrostatic potential, the blue region represented the possible site for the electrophilic attack, while the red region implies the possible site for the
nucleophilic attack [27]. Electrophilic and nucleophilic sites will be very useful for identifying the biological activity (enzyme binding) of the molecule. Particularly, the nucleophilic site (red color) of the molecule is more important because it is ready to make hydrogen bonding interaction with protein [28]. In PPC, the nucleophilic site is positioned on the
pyridyl ring. Similarly, in molecular docking studies, hydrogen bonding was observed in the pyridyl ring. So nitrogen can behave as an ideal hydrogen bonding donor group. Further, the pyrazole ring and carboxylic acid showed positive potential (electrophilic site). The molecular docking studies also revealed that the hydrogen bonding and pi-alkyl interaction occurs in the pyridine, pyrazole, and carboxylic acid group. Based on these results, we have concluded that these particular regions are responsible for biological activity. The Molecular electrostatic potential mappings were represented in Fig. 7.

Fig. 7. Molecularelectrostatic potential of PPC.

Molecular Docking Studies

Docking studies were carried out by Auto-Dock Tool (1.5.6). Molecular docking of PPC was carried out with COX-1 and COX-2 [1PGG.pdb, 4COX.pdb] enzymes. The active site of 1 PGG and 4 COX is followed by the reported literature [29]. The crystal structure of COX-1 and COX-2 were taken from the protein data bank (www.rcsb.org). The PPC was found to have 5.98
$\mathrm{kcal} / \mathrm{mol}$ binding energy and $41.66 \mu \mathrm{M}$ inhibition constant. Albeit, the compound not shown any hydrogen bonding interaction with the active site of COX-1, it showed the least binding energy because it has other possible interactions such as pi-pi interaction, pi-alkyl interaction, and pi-sigma interaction. This docking pose analysis revealed that the pyridyl ring of PPC is oriented with pialkyl interactions surrounded by the side chains of Leu352, Ile523 and Ala527. Similarly, the carboxylic acid forms pi-alkyl interaction with Trp387, Leu384, Phe383, Tyr385, Trp387, Met522 and Leu384. Next, the pyrazole was found to have pi-pi T-shaped interaction with Tyr385 and Trp387 (Fig.8).

Fig. 8. Binding of PPC into the active site of COX-1.

Table 2 Molecular docking interaction of synthesized compounds against 1PGG (COX-1)

S. No	Compound Name	1PGG (COX-1) $(\mathrm{kcal} / \mathrm{mol})$	Inhibition No. of constant H- bonding $(\mu \mathrm{M})$	H-bonded residue
	PPC	-5.98	41.66	-

Similarly, the PPC was docked with 4COX (COX-2). The PPC was found to have -5.94 $\mathrm{kcal} / \mathrm{mol}$ binding energy and $44.24 \mu \mathrm{M}$ inhibition constant along with two hydrogen bonding interactions. The Carbonyl group of carboxylic acid made hydrogen bonding interaction with Arg120 and the bonding distance was found to be $2.83 \AA ̊ . \mathrm{C} 2$ carbon of pyridine forms a hydrogen bonding interaction with Met522 and the bonding distance was found to be $3.10 \AA$.
Moreover, pyrazole ring forms pi-alkyl interaction and pi-sigma interaction with Ala527 and Val523. The pyridine ring showed the formation of pi-pi T-shaped interaction with Trp387 (Fig.
9).

From the docking studies, we have concluded that the hydrogen bond and Pi-pi alkyl interaction
could be the sole reason for the biological activity of PPC. Binding energy, the number of hydrogen bonding, and the inhibition constant of 1PGG and 4COX were represented in Tables 2 and 3.

Fig. 9. Binding of PPC into the active site of COX-2.

Table 3 Molecular docking interaction of synthesized compounds against 4COX (COX-2)

S. No	Compound Name		Inhibition No. of constant Hbonding ($\mu \mathrm{M}$)	
		$\begin{aligned} & \hline \begin{array}{l} \text { Binding } \\ (\mathrm{kcal} / \mathrm{mol}) \end{array} \\ & \hline \end{aligned}$		H-bonded residue
1	PPC	-5.94	44.24	Arg 120, Met522

Conclusion

The biologically active PPC was synthesized and well characterized by different spectroscopic techniques. The in vitro biological studies, as well as theoretical applications, proved that PPC may be used as a good bioactive molecule for antiinflammatory and antioxidant activities. In vivo, studies also support its biological activity. The current research is focused to test the biological activity of PPC for other targets.

