Section A -Research paper



# Assessment of the use of Antimicrobial Antibiotics in the inpatients Admitted to Hospital in Tripura

Maitrayee Chakraborty

Research Scholar, Department of Pharmacology, M.Sc. Medical Pharmacology, Tripura Medical College and Dr BRAM Teaching Hospital, Agartala, India Email ID: <u>maitrayeechakraborty33@gmail.com</u>

# Dr Manimekalai K.\*

Professor and HOD, Department of Pharmacology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth University Corresponding Author Email ID: \*<u>drmanimekalaik@gmail.com</u>

Dr Ranjib Ghosh

Professor and HOD, Department of Pharmacology, Tripura Medical College and Dr BRAM Teaching Hospital Email ID: ghoshranjib@rediffmail.com

# Dr Debaprasad Chakraborti

Professor and HOD, Department of Medicine, Tripura Medical College and Dr BRAM Teaching Hospital Email ID: <u>drdebaprasad1974@gmail.com</u>

# Abstract

Today antimicrobial antibiotic resistance has become main concern for the physicians, healthcare professionals as reported by World Health Organization. The guidelines have been prescribed for the correct usage of the antibiotics or drugs but still the frequency of the resistance is increasing and hospitals are playing major role. The present study was carried out with an objective of to determine rational antibiotics prescription as per guidelines and to visualize the drugs per counter are as per guidelines. The study was conducted in the hospital in Tripura on 250 patients admitted in medicine department. The information was noted from the prescription of the patients admitted in the hospital in pharmacology department of the medicine. The data was written related to average number of drugs per encounter including AMAs and AMAs as per NELM along with information of FDC. For the statistical analysis data was added in the Excel sheet. The different statistical tools were employed to calculate various frequencies, variance, Regression, ANOVA analysis etc. The demographic profile exhibited male and female with age variation from 18-85 years. The results predicted no. of drugs prescribed varies as per age as shown in the bar and pie diagram maximum percentage of drugs is 8.924 % i.e. no. of drugs is 10-15. The results exhibit age variation is directly related to no. of AMA in per counter. The present study emphasises on assessment of use of antibiotics as per guidelines in the hospital environment in order to determine the development of resistance. The study reports out of 250 patients 240 were prescribed with antibiotics and age factor also play an important role in encounter of AMAs. Antibiotic use for patients with diseases of the digestive system needs to be further investigated. The earlier and present investigation visualizes more cross-sectional and in-depth studies are needed in order to control the irrational use of AMAs and to determine the use of AMAs as per guidelines of the healthcare world.

**Keywords:** Antimicrobial antibiotic resistance, antimicrobial therapy, World Health Organisation, Fixed Dose Combination, National List of Essential Medicines (NLEM)

Section A -Research paper

# Introduction

World Health Organization (WHO) in 1999 raised the concern of increase of deaths due to infectious especially in developing countries (1). Rubin M.A. and Samore M.H. in 2002 delineated those vaccinations and antibiotic in combination resulted in decrease in bacterial infection along with the decreased mortality rate (2). The main challenge in the treatment is the development of the antibiotic resistance among the patients and the high cost (3). The reasons for the antibiotic resistance are hospitals, healthcare facilities and settings, medicines etc. as stated by WHO. In 1992 and 1993 Neu, H. and Kunin, C. 1993 respectively said that increased rate antibiotic resistance is creating serious issues

all over the world and the major role is played by the hospitals (4, 5). Later on, the various scientists proposed the guidelines for antimicrobial therapy (AMT) i.e. the restricted antimicrobial usage thus to control resistant microbes spread which means guided AMT as per Gyssens, I. C. 2005, Peetermans, W. E., and D. Ramaekers 2002 and Stobberingh, E., R. Janknegt and G. Wijnands 1993 (6-8).

The major bottleneck to control the resistance apart from the implementation of the guidelines is to investigate the actual prescription and the selling of antimicrobial medicines from the pharmacy stores in large amounts results in variation between hospitals or countries as reported by Goossens. et.al., 2005 (9). Bhavesh K.L. et.al.2012 described the reasons for the improper use of drugs as self- medication, medicines non-availability or absence of drug information (10). As per World Health Records and reported by Vanitha R.N. et.al. 2011 that most of the medicines are sold, prescribed or dispensed inappropriately thus the procurement by the patients is incorrect or not as per guidelines (11). The Action Program on Essential Drugs was formulated and initiated in 1981 with an objective of

appropriate use of drugs for all the countries and 2013 India formed the DSPRUD (Delhi Society for Promotion of Rational Use of Drugs) as per Sharma NBM et.al., 2014 (12,13).

WHO and The International Network for Rational Use of Drugs (INRUD) jointly published a standard methodology and core use of drugs indicators in order to measure the drugs prescription in the primary health care systems (14). An innovative model was created and introduced i.e. Antibiotics Smart Use (ASU) in 2007 in order to avoid the irrational use of medicines and to avoid the antimicrobial resistance.

The standard methodologies and guidelines have designed for the rational use of antibiotics but still it is most common and debated issue in the medical and clinical world as studied byHanmant A. and Priyadarshini K et al., 2011 (15). The studies conducted by different researchers like Bbosa G.S. et.al. 2014 or Igbiks T. and Joseph O.F. at al., 2017 depicted that the increased rate of resistance to the bacterial infections drugs or antibiotics and has resulted major reason for adverse drug reactions, hospitalization prolonged etc (16, 17). thus suggested to promote the medicines rational use for the better human health and also said to conduct more studies in clinics or hospitals related to treatment and prescription of drugs. On the basis of earlier we carried out the study on the patients admitted in medicine in the hospital in Tripura with an objective to determine rational antibiotics prescription as per guidelines and to visualize the drugs per counter are as per guidelines.

# **Materials and Methods**

All the data were collected from individual prescription of patients who are admitted in medicine wards in Tripura Medical College & Dr. BRAM Teaching Hospital. The study Design was an observational study along with Study setting of Medicine inpatient department (IPD) & department of Pharmacology.

