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Abstract:  

 A Radio Even Geometric Mean Graceful Labeling of a connected graph G is a bijection  

µ:V(G) → {2, 4, 6, …, 2|V|} satisfying the condition 𝑑(𝑎, 𝑏) + ⌈√𝜇(𝑎)𝜇(𝑏)⌉ ≥ 1 + 𝑑𝑖𝑎𝑚(𝐺) 

for every 𝑎, 𝑏 ∈ 𝑉(𝐺). A graph which admits radio even geometric mean graceful labeling is 

called a radio even geometric mean graceful graph. In this paper, we introduce the radio even 

geometric mean graceful labeling on degree splitting of snake related graphs. 

Keywords: labeling, radio even geometric mean graceful labeling, degree splitting of graph. 

                                                               I. Introduction 

Graphs described here is simple, undirected and connected.  Let V(G) and E(G) denote the 

vertex set and edge set of a graph G respectively.  A graph labeling is an assignment of integers 

to the vertices or edges or both based on certain conditions.  The concept of radio labeling was 

introduced by Chartrand et al [1] in 2001.  S. Somasundaram and R. Ponraj introduced the 

notion of mean labeling of graphs [4].  Radio mean labeling was introduced by Ponraj et al [5].  

R. Ponraj and S. Somasundram developed the concept of degree splitting of graphs [7].  S. 

Somasundaram, S.S. Sandhya and S.P. Viji introduced the concept of Geometric mean labeling 

on Degree splitting graphs [6].  C. David Raj, K. Sunitha and A. Subramanian introduced radio 

odd mean and even mean labeling of some graphs [8].  David Raj. C, Subramanian, A, and K. 

Sunitha determined the radio mean labeling of double triangular snake graph and quadrilateral 

snake graph [9].  Brindha Mary. V. T, C. David Raj and C. Jaya Sekaran investigated even 

radio mean graceful labeling on degree splitting of snake related graphs [11]. C. David Raj, T. 
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Mary Shalini and K. Rubin Mary determined radio geometric mean graceful labeling on 

splitting of wheel related graphs [10].  We refer Gallian for more comprehensive survey [2]. 

We follow Harary [3] for some standard words, expressions and symbols. The notations DS(G) 

is the degree splitting of G, 𝑑(𝑢, 𝑣) is the distance between the vertices u and v and diam(G) is 

the diameter of G. 

Definition 1.1: A triangular snake 𝑇𝑛 is obtained from a path 𝑣1,  𝑣2, … , 𝑣𝑛 by joining 𝑣𝑖 and 

𝑣𝑖+1  to a new vertex 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.  That is, every edge of path is replaced by a triangle 

𝐶3. 

Definition 1.2: A double triangular snake 𝐷𝑇𝑛 is a graph obtained from a path 𝑣1,  𝑣2, … , 𝑣𝑛 

by joining 𝑣𝑖 and 𝑣𝑖+1  to new vertices 𝑢𝑖 and 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.  That is, double triangular 

snake consists of two triangular snakes that have a common path.   

Definition 1.3: A quadrilateral snake 𝑄𝑛 is a graph obtained from a path 𝑣1, 𝑣2, … ,  𝑣𝑛 by 

joining 𝑣𝑖 and 𝑣𝑖+1 to new vertices 𝑢𝑖 and 𝑤𝑖 respectively, 1 ≤ 𝑖 ≤ 𝑛 − 1 and join 𝑢𝑖 and 𝑤𝑖.  

That is, every edge of a path is replaced by a cycle 𝐶4. 

                                                  II. Main Result 

Theorem 2.1: 𝐷𝑆(𝑇𝑛)  is a radio even geometric mean graceful graph. 

Proof: 

             Let 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛  be the vertices of path 𝑃𝑛.  Consider a vertex 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.  

Join 𝑢𝑖 with 𝑣𝑖 and 𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1. The graph thus obtained is 𝑇𝑛. 

Case 1. 𝑛 = 2,3 

Introduce a new vertex v and join it with the vertices of  𝑇𝑛 of degree two.   The new graph is 

𝐷𝑆(𝑇𝑛) whose vertex set is 𝑉 =  {𝑢𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1,  𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣}.Clearly, 

𝑑𝑖𝑎𝑚(𝐷𝑆(𝑇𝑛)) = {
1 𝑖𝑓 𝑛 = 2
2 𝑖𝑓 𝑛 = 3

}. 

 Therefore, obviously the radio even geometric mean graceful condition is satisfied for every 

pair of vertices.   

Case 2. 𝑛 ≥ 4 

Introduce two new vertices u, v and join them with the vertices of  𝑇𝑛 of degree two and four 

respectively.  The resultant graph is 𝐷𝑆(𝑇𝑛) whose vertex set is 𝑉 =  {𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,  𝑣𝑖 ,

1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢, 𝑣}.  Clearly, 𝑑𝑖𝑎𝑚(𝐷𝑆(𝑇𝑛)) = 3. 