Acknowledgement

We gratefully acknowledge the Tamil Nadu State Council for Higher Education (TANSCHE), India for financial support through Minor Research Project (1351/2019A).

References:

1. S. Altürk, D. Avcı, O. Tamer and Y. Atalay, J. Mol. Struct., 1164, 28 (2018).
2. Y. Ju and R.S. Varma, J. Org. Chem., 71(2006) 135-141.
3. M.S. Saini, A. Kumar, J. Dwivedi and R. Singh, Int. J. Pharma Sci. Res., 4, 66 (2013).
4. A.A. Bekhit, A.M.M. Hassan, H.A.A. ElRazik, M.M.M. El-Miligy, E.J. El-Agroudy and A.E.-D.A. Bekhit, Eur. J. Med. Chem., 94, 30 (2015).
5. A. Ansari, A. Ali, M. Asif and Shamsuzzaman, New J. Chem., 41, 16 (2017).
6. S. Fustero, M. Sanchez-Rosello, P. Barrio and A. Simon-Fuentes, Chem. Rev., 111, 6984 (2011).
7. H.J. Park, K. Lee, S. Park, B. Ahn, J. C. Lee, H. Y. Cho and K. I. Lee, Bioorg. Med. Chem., Lett. 15, 3307 (2005).
8. A.K. Tewari and A. Mishra, Bioorg. Med. Chem., 9, 715 (2001).
9. S.L. Janus, M.A. Zahran, E.B. Pederson and C. Nielsen. Monatsh. Chem., 130, 1167 (1999).
10. P. Priyadarsini, B. Ujwala, C. Venkata Rao and V. Madhava Rao, Der Pharm. Lett., 4, 1123 (2012).
11. H. Cheng, K.M. Lundy DeMello, J. Li, S.M. Sakya, K. Ando, K. Kawamura, T. Kato, R.J. Rafka, B.H. Jaynes, C.B. Ziegler, R. Stevens,
L.A. Lund, D.W. Mann, C. Kilroy, M.L. Haven, E.L. Nimz, J.K. Dutra, C. Li, M.L. Minich, N.L. Kolosko, C. Petras, A.M. Silivia and S.B. Seibel, Bioorg. Med. Chem. Lett., 16, 2076 (2006).
12. M.A. Chowdhury, K.R. A. Abdellatif, Y. Dong, D. Das, M.R. Suresh and E.E. Knaus, Bioorg. Med. Chem. Lett., 18, 6138 (2008).
13. R. Kasımogulları, H. Duran, A.S. Yaglioglu, S. Mert and I. Demirtas, Monatsh. Chem., 146, 1743 (2015).
14. H. Chuang, L.C. Sherlock Huang, M. Kapoor, Y-J. Liao, C. L. Yang, C.C. Chang, C.Y. Wu, J.R. Hwu, T.J. Huang and M.H. Hsu, Med.Chem. Comm., 7, 832 (2016).
15. P.N. Kalaria, S.C. Karad and D.K. Raval, Eur. J. Med. Chem., 158, 917 (2018).
16. A. Gangjee, Y. Zhu and S.F. Queener, J. Med. Chem., 41, 4533 (1998).
17. A.P. Krapcho, S.N. Haydar, S. T.-Chiott, M.P. Hacker, E. Menta and G. Beggiolin, Bioorg. Med. Chem. Lett., 10, 305 (2000).
18. M.J. Gil, M.A. Manu, C. Arteaga, M. Migliaccio, I. Encio, A. Gonzalez and V. Martinez- Merino, Bioorg. Med. Chem. Lett., 9, 2321 (1999).
19. P. Thirumurugan, S. Mahalaxmi and P.T. Perumal, J. Chem. Sci., 122, 819 (2010).
20. M.M. Naik, M.N. Deshpande, R. Borges, B.S Biradar and S.G Shingade, J. Drug Deliv. Ther., 7, 202 (2017).
21. F. Monna, F. Chimenti, A. Balasco, B. Bizzarri, W. Filippelli, A. Filippelli and L. Gagliardi, Eur. J. Med. Chem., 34, 245 (1999).
22. P. J. Hajduk, M. Bures, J. Praestgaard and S.W. Fesik, J. Med. Chem., 43, 3443 (2000).
23. C. Ballatore, D.M. Huryn and A.B. Smith, Chem. Med. Chem., 8, 385 (2013).
24. R. Sribalan, G. Banuppriya, M. Kirubavathi, A. Jayachitra and V. Padmini, Bioorg. Med. Chem. Lett., 26, 5624 (2016).
25. R. Sribalan, M. Kirubavathi, G. Banuppriya and V. Padmini, Bioorg. Med. Chem. Lett., 25, 4282 (2015).
26. M.H. Helal, S.A. El-Awdan, M.A. Salem, T.A. Abd-elaziz, Y.A. Moahamed , A.A.