**Study population:** Patients admitted in Medicine inpatient department (IPD) and patients admitted in the department and procuring antimicrobial antibiotics (AMAs) were included in the study. The sample size of the research is 250 and study tools for prescription of drugs and indicators were as proposed by WHO and following information was noted

• Average number of drugs per encounter

Section A -Research paper

- Average number of AMAs prescribed per encounter.
- Percentage of encounters with an injection of AMAs prescribed
- Percentage of AMAs prescribed by generic names
- Percentage of encounter with AMAs prescribed from National List of Essential Medicine, India (NLEM 2015)
- Percentage of encounter with fixed dose combination (FDC) of AMAs prescribed
- Percentage of encounter with fixed dose combination (FDC) of AMAs prescribed from National List of Essential Medicine, India (NLEM 2015)

#### **Statistical Analysis**

The Excel sheet No.1 exhibits data collected as per WHO prescribing indicators to assess the prescription pattern as per objectives and the abbreviations or different columns in the data depicts as:

- Average number of drugs per encounter = total no of drugs in a prescription as 1
- Average number of AMAs prescribed per encounter = no of antimicrobial agent (drug) in a prescription 2
- Percentage of encounters with an injection of AMAs prescribed = injectable antimicrobial agent (drug) 3
- No of injectable antimicrobial agent (drug) in a prescription 4
- Y = present of injectable drug, N = no injectable drug 5a
- Then the % of injectable drugs in relation with total 5b
- No. of Fixed Dose Combination (FDC) as 6a and 6b Encounter with FDC of AMAs prescribed (Y/N).
- No of FDCs from NLEM as 7a and Encounter with FDC prescribed from NLEM (Y/N) as 7b

The statistical analysis was performed by using online tools to calculate the frequency, t-test, correlation and regression of various parameters in order to predict relationship and statistical significance of the data.

#### **Results and Discussion**

Asper the demographic profile of patients consisted of both male and female along with age variation 18 years to 85 years and high percentage of 40-65 years i.e., 60 % approximately patients. The frequencies distribution was calculated between the age of the patients and different parameters as per objectives

- Average no of drugs per encounter and No. of AMAs prescribed per encounter (Table-1)
- No of injectable AMAs and Encounter with an injection of AMAs prescribed (Y/N) (Table-2)

**Table 1:** Frequency of Age and Average no of drugs per encounter and No. of AMAs prescribed per encounter

| Frequency table |       |      |       |        |  |
|-----------------|-------|------|-------|--------|--|
| Label           | Value | Freq | %     | Sum%   |  |
| 1               | 1     | 1    | 0.131 | 0.131  |  |
| 2               | 2     | 1    | 0.131 | 0.262  |  |
| 1               | 1     | 68   | 8.924 | 9.186  |  |
| 10              | 10    | 24   | 3.15  | 12.336 |  |

#### z for 95% CI= 1.96

| 11 | 11 | 34  | 4.462  | 16.798 |
|----|----|-----|--------|--------|
| 12 | 12 | 18  | 2.362  | 19.16  |
| 13 | 13 | 9   | 1.181  | 20.341 |
| 14 | 14 | 1   | 0.131  | 20.472 |
| 15 | 15 | 6   | 0.787  | 21.26  |
| 16 | 16 | 9   | 1.181  | 22.441 |
| 17 | 17 | 10  | 1.312  | 23.753 |
| 18 | 18 | 7   | 0.919  | 24.672 |
| 19 | 19 | 16  | 2.1    | 26.772 |
| 2  | 2  | 107 | 14.042 | 40.814 |
| 21 | 21 | 2   | 0.262  | 41.076 |
| 23 | 23 | 7   | 0.919  | 41.995 |
| 27 | 27 | 4   | 0.525  | 42.52  |
| 3  | 3  | 48  | 6.299  | 48.819 |
| 33 | 33 | 8   | 1.05   | 49.869 |
| 35 | 35 | 13  | 1.706  | 51.575 |
| 37 | 37 | 8   | 1.05   | 52.625 |
| 38 | 38 | 8   | 1.05   | 53.675 |
| 39 | 39 | 8   | 1.05   | 54.724 |
| 4  | 4  | 26  | 3.412  | 58.136 |
| 41 | 41 | 8   | 1.05   | 59.186 |
| 42 | 42 | 18  | 2.362  | 61.549 |
| 45 | 45 | 5   | 0.656  | 62.205 |
| 46 | 46 | 1   | 0.131  | 62.336 |
| 48 | 48 | 35  | 4.593  | 66.929 |
| 49 | 49 | 8   | 1.05   | 67.979 |
| 5  | 5  | 24  | 3.15   | 71.129 |
| 53 | 53 | 17  | 2.231  | 73.36  |
| 56 | 56 | 6   | 0.787  | 74.147 |
| 58 | 58 | 1   | 0.131  | 74.278 |
| 6  | 6  | 7   | 0.919  | 75.197 |
| 62 | 62 | 1   | 0.131  | 75.328 |
| 63 | 63 | 7   | 0.919  | 76.247 |
| 64 | 64 | 8   | 1.05   | 77.297 |
| 65 | 65 | 16  | 2.1    | 79.396 |
| 67 | 67 | 2   | 0.262  | 79.659 |
| 68 | 68 | 3   | 0.394  | 80.052 |

| 69           | 69         | 1            | 0.131 | 80.184 |
|--------------|------------|--------------|-------|--------|
| 7            | 7          | 10           | 1.312 | 81.496 |
| 70           | 70         | 10           | 1.312 | 82.808 |
| 75           | 75         | 11           | 1.444 | 84.252 |
| 76           | 76         | 8            | 1.05  | 85.302 |
| 8            | 8          | 58           | 7.612 | 92.913 |
| 84           | 84         | 4            | 0.525 | 93.438 |
| 9            | 9          | 37           | 4.856 | 98.294 |
| AMAs         | AMAs       | 1            | 0.131 | 98.425 |
| Age          | Age        | 1            | 0.131 | 98.556 |
| Average      | Average    | 1            | 0.131 | 98.688 |
| No           | No         | 1            | 0.131 | 98.819 |
| Drugs        | drugs      | 1            | 0.131 | 98.95  |
| encounter    | Encounter  | 2            | 0.262 | 99.213 |
| No           | no         | 1            | 0.131 | 99.344 |
| Of           | of         | 2            | 0.262 | 99.606 |
| Per          | per        | 2            | 0.262 | 99.869 |
| Prescribed   | prescribed | 1            | 0.131 | 100    |
| 59<br>catego | )<br>ories | 762<br>cases | 100%  |        |

- No of AMAs prescribed by generic names, No of AMAs prescribed from NLEM and Encounter with AMAs prescribed from NLEM (Table-3)
- No of FDCs with name, Encounter with FDC of AMAs prescribed (Y/N), No of FDCs from NLEM and Encounter with FDC prescribed from NLEM (Y/N) (Table-4 and 6).
- The results predicted no. of drugs prescribed varies as per age as shown in the bar and pie diagram maximum percentage of drugs is 8.924 % i.e. no. of drugs is 10-15. The results exhibits age variation is directly related to no. of AMA in per counter. The correlation scatter plot along with regression analysis confirms the relationship between the prescription of drugs and significant t-test values t (0.025) for 95% Confidence Interval= 1.996, mean1 53.5 (variance1= 246.015) (Standard Error= 2.69), mean2 16.702 (variance2= 409.819) (Standard Error= 1.1). The statistical test analysis performed like ANOVA etc. that with increase of age no. of encounter of AMAs increases leading injections of AMAs for better and faster treatment in order to reduce the side effects.

Further the results predict that the age and injectable AMAs then encounter with an injection of AMAs prescribed are more common and the validity of the results is as per the statistical significant values of ANOVA, t-test and Regression analysis. The graphs exhibit that the encounter of AMAs injection is more preferred for the treatment as shown in the Table-2 and graphs. The study shows the prescription is as per the NLEM. The frequency for the drug in combination is more i.e. Cefotaxime+Sulbactam, Amoxicillin+clarithromycin+Espmeprazole or Piperacillin values are shown in Table-9 and graphs.



Figure 1: Bar Diagram of Frequency of Age and Average no of drugs per encounter and No of AMAs prescribed per encounter



Figure 2: Pie Diagram of Frequency of Age and Average no of drugs per encounter and no of AMAs prescribed per encounter

Section A -Research paper

#### **Correlation/Regression**

z for 95% CI= 1.96 Invalid: 8 Cases-N: 373 r (var1.var2)= -0.4055

| Regression Table for E(var2) |        |       |         |    |  |
|------------------------------|--------|-------|---------|----|--|
|                              | В      | s.e.  | t       | р  |  |
| var1                         | -0.409 | 0.048 | -8.5433 | -0 |  |
| Intercept                    | 28.19  |       |         |    |  |

| Anova table                     |          |       |                   |     |  |
|---------------------------------|----------|-------|-------------------|-----|--|
| Source                          | Σ of Sq. | %     | Mean $\Sigma$ -sq | df  |  |
| Explained                       | 30985    | 16.44 | 30985             | 1   |  |
| Unexplained                     | 157495   | 83.56 | 424.52            | 371 |  |
| Total                           | 188480   | 100%  |                   | 372 |  |
| F-value: 72.988; p-value: 0     |          |       |                   |     |  |
| Residual standard error: 396.86 |          |       |                   |     |  |

# **Descriptives for var1**

Mean: 19.9115; Sum: 7427; Variance: 499.102 Standard Variance sd: 22.3406; Standard Error: 1.15675; 95% CI: 17.64 >19.9> 22.18



Section A -Research paper

# **T-Test**

Mean 1: 53.5; Mean 2: 16.7021 ;N1: 34; N2: 339; Standard Deviation 1 Std Dev.1: 15.6849

Standard Deviation.2: 20.244; t (0.025) for 95% CI= 1.996; mean1 eq: 53.5 (var1= 246.015) (se= 2.69)

mean2eq: 16.702 (var2=409.819) (se= 1.1); Probability that var1<var2

p=0.96174 (left: 0.0383; double: 0.0766)

**Table 2:** Frequency of Age and No of injectable AMAs along with the Encounter with an injection of AMAs prescribed (Y/N)

| Frequency table |       |      |        |        |  |
|-----------------|-------|------|--------|--------|--|
| Label           | Value | Freq | %      | Sum%   |  |
| 3a              | 3a    | 1    | 0.133  | 0.133  |  |
| 3b              | 3b    | 1    | 0.133  | 0.265  |  |
| (Y/N)           | (Y/N) | 1    | 0.133  | 0.398  |  |
| 0               | 0     | 9    | 1.194  | 1.592  |  |
| 1               | 1     | 110  | 14.589 | 16.18  |  |
| 18              | 18    | 7    | 0.928  | 17.109 |  |
| 19              | 19    | 16   | 2.122  | 19.231 |  |
| 2               | 2     | 85   | 11.273 | 30.504 |  |
| 23              | 23    | 7    | 0.928  | 31.432 |  |
| 27              | 27    | 4    | 0.531  | 31.963 |  |
| 3               | 3     | 30   | 3.979  | 35.942 |  |
| 33              | 33    | 8    | 1.061  | 37.003 |  |
| 35              | 35    | 13   | 1.724  | 38.727 |  |
| 37              | 37    | 8    | 1.061  | 39.788 |  |
| 38              | 38    | 8    | 1.061  | 40.849 |  |
| 39              | 39    | 8    | 1.061  | 41.91  |  |
| 4               | 4     | 8    | 1.061  | 42.971 |  |
| 41              | 41    | 7    | 0.928  | 43.899 |  |
| 42              | 42    | 18   | 2.387  | 46.286 |  |
| 45              | 45    | 5    | 0.663  | 46.95  |  |
| 46              | 46    | 1    | 0.133  | 47.082 |  |
| 48              | 48    | 35   | 4.642  | 51.724 |  |

| Ζİ  | for | 95% | CI= | 1.96 |
|-----|-----|-----|-----|------|
| Z 1 | for | 95% | CI= | 1.90 |

| 49               | 49         | 8            | 1.061  | 52.785 |
|------------------|------------|--------------|--------|--------|
| 53               | 53         | 17           | 2.255  | 55.04  |
| 56               | 56         | 6            | 0.796  | 55.836 |
| 58               | 58         | 1            | 0.133  | 55.968 |
| 62               | 62         | 1            | 0.133  | 56.101 |
| 63               | 63         | 7            | 0.928  | 57.029 |
| 64               | 64         | 8            | 1.061  | 58.09  |
| 65               | 65         | 16           | 2.122  | 60.212 |
| 67               | 67         | 2            | 0.265  | 60.477 |
| 68               | 68         | 3            | 0.398  | 60.875 |
| 69               | 69         | 1            | 0.133  | 61.008 |
| 70               | 70         | 10           | 1.326  | 62.334 |
| 75               | 75         | 11           | 1.459  | 63.793 |
| 76               | 76         | 8            | 1.061  | 64.854 |
| 84               | 84         | 4            | 0.531  | 65.385 |
| AMAs             | AMAs       | 1            | 0.133  | 65.517 |
| AMAs             | AMAs       | 1            | 0.133  | 65.65  |
| Age              | Age        | 1            | 0.133  | 65.782 |
| Encounter        | Encounter  | 1            | 0.133  | 65.915 |
| N                | Ν          | 8            | 1.061  | 66.976 |
| No               | No         | 1            | 0.133  | 67.109 |
| Y                | Y          | 241          | 31.963 | 99.072 |
| an               | An         | 1            | 0.133  | 99.204 |
| injectable       | injectable | 1            | 0.133  | 99.337 |
| injection        | injection  | 1            | 0.133  | 99.469 |
| of               | Of         | 2            | 0.265  | 99.735 |
| prescribed       | prescribed | 1            | 0.133  | 99.867 |
| with             | With       | 1            | 0.133  | 100    |
| 50<br>categories |            | 754<br>cases | 10     | 0%     |



Figure 4: Bar Diagram of Frequency of Age and No of injectable AMAs along with the Encounter with an injection of AMAs prescribed (Y/N)



**Figure 5:** Pie Diagram of Frequency of Age and No of injectable AMAs along with the Encounter with an injection of AMAs prescribed (Y/N)