ElSherif and G.A.M. Mohamed, Spectrochim. Acta, Part A., 135, 764 (2015).
27. Y.Tao, L. Han, X. Li, Y. Han and Z. Liu, J. Mol. Struct., 1108, 307 (2016).
28. A. Chidangil, M.K. Shukla and P.C. Mishra, Mol. Model.Ann., 4, 250 (1998).
29. N. Handler, W. Jaeger, H. Puschacher, K. Leisser and T. Erker, Chem. Pharm. Bull., 55, 64 (2007).
30. S.M.D. Rizvi, S. Shakil, and M. Haneef, Excli J., 12 (2013) 831-857.
31. Y.Y. Xu, Y. Cao, H. Ma, H.Q. Li and G.Z. Ao, Bioorg. Med. Chem., 21(2013) 388-394.
32. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.

Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, S.B.B. tefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, RevisionC.02, Gaussian, Inc., Wallingford, CT, (2004).

Supplementary Information

Fig. S1. Observed and calculated spectrum of PPC

Fig. S2. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 2

Fig. S3. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2

Fig. S4. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{D}_{6}\right)$ spectrum of compound 3

Fig. S5. ${ }^{13} \mathrm{C}$ NMR (75MHz, DMSO-D 6) spectrum of compound 3

Fig. S6ESI-Mass spectrum of compound 3

Fig. S7. FT-IR spectrum of compound 3

Fig. S8. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{-}\right.$) spectrum of compound PPC

Fig. S9. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{DMSO}_{6}\right)$ spectrum of compound PPC

Fig. S10. ESI-Mass spectrum of compound PPC

Fig. S11 .FT-IR spectrum of compound PPC
Table S1. Calculated and observed frequencies of PPC

S.No.	observed	calculated	scaled	Vibrational assignment with PED (\%)
1		3681	3538.542	sOH(100\%)
2		3628	3487.593	sNH(100\%)
3	3190	3327	3198.242	sCH(99\%)
4	3120	3247	3121.338	sCH(93\%)
5		3226	3101.151	sCH(98\%)
6	3080	3210	3085.77	sCH(87\%),sNC(11\%)
7	3050	3203	3079.041	sCH(94\%)
8	1700	1731	1664.009	sOC(65\%),sCC(15\%)
9	1630	1653	1589.027	sCC(23%), bHCC(10%)
10	1590	1610	1547.691	$\mathrm{sCC}(33 \%)$
11	1560	1593	1531.349	sNC(14\%),sCC(21\%)
12	1530	1553	1492.897	sCC(14%), bHCN(17\%), $\mathrm{bHCN}(18 \%)$
13	1430	1494	1436.181	$\mathrm{sCC}(13 \%), \mathrm{bNNC}(19 \%)$
14		1473	1415.993	bHCC(10\%)
15		1454	1397.729	sCC(19\%),sNC(12\%), $\mathrm{bHNN}(18 \%), \mathrm{bHCN}(11 \%)$
16	1360	1436	1380.425	bHNN(27\%),bHCN(12\%)
17	1320	1395	1341.012	bHCN(16\%), bHCN(15\%), bHCC(14\%),bHCC(18\%)
18	1280	1348	1295.831	sNC(18\%),bHOC(16\%),bHCC(10\%)
19	1250	1300	1249.689	sCC(13%),sNC(20%)
20	1230	1288	1238.153	sCC(13\%),sNC(22\%),sNN(10\%)
21		1266	1217.005	$\begin{aligned} & \text { sNC(} 10 \% \text {),bHCN(} 20 \%), \mathrm{bHCN}(19 \%), \mathrm{bHCC}(13 \%), \mathrm{b} \\ & \mathrm{HCC}(13 \%) \end{aligned}$
22	1160	1230	1182.398	sNC(18\%), bHOC(12\%), bHCC(13\%)
23	1100	1192	1145.868	sNN(35\%),bHOC(13\%),bHCC(17\%)
24		1131	1087.229	$\mathrm{sCC}(17 \%), \mathrm{sCC}(13 \%), \mathrm{bHCC}(10 \%), \mathrm{bHCC}(13 \%)$
25		1115	1071.848	sNN(13\%),sOC(25\%),bHOC(22\%)
26	1060	1107	1064.158	bHCC(20%), bCCN(22%), bNCC(15%),bCNC(11\%)
27	1030	1087	1044.932	$\operatorname{sNN}(10 \%), \mathrm{bCCN}(13 \%) . \mathrm{bHCC}(25 \%)$
28		1034	993.9832	sCC(17\%),sOC(19\%)bCNN(25\%)
29		1027	987.2541	tHCNC(45\%),tHCCC(35\%),tCCNC(10\%)
30	960	1008	968.9894	tHCNC(52\%),tHCCN(23\%),tCCCN(11\%)
31		1007	968.0281	sNC(23\%),sNC(28\%),bCCN(14\%)
32	943	988	949.7634	bCCN(27%), bCNN(17\%), bNNC(13\%)
33		915	879.5886	tHCNC(25\%),tHCCC(31\%),tHCCN(18\%)
34		899	864.2078	tHCCN(11\%),tHCCN(43\%)
35	831	869	835.3688	$\begin{aligned} & \text { tHCNC(17\%),tHCNC(12\%),tHCCN(17\%),tCCNN(} \\ & 12 \%), \mathrm{oCCCC}(15 \%) \end{aligned}$
36	773	779	748.8519	tHCCN(10\%),tCCNC(10\%),tCCCN(12\%),tCNNC(