Section A -Research paper

#### **Correlation and Regression**

z for 95% C.I= 1.96; Invalid: 257 ;Cases-N: 120 ;r (var1.var2)= -0.1458 ;p= 0.944 more

| Regression Table for E(var2) |        |       |         |        |  |  |
|------------------------------|--------|-------|---------|--------|--|--|
|                              | В      | s.e.  | t       | р      |  |  |
| var1                         | -0.007 | 0.005 | -1.6008 | 0.1121 |  |  |
| Intercept                    | 2.011  |       |         |        |  |  |

| Anova table                       |             |             |                  |     |  |
|-----------------------------------|-------------|-------------|------------------|-----|--|
| Source                            | Σ of<br>Sq. | %           | Mean Σ-sq        | df  |  |
| Explained                         | 1.8981      | 2.13        | 1.8981           | 1   |  |
| Unexplained                       | 87.402      | 97.87       | 0.7407           | 118 |  |
| Total                             | 89.3        | 100%        |                  | 119 |  |
| F-value: 2.5627; p-value: 0.11209 |             |             |                  |     |  |
| Re                                | esidual sta | andard erro | <b>r:</b> 9.3489 |     |  |

#### **Descriptive for var1**

Mean: 48.175, Sum: 5781; Variance: 284.835; Standard Deviation sd: 16.877, se: 1.54066

95% CI: 45.16 >48.2> 51.19 (Standard Error)

#### **Descriptive for var2**





Figure 6: Scatter Plot of Age and No of injectable AMAs along with the Encounter with an injection of AMAs prescribed (Y/N) Correlation.

Section A -Research paper

**Table 3:** Frequency of Age and No of AMAs prescribed by generic names, No of AMAs prescribed from NLEM and Encounter with AMAs prescribed from NLEM (Y/N).

|       | Frequency table |      |        |        |  |  |
|-------|-----------------|------|--------|--------|--|--|
| Label | Value           | Freq | %      | Sum%   |  |  |
| 4     | 4               | 1    | 0.098  | 0.098  |  |  |
| 5a    | 5a              | 1    | 0.098  | 0.196  |  |  |
| 5b    | 5b              | 1    | 0.098  | 0.294  |  |  |
| (Y/N) | (Y/N)           | 1    | 0.098  | 0.392  |  |  |
| 0     | 0               | 285  | 27.941 | 28.333 |  |  |
| 1     | 1               | 103  | 10.098 | 38.431 |  |  |
| 18    | 18              | 7    | 0.686  | 39.118 |  |  |
| 19    | 19              | 16   | 1.569  | 40.686 |  |  |
| 2     | 2               | 83   | 8.137  | 48.824 |  |  |
| 23    | 23              | 7    | 0.686  | 49.51  |  |  |
| 27    | 27              | 4    | 0.392  | 49.902 |  |  |
| 3     | 3               | 20   | 1.961  | 51.863 |  |  |
| 33    | 33              | 8    | 0.784  | 52.647 |  |  |
| 35    | 35              | 13   | 1.275  | 53.922 |  |  |
| 37    | 37              | 8    | 0.784  | 54.706 |  |  |
| 38    | 38              | 8    | 0.784  | 55.49  |  |  |
| 39    | 39              | 8    | 0.784  | 56.275 |  |  |
| 4     | 4               | 7    | 0.686  | 56.961 |  |  |
| 41    | 41              | 8    | 0.784  | 57.745 |  |  |
| 42    | 42              | 18   | 1.765  | 59.51  |  |  |
| 45    | 45              | 5    | 0.49   | 60     |  |  |
| 46    | 46              | 1    | 0.098  | 60.098 |  |  |
| 48    | 48              | 35   | 3.431  | 63.529 |  |  |
| 49    | 49              | 8    | 0.784  | 64.314 |  |  |
| 53    | 53              | 17   | 1.667  | 65.98  |  |  |
| 56    | 56              | 6    | 0.588  | 66.569 |  |  |
| 58    | 58              | 1    | 0.098  | 66.667 |  |  |
| 62    | 62              | 1    | 0.098  | 66.765 |  |  |
| 63    | 63              | 7    | 0.686  | 67.451 |  |  |
| 64    | 64              | 8    | 0.784  | 68.235 |  |  |
| 65    | 65              | 16   | 1.569  | 69.804 |  |  |
| 67    | 67              | 2    | 0.196  | 70     |  |  |
| 68    | 68              | 3    | 0.294  | 70.294 |  |  |
| 69    | 69              | 1    | 0.098  | 70.392 |  |  |
| 70    | 70              | 10   | 0.98   | 71.373 |  |  |
| 75    | 75              | 11   | 1.078  | 72.451 |  |  |
| 76    | 76              | 8    | 0.784  | 73.235 |  |  |

| z for 95% | CI= | 1.96 |
|-----------|-----|------|
|-----------|-----|------|

| 84               | 84         | 4             | 0.392     | 73.627 |
|------------------|------------|---------------|-----------|--------|
| AMAs             | AMAs       | 3             | 0.294     | 73.922 |
| Age              | Age        | 1             | 0.098     | 74.02  |
| Encounter        | Encounter  | 1             | 0.098     | 74.118 |
| Ν                | Ν          | 51            | 5         | 79.118 |
| NLEM             | NLEM       | 1             | 0.098     | 79.216 |
| NLEM             | NLEM       | 1             | 0.098     | 79.314 |
| No               | No         | 2             | 0.196     | 79.51  |
| Y                | Y          | 198           | 19.412    | 98.922 |
| By               | By         | 1             | 0.098     | 99.02  |
| From             | From       | 2             | 0.196     | 99.216 |
| generic          | generic    | 1             | 0.098     | 99.314 |
| names            | Names      | 1             | 0.098     | 99.412 |
| Of               | Of         | 2             | 0.196     | 99.608 |
| prescribed       | prescribed | 3             | 0.294     | 99.902 |
| With             | With       | 1             | 0.098 100 |        |
| 53<br>categories |            | 1020<br>cases | 10        | 0%     |



**Figure7:** Bar Diagram of Frequency of Age and No of AMAs prescribed by generic names, No of AMAs prescribed from NLEM and Encounter with AMAs prescribed from NLEM (Y/N)



**Figure 8:** Pie Diagram of Frequency of Age and No of AMAs prescribed by generic names, No of AMAs prescribed from NLEM and Encounter with AMAs prescribed from NLEM (Y/N)

|      | Means table |          |          |          |          |           |          |      |       |       |
|------|-------------|----------|----------|----------|----------|-----------|----------|------|-------|-------|
|      | Label       | Mean     | Stddev   | Variance | StdErr   | 95% :     | z-C.I.   | Freq | %     | ++%   |
| r1:  | 18          | 0        | 0        | 0        | 0        | 0         | 0        | 7    | 2.81  | 2.81  |
| r2:  | 19          | 0        | 0        | 0        | 0        | 0         | 0        | 16   | 6.43  | 9.24  |
| r3:  | 23          | 0        | 0        | 0        | 0        | 0         | 0        | 7    | 2.81  | 12.05 |
| r4:  | 27          | 0        | 0        | 0        | 0        | 0         | 0        | 4    | 1.61  | 13.65 |
| r5:  | 33          | 0        | 0        | 0        | 0        | 0         | 0        | 8    | 3.21  | 16.87 |
| r6:  | 35          | 0        | 0        | 0        | 0        | 0         | 0        | 13   | 5.22  | 22.09 |
| r7:  | 37          | 0        | 0        | 0        | 0        | 0         | 0        | 8    | 3.21  | 25.3  |
| r8:  | 38          | 0        | 0        | 0        | 0        | 0         | 0        | 8    | 3.21  | 28.51 |
| r9:  | 39          | 0        | 0        | 0        | 0        | 0         | 0        | 8    | 3.21  | 31.73 |
| r10: | 41          | 0        | 0        | 0        | 0        | 0         | 0        | 8    | 3.21  | 34.94 |
| r11: | 42          | 0.444444 | 0.855585 | 0.732026 | 0.201663 | 0.049191  | 0.839698 | 18   | 7.23  | 42.17 |
| r12: | 45          | 0.2      | 0.447214 | 0.2      | 0.2      | -0.191994 | 0.591994 | 5    | 2.01  | 44.18 |
| r13: | 46          | 0        | 0        | 0        | 0        | 0         | 0        | 1    | 0.4   | 44.58 |
| r14: | 48          | 0.4      | 0.694516 | 0.482353 | 0.117395 | 0.16991   | 0.63009  | 35   | 14.06 | 58.63 |

| <b>Cable 4:</b> Means Table of Age and No of AMAs prescribed by generic names, No of AMAs prescribed |
|------------------------------------------------------------------------------------------------------|
| from NLEM and Encounter with AMAs prescribed from NLEM (Y/N).                                        |

r

| r15: | 49  | 0        | 0        | 0        | 0        | 0        | 0        | 8   | 3.21 | 61.85 |
|------|-----|----------|----------|----------|----------|----------|----------|-----|------|-------|
| r16: | 53  | 0        | 0        | 0        | 0        | 0        | 0        | 17  | 6.83 | 68.67 |
| r17: | 56  | 0        | 0        | 0        | 0        | 0        | 0        | 6   | 2.41 | 71.08 |
| r18: | 58  | 0        | 0        | 0        | 0        | 0        | 0        | 1   | 0.4  | 71.49 |
| r19: | 62  | 0        | 0        | 0        | 0        | 0        | 0        | 1   | 0.4  | 71.89 |
| r20: | 63  | 0        | 0        | 0        | 0        | 0        | 0        | 7   | 2.81 | 74.7  |
| r21: | 64  | 0        | 0        | 0        | 0        | 0        | 0        | 8   | 3.21 | 77.91 |
| r22: | 65  | 0        | 0        | 0        | 0        | 0        | 0        | 16  | 6.43 | 84.34 |
| r23: | 67  | 0        | 0        | 0        | 0        | 0        | 0        | 2   | 0.8  | 85.14 |
| r24: | 68  | 0        | 0        | 0        | 0        | 0        | 0        | 3   | 1.2  | 86.35 |
| r25: | 69  | 0        | 0        | 0        | 0        | 0        | 0        | 1   | 0.4  | 86.75 |
| r26: | 70  | 0        | 0        | 0        | 0        | 0        | 0        | 10  | 4.02 | 90.76 |
| r27: | 75  | 0        | 0        | 0        | 0        | 0        | 0        | 11  | 4.42 | 95.18 |
| r28: | 76  | 0        | 0        | 0        | 0        | 0        | 0        | 8   | 3.21 | 98.39 |
| r29: | 84  | 0        | 0        | 0        | 0        | 0        | 0        | 4   | 1.61 | 100   |
| 1    | 411 | 0.092369 | 0.385605 | 0.148692 | 0.024437 | 0.044474 | 0.140265 | 249 | 100% | 100%  |

**Table 5:** Skewness and Kurtosis Age and No of AMAs prescribed by generic names, No of AMAs prescribed from NLEM and Encounter with AMAs prescribed from NLEM (Y/N)

|      |       |          | Skew   | ness/Kurto | sis table |        |            |        |
|------|-------|----------|--------|------------|-----------|--------|------------|--------|
|      | Label | Mean     |        | Skewness   |           |        | Kurto      | osis   |
|      |       |          | Sample | Population | s.e.      | Sample | Population | s.e.   |
| r1:  | 18    | 0        | 0      | 0          | 0.7937    | -3     | -5.4       | 1.5875 |
| r2:  | 19    | 0        | 0      | 0          | 0.5643    | -3     | -3.70879   | 1.0908 |
| r3:  | 23    | 0        | 0      | 0          | 0.7937    | -3     | -5.4       | 1.5875 |
| r4:  | 27    | 0        | 0      | 0          | 1.0142    | -3     | -13.5      | 2.6186 |
| r5:  | 33    | 0        | 0      | 0          | 0.7521    | -3     | -4.9       | 1.4809 |
| r6:  | 35    | 0        | 0      | 0          | 0.6163    | -3     | -3.92727   | 1.1909 |
| r7:  | 37    | 0        | 0      | 0          | 0.7521    | -3     | -4.9       | 1.4809 |
| r8:  | 38    | 0        | 0      | 0          | 0.7521    | -3     | -4.9       | 1.4809 |
| r9:  | 39    | 0        | 0      | 0          | 0.7521    | -3     | -4.9       | 1.4809 |
| r10: | 41    | 0        | 0      | 0          | 0.7521    | -3     | -4.9       | 1.4809 |
| r11: | 42    | 0.444444 | 1.336  | 1.461      | 0.5363    | -0.214 | 0.13661    | 1.0378 |
| r12: | 45    | 0.2      | 1.5    | 2.236      | 0.9129    | 0.25   | 5          | 2      |
| r13: | 46    | 0        | 0      | 0          | 0         | -3     | 0          | 0      |
| r14: | 48    | 0.4      | 1.432  | 1.497      | 0.3977    | 0.596  | 0.88374    | 0.7778 |
| r15: | 49    | 0        | 0      | 0          | 0.7521    | -3     | -4.9       | 1.4809 |
| r16: | 53    | 0        | 0      | 0          | 0.5497    | -3     | -3.65714   | 1.0632 |
| r17: | 56    | 0        | 0      | 0          | 0.8452    | -3     | -6.25      | 1.7408 |
| r18: | 58    | 0        | 0      | 0          | 0         | -3     | 0          | 0      |
| r19: | 62    | 0        | 0      | 0          | 0         | -3     | 0          | 0      |
| r20: | 63    | 0        | 0      | 0          | 0.7937    | -3     | -5.4       | 1.5875 |