				12\%),oOCOC(27\%)
37	746	766	736.355	tCCNC(12\%),tCCCN(18\%),oOCOC(29\%)
38		734	705.5935	tHNNC(49\%),tHCCN(10\%),tCNNC(17\%)
39		730	701.7483	sCC(11\%),bCNC(29\%)
40	683	709	681.561	tHNNC(43\%), $\mathrm{CNNC}(35 \%$)
41		696	669.0641	bCCC(18\%), $\mathrm{bCCN}(25 \%), \mathrm{bNCC}(36 \%)$
42	648	683	656.5672	sOC(14\%),bOCO(33\%),bCNC(11\%)
43		653	627.7282	tHOCC(32\%),tCCNN(38\%),oOCOC(22\%)
44		586	563.3212	tHOCC(57\%),tCCNN(18\%)
45		558	536.4048	bNCC(13\%), bCCC(19\%),bOCC(24\%)
46		545	523.908	tCNNC(12\%),oCCCC(29\%)
47		448	430.662	sCC(15\%), bOCO(26\%),bOCC(16\%)
48		437	420.0877	bNCC(24%), bCCC(31\%), bOCC(19\%)
49		394	378.7518	$\begin{aligned} & \text { tHCCN(12\%),tCCNC(36\%),tCNCC(26\%),tCCCN(1 } \\ & 3 \%) \end{aligned}$
50		322	309.5383	tCNCC(18\%),tNNCC(36\%),oCNCC(14\%)
51		285	273.9702	$\begin{aligned} & \text { sCC(12\%),sCC(25\%),bCCC(14\%),bOCO(10\%),bN } \\ & \text { NC(11\%) } \end{aligned}$
52		200	192.2598	bNCC(11\%), bCCC(30\%),bCCC(27%), bOCC(22%)
53		181	173.9951	tCNCC(11\%),oCNCC(38\%),oCCCC(11\%)
54		115	110.5494	tOCCN(68\%),oCCCC(10\%)
55		93	89.40081	bNCC(32\%),bCCC(32\%), bCCC(20%)
56		68	65.36833	$\begin{aligned} & \text { tNNCC(} 32 \%), \mathrm{tOCCN}(19 \%), \mathrm{oCNCC}(22 \%), \mathrm{oCCCC} \\ & 15 \%) \end{aligned}$
57		32	30.76157	tNCCC(88\%)

s : stretching, b : bending, t : torsional, o : out of plane bending.

[^0]: *Corresponding Author: P. Madhu
 *Department of Chemistry, Thiruvalluvar Government Arts College, Rasipuram-637 401, Tamil Nadu, India Email: madhup.chem@gmail.com, Tel: +91 9944502310