| r21: | 64  | 0        | 0     | 0     | 0.7521 | -3    | -4.9     | 1.4809 |
|------|-----|----------|-------|-------|--------|-------|----------|--------|
| r22: | 65  | 0        | 0     | 0     | 0.5643 | -3    | -3.70879 | 1.0908 |
| r23: | 67  | 0        | 0     | 0     | 0      | -3    | 0        | 0      |
| r24: | 68  | 0        | 0     | 0     | 1.2247 | -3    | 0        | 0      |
| r25: | 69  | 0        | 0     | 0     | 0      | -3    | 0        | 0      |
| r26: | 70  | 0        | 0     | 0     | 0.687  | -3    | -4.33929 | 1.3342 |
| r27: | 75  | 0        | 0     | 0     | 0.6607 | -3    | -4.16667 | 1.2794 |
| r28: | 76  | 0        | 0     | 0     | 0.7521 | -3    | -4.9     | 1.4809 |
| r29: | 84  | 0        | 0     | 0     | 1.0142 | -3    | -13.5    | 2.6186 |
|      | All | 0.092369 | 4.269 | 4.295 | 0.1543 | 17.27 | 17.6489  | 0.3074 |

Regression Correlation between Age and No of AMAs prescribed by generic names, No of AMAs prescribed from NLEM and Encounter with AMAs prescribed from NLEM (Y/N)

| Regression Table for E(var2) |        |       |         |       |  |  |  |  |
|------------------------------|--------|-------|---------|-------|--|--|--|--|
| B s.e. t p                   |        |       |         |       |  |  |  |  |
| var1                         | -0.001 | 0.001 | -0.5293 | 0.597 |  |  |  |  |
| Intercept                    | 0.13   |       |         |       |  |  |  |  |

| Anova table                       |                              |         |                           |     |  |  |  |
|-----------------------------------|------------------------------|---------|---------------------------|-----|--|--|--|
| Source                            | $\boldsymbol{\Sigma}$ of Sq. | %       | $Mean \ \Sigma\text{-}sq$ | df  |  |  |  |
| Explained                         | 0.0418                       | 0.11    | 0.0418                    | 1   |  |  |  |
| Unexplained                       | 36.834                       | 99.89   | 0.1491                    | 247 |  |  |  |
|                                   |                              |         |                           |     |  |  |  |
| Total                             | 36.876                       | 100%    |                           | 248 |  |  |  |
| F-value: 0.2802; p-value: 0.59704 |                              |         |                           |     |  |  |  |
| Residu                            | al standa                    | rd erro | or: 6.0691                |     |  |  |  |

#### **Descriptive for var1**

Mean: 48.1245, Sum: 11983; Variance: 279.964,:Standard Deviation 16.7321 Standard Error : 1.06036;95% CI: 46.05 >48.1> 50.2

#### **Descriptive for var2**

Mean: 0.09237; Sum: 23; Variance: 0.14869; Standard Deviation: 0.38561; Standard Error: 0.02444; 95% CI: 0.044 >0.09> 0.14

**Table 6:** Frequency of Age and No of FDCs with name, Encounter with FDC of AMAs prescribed (Y/N), No of FDCs from NLEM and Encounter with FDC prescribed from NLEM (Y/N)

| Frequency table              |                              |   |       |       |  |  |  |  |
|------------------------------|------------------------------|---|-------|-------|--|--|--|--|
| Label Value Freq %           |                              |   |       |       |  |  |  |  |
| 1(Amoxicillin clarithromycin | 1(Amoxicillin clarithromycin | 3 | 0.216 | 0.216 |  |  |  |  |
| ба                           | ба                           | 1 | 0.072 | 0.288 |  |  |  |  |
| бb                           | бb                           | 1 | 0.072 | 0.36  |  |  |  |  |
| 7a                           | 7a                           | 1 | 0.072 | 0.432 |  |  |  |  |

| 7b                                  | 7b                                  | 1   | 0.072 | 0.504  |
|-------------------------------------|-------------------------------------|-----|-------|--------|
| (Y/N)                               | (Y/N)                               | 2   | 0.144 | 0.648  |
| Espmeprazole)                       | Espmeprazole)                       | 3   | 0.216 | 0.865  |
| 0                                   | 0                                   | 293 | 21.11 | 21.974 |
| 1                                   | 1                                   | 59  | 4.251 | 26.225 |
| 1(CefoperazoneSalbactum)            | 1(CefoperazoneSalbactum)            | 29  | 2.089 | 28.314 |
| 1(CefotaximeSulbactam)              | 1(CefotaximeSulbactam)              | 9   | 0.648 | 28.963 |
| 1(Ceftriaxone                       | 1(Ceftriaxone                       | 20  | 1.441 | 30.403 |
| 1(Doxycycline                       | 1(Doxycycline                       | 16  | 1.153 | 31.556 |
| 1(Piperacillin                      | 1(Piperacillin                      | 55  | 3.963 | 35.519 |
| 1(Sulfamethoxazole<br>Trimethoprim) | l(Sulfamethoxazole<br>Trimethoprim) | 4   | 0.288 | 35.807 |
| 1(Ticarcillin                       | 1(Ticarcillin                       | 10  | 0.72  | 36.527 |
| 18                                  | 18                                  | 7   | 0.504 | 37.032 |
| 19                                  | 19                                  | 16  | 1.153 | 38.184 |
| 23                                  | 23                                  | 7   | 0.504 | 38.689 |
| 27                                  | 27                                  | 4   | 0.288 | 38.977 |
| 33                                  | 33                                  | 8   | 0.576 | 39.553 |
| 35                                  | 35                                  | 13  | 0.937 | 40.49  |
| 37                                  | 37                                  | 8   | 0.576 | 41.066 |
| 38                                  | 38                                  | 8   | 0.576 | 41.643 |
| 39                                  | 39                                  | 8   | 0.576 | 42.219 |
| 41                                  | 41                                  | 8   | 0.576 | 42.795 |
| 42                                  | 42                                  | 18  | 1.297 | 44.092 |
| 45                                  | 45                                  | 5   | 0.36  | 44.452 |
| 46                                  | 46                                  | 1   | 0.072 | 44.524 |
| 48                                  | 48                                  | 35  | 2.522 | 47.046 |
| 49                                  | 49                                  | 8   | 0.576 | 47.622 |
| 53                                  | 53                                  | 17  | 1.225 | 48.847 |
| 56                                  | 56                                  | 6   | 0.432 | 49.28  |
| 58                                  | 58                                  | 1   | 0.072 | 49.352 |
| 62                                  | 62                                  | 1   | 0.072 | 49.424 |
| 63                                  | 63                                  | 7   | 0.504 | 49.928 |
| 64                                  | 64                                  | 8   | 0.576 | 50.504 |
| 65                                  | 65                                  | 16  | 1.153 | 51.657 |
| 67                                  | 67                                  | 2   | 0.144 | 51.801 |
| 68                                  | 68                                  | 3   | 0.216 | 52.017 |
| 69                                  | 69                                  | 1   | 0.072 | 52.089 |
| 70                                  | 70                                  | 10  | 0.72  | 52.81  |
| 75                                  | 75                                  | 11  | 0.793 | 53.602 |
| 76                                  | 76                                  | 8   | 0.576 | 54.179 |
| 84                                  | 84                                  | 4   | 0.288 | 54.467 |
| AMAs                                | AMAs                                | 1   | 0.072 | 54.539 |

| Age              | Age            | 1   | 0.072  | 54.611 |
|------------------|----------------|-----|--------|--------|
| Clavulanic       | Clavulanic     | 10  | 0.72   | 55.331 |
| Encounter        | Encounter      | 2   | 0.144  | 55.476 |
| FDC              | FDC            | 2   | 0.144  | 55.62  |
| FDCs             | FDCs           | 2   | 0.144  | 55.764 |
| Lactobacillus)   | Lactobacillus) | 16  | 1.153  | 56.916 |
| Ν                | Ν              | 285 | 20.533 | 77.45  |
| NLEM             | NLEM           | 1   | 0.072  | 77.522 |
| NLEM             | NLEM           | 1   | 0.072  | 77.594 |
| No               | No             | 2   | 0.144  | 77.738 |
| Sulbactam)       | Sulbactam)     | 20  | 1.441  | 79.179 |
| Tazobactum)      | Tazobactum)    | 55  | 3.963  | 83.141 |
| Y                | Y              | 204 | 14.697 | 97.839 |
| acid)            | acid)          | 10  | 0.72   | 98.559 |
| From             | from           | 1   | 0.072  | 98.631 |
| Fronm            | fronm          | 1   | 0.072  | 98.703 |
| name             | name           | 1   | 0.072  | 98.775 |
| Of               | of             | 3   | 0.216  | 98.991 |
| Prescribed       | prescribed     | 2   | 0.144  | 99.135 |
| With             | with           | 3   | 0.216  | 99.352 |
| Y                | У              | 9   | 0.648  | 100    |
| 67<br>categories |                |     | 10     | 0%     |







**Figure 10:** Pie Diagram of Frequency of Age and No of FDCs with name, Encounter with FDC of AMAs prescribed (Y/N), No of FDCs from NLEM and Encounter with FDC prescribed from NLEM (Y/N).

 Table 8: Means and Frequency Table of FDC

# z for 95% CI= 1.96

| Frequency table                  |                                  |      |       |        |  |  |  |  |
|----------------------------------|----------------------------------|------|-------|--------|--|--|--|--|
| Label                            | Value                            | Freq | %     | Sum%   |  |  |  |  |
| 1(Amoxicillin clarithromycin     | 1(Amoxicillin clarithromycin     | 3    | 0.535 | 0.535  |  |  |  |  |
| Espmeprazole)                    | Espmeprazole)                    | 3    | 0.535 | 1.07   |  |  |  |  |
| 1(Sulfamethoxazole Trimethoprim) | 1(Sulfamethoxazole Trimethoprim) | 4    | 0.713 | 1.783  |  |  |  |  |
| 1(CefotaximeSulbactam)           | 1(CefotaximeSulbactam)           | 9    | 1.604 | 3.387  |  |  |  |  |
| у                                | Y                                | 9    | 1.604 | 4.991  |  |  |  |  |
| Clavulanic                       | Clavulanic                       | 10   | 1.783 | 6.774  |  |  |  |  |
| acid)                            | acid)                            | 10   | 1.783 | 8.556  |  |  |  |  |
| 1(Ticarcillin                    | 1(Ticarcillin                    | 10   | 1.783 | 10.339 |  |  |  |  |
| 1(Doxycycline                    | 1(Doxycycline                    | 16   | 2.852 | 13.191 |  |  |  |  |
| Lactobacillus)                   | Lactobacillus)                   | 16   | 2.852 | 16.043 |  |  |  |  |

| 1(Ceftriaxone            | 1(Ceftriaxone            | 20 | 3.565  | 19.608 |
|--------------------------|--------------------------|----|--------|--------|
| Sulbactam)               | Sulbactam)               | 20 | 3.565  | 23.173 |
| 1(CefoperazoneSalbactum) | 1(CefoperazoneSalbactum) | 28 | 4.991  | 28.164 |
| 1(Piperacillin           | 1(Piperacillin           | 58 | 10.339 | 38.503 |
| Tazobactum)              | Tazobactum)              | 58 | 10.339 | 48.841 |
| N                        | Ν                        |    | 13.904 | 62.745 |
| Y                        | Y                        |    | 37.255 | 100    |
| 17<br>categories         |                          |    | 100%   |        |

Age and no of FDCs with name, Encounter with FDC of AMAs prescribed (Y/N), No of FDCs from NLEM and Encounter with FDC prescribed from NLEM (Y/N) T-test Analysis

| Expected: 40.329  |  |  |
|-------------------|--|--|
| Observed: 4.2408  |  |  |
| N1: 39;           |  |  |
| N2: 75            |  |  |
| Std Dev.1: 1.0748 |  |  |
| Std Dev.2: 7.7942 |  |  |

#### **Difference between means:**

16.088 se=4.4506; 95% CI of difference:7.3651<16.088< 24.811 (Wald);t= 3.615; df= 38; p= 0.99957

(left p: 0.0004; two sided: 0.0008) For Sample:SampleSkewness: 0.85332;Est. Population Skew: 0.87083

s.e.Skewness: 0.2774;Sample Kurtosis: -0.6318'Est. Population Kurt: -0.59156;s.e. Kurtosis: 0.5482

Age and No of FDCs with name, Encounter with FDC of AMAs prescribed (Y/N), No of FDCs from NLEM and Encounter with FDC prescribed from NLEM (Y/N) Correlation/ Regression Analysis

z for 95% CI= 1.96

Invalid: 64

Cases-N: 114

r (var1.var2) = 0.0442

p= 0.3203 more

| <b>Regression Table for E(var2)</b> |       |      |        |        |  |  |  |  |
|-------------------------------------|-------|------|--------|--------|--|--|--|--|
|                                     | В     | s.e. | t      | р      |  |  |  |  |
| var1                                | 0.038 | 0.08 | 0.4681 | 0.6406 |  |  |  |  |
| Intercept                           | 28.79 |      |        |        |  |  |  |  |

Section A -Research paper

| Anova table                                       |                              |      |                   |     |  |  |  |
|---------------------------------------------------|------------------------------|------|-------------------|-----|--|--|--|
| Source                                            | $\boldsymbol{\Sigma}$ of Sq. | %    | Mean $\Sigma$ -sq | df  |  |  |  |
| Explained                                         | 196.24                       | 0.2  | 196.24            | 1   |  |  |  |
| Unexplained                                       | 100306                       | 99.8 | 895.58            | 112 |  |  |  |
|                                                   |                              |      |                   |     |  |  |  |
| Total                                             | 100502                       | 100% |                   | 113 |  |  |  |
| <b>F-value</b> : 0.2191; <b>p-value</b> : 0.64062 |                              |      |                   |     |  |  |  |
| Residual standard error: 316.71                   |                              |      |                   |     |  |  |  |

# Descriptives for var1

Mean: 25.4376; Sum: 2899.891; Variance: 1233.41;sd: 35.1199; se: 3.28928;95% CI: 18.99 >25.4> 31.88

# **Descriptives for var2**

Mean: 29.7447;Sum: 3390.895;Variance: 889.396;sd: 29.8227;se: 2.79316;95% CI: 24.27 >29.7> 35.22

# Discussion

The present study emphasis on assessment of use of antibiotics as per guidelines in the hospital environment in order to determine the development of resistance. The study reports out of 250 patients 240 were prescribed with antibiotics and age factor also play an important role in encounter of AMAs. The earlier studies reported by Yuan-YuanWang et.al. 2016 reflect pressure from patientswho insist on antibiotic prescription or a loophole in antibiotic management under the current healthcare system and needs to be further addressed by the hospital. is unlikely that a diagnostictest result was obtained to identify pathogenic microorganisms among these patients prior to antibiotic prescription (18). Although antibiotics can be used to treat Helicobacterpylori-associated gastritis and duodenitis a cephalosporin-orquinolone-based regimen was not consistent with the current treatmentguidelines for

H. pylori infection. As many diseases of the digestive system are caused by viral infections or lifestyle riskfactors, overuse of antibiotics will increase the risk of resistantinfections and cause unexpected harmful consequences [19]. Thus, antibiotic therapy for diseases of the digestive systemmust be weighed against risks and benefits.

The present study is exploratory thus results suggest further microbiological testing of patients the prescription should as per infection. As per guidelines FDC is a better option for the therapy. The encounter are as per NELM but earlier reports and our study reports unnecessary antibiotic use is still common in realworldclinical practice and remains a public health challenge. Thisstudy shows that routine assessment is a useful tool toevaluate antibiotic prescription patterns, to identify possible irrationaluse of antibiotics, and to provide feedback to improve thequality of antibiotics use. Antibiotic use for patients with diseases of the digestive system needs to be further investigated. The earlier and present investigation visualizes more cross-sectional and in-depth studies are needed in order to control the irrational use of AMAs and determine the use of AMAs as per guidelines in healthcare world.

# **Conclusion/Future Prospects**

At present there is an ardent need of the detailed investigations of the microbial infections and accordingly the antibiotics should be prescribed. The antibiotics dosage should be given on the basis of the age and as per chronicity of the disease. The reasons for the development of the resistance are not clear thus more detailed longitudinal and cross-sectional studies are required in order to decrease the incidence of antibiotic resistance. The present research study predicts that the FDC provides better results but the treatment should be on the basis of NELM guidelines. The research study also shows

that NELM guidelines prescription also result in the antibiotics resistance thus more in-depth studies are needed in order to overcome the problem of antibiotic resistance.

# References

- 1. World Health Organization: WHO infectious diseasereport: leading cause of death. Vol. 2004, 1999.
- 2. Rubin MA, Samore MH. Antimicrobial use and resistance. Curr Infect Dis Rep. 2002; 4:491-7.
- 3. Cosgrove SE, Carmeli Y. The impact of antimicrobial resistance on health and economic outcomes. Clin.Infect Dis. 2003; 36:1433-7.
- 4. Neu, H. 1992. The crisis in antibiotic resistance. Science 257:1064–1073.
- 5. Kunin, C. 1993. Resistance to antimicrobial drugs. Ann. Int. Med. 118:557-561
- 6. Gyssens, I. C. 2005. International guidelines for infectious diseases: a practicalguide. Neth. J. Med. 63:291–299.
- 7. Peetermans, W. E., and D. Ramaekers. 2002. Clinical practice guidelines ininfectious diseases. Neth. J. Med. 60:343–348.
- 8. Stobberingh, E., R. Janknegt, and G. Wijnands. 1993. Antibiotic guidelinesand antibiotic utilization in Dutch hospitals. J. Antimicrob. Chemother.32:153–161.
- 9. Goossens, H., M. Ferech, R. Vander Stichele, and M. Elseviers. 2005. Outpatientantibiotic use in Europe and association with resistance: a crossnationaldatabase study. Lancet 365:579–587.
- 10. Bhavesh KL, Hiray RS, Ghongane BB. Drug Prescription pattern of Outpatientsin a Tertiary Care Teaching Hospital in Maharashtra. Int J Pharm Bio Sci.2012;3(3):225-9.
- 11. Vanitha RN, Kannan G, Venkata NM, Vishwakanth D, Nagesh VRD, YogithaM, Venkata SM, Thennarasu P. A Retrospective Study On Blood Stream InfectionsAnd Antibiotic Susceptibility Patterns In A Tertiary Care Teaching Hospital. IntJPharmPharmSci, 2011;4(1):543-8.
- 12. Essential Drugs. Practical Guidelines, 2013 edition.
- 13. Sharma NBM, Chaudhary V, Uma A, Jain A, Bansal A.A Prospective Studyof Drug Utilization Pattern in Surgery Department in a Tertiary Care TeachingHospital in Rajasthan.UJP. 2014;3(2):47-50.
- 14. Rubin MA, Samore MH. Antimicrobial use andresistance.Curr Infect Dis Rep. 2002; 4:491-7.
- 15. Hanmant A, Priyadarshini K. Prescription analysis to evaluate rationaluse of ntimicrobials. International Journal Of Pharma And Bio Sciences.2011;2(2)314-9.
- Bbosa GS, Geoff W, Kyegombe DB, Ogwal-Okeng J. Effects of interventionmeasures on irrational antibiotics/antibacterial drug use in developingcountries: A Systematic Review. Health 6. 2014;6(2):171-87.
- 17. Igbiks T, Joseph OF. Drug Prescription Pattern in a Nigerian Tertiary Hospital.Tropical Journal of Pharmaceutical Research. 2012;11(1):146-52.
- Wang YY, Du P, Huang F, Li DJ, Gu J, Shen FM, Jiang YY. Antimicrobial prescribing patterns in a large tertiary hospital in Shanghai, China. International journal of antimicrobial agents. 2016 Dec 1;48(6):666-73.