Define a bijection  𝜇: 𝑉(𝐷𝑆(𝑇𝑛)) → {2, 4, 6, … . , 2|𝑉(𝐷𝑆(𝑇𝑛))|}  by 
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𝜇(𝑢𝑖) = 2𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

𝜇(𝑣𝑖) = 2𝑛 + 2𝑖, 1 ≤ 𝑖 ≤ 𝑛; 

𝜇(𝑣) = 4𝑛 + 2; 

𝜇(𝑢) = 2𝑛. 

To check the radio even geometric mean graceful condition for 𝜇. 

Sub Case (i): Verify the pair (𝑢𝑖,  𝑢𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖 , 𝑢𝑗) + ⌈√𝜇(𝑢𝑖)𝜇(𝑢𝑗)⌉ = 2 + ⌈√(2𝑖)(2𝑗) ⌉ ≥ 4 = 1 +  𝑑𝑖𝑎𝑚(𝐷𝑆(𝑇𝑛)). 

Sub Case (ii): Verify the pair (𝑢𝑖,  𝑣𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛; 

 𝑑(𝑢𝑖 ,  𝑣𝑗) + ⌈√𝜇(𝑢𝑖)𝜇(𝑣𝑗)⌉ ≥ 1 + ⌈√(2𝑖)(2𝑛 + 2𝑗 + 2) ⌉ ≥ 4. 

Sub Case (iii): Verify the pair (𝑢𝑖 , 𝑣), 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖, 𝑣) + ⌈√𝜇(𝑢𝑖)𝜇(𝑣) ⌉ = 2 + ⌈√(2𝑖)(2𝑛 + 2)⌉ ≥ 4. 

Sub Case (iv): Verify the pair (𝑢𝑖, 𝑢), 1 ≤ 𝑖 ≤ 𝑛 − 1; 

  𝑑(𝑢𝑖, 𝑢) + ⌈√𝜇(𝑢𝑖)𝜇(𝑢) ⌉ = 1 + ⌈√(2𝑖)(4𝑛 + 2)⌉ ≥ 4. 

Sub Case (v): Verify the pair (𝑣𝑖 ,  𝑣𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛; 

 𝑑(𝑣𝑖 , 𝑣𝑗) + ⌈√𝜇(𝑣𝑖)𝜇(𝑣𝑗) ⌉ ≥ 1 + ⌈√(2𝑛 + 2𝑖 + 2)(2𝑛 + 2𝑗 + 2) ⌉ ≥ 4. 

Sub Case (vi): Verify the pair (𝑣𝑖, 𝑣) , 1 ≤ 𝑖 ≤ 𝑛; 

 𝑑(𝑣𝑖, 𝑣) + ⌈√𝜇(𝑣𝑖)𝜇(𝑣) ⌉ ≥ 1 + ⌈√(2𝑛 + 2𝑖 + 2)(2𝑛 + 2)⌉ ≥ 4. 

Sub Case (vii): Verify the pair (𝑣𝑖, 𝑢) , 1 ≤ 𝑖 ≤ 𝑛; 

 𝑑(𝑣𝑖, 𝑢) + ⌈√𝜇(𝑣𝑖)𝜇(𝑢) ⌉ ≥ 1 + ⌈√(2𝑛 + 2𝑖 + 2)(4𝑛 + 2)⌉ ≥ 4. 

Sub Case (viii): Verify the pair (𝑢, 𝑣); 

𝑑(𝑢, 𝑣) + ⌈√𝜇(𝑢)𝜇(𝑣) ⌉ = 3 + ⌈√(4𝑛 + 2)(2𝑛 + 2)⌉ ≥ 4. 

Thus all the pair of vertices satisfies the radio even geometric mean graceful condition. 

Hence  𝐷𝑆(𝑇𝑛) is a radio even geometric mean graceful graph. 
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Example 2.2: 

 

 

 

 

 

        

        Fig 1. (a) Radio Even Geometric Mean Graceful Labeling of 𝐷𝑆(𝑇3).  

 

 

             

    

                    

 

 

 

               (b).  Radio Even Geometric Mean Graceful Labeling of 𝐷𝑆(𝑇6). 

Theorem 2.3: 𝐷𝑆(𝐷(𝑇𝑛)) is a radio even geometric mean graceful graph. 

Proof: 

                 Let 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛  be the vertices of path 𝑃𝑛.  Consider the vertices 𝑢𝑖 and 𝑤𝑖,  , 1 ≤

𝑖 ≤ 𝑛 − 1.  Join 𝑢𝑖 with 𝑣𝑖 and 𝑤𝑖 with 𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1.  The graph thus obtained is 𝐷(𝑇𝑛). 

Case 1: 𝒏 = 𝟐, 𝟑. 

Introduce two new vertices 𝑢 and w and join them with the vertices of  𝐷(𝑇𝑛) of degree two 

and three respectively.  The new graph thus obtained is 𝐷𝑆(𝐷(𝑇𝑛)) whose vertex set is  

𝑉(𝐷𝑆(𝐷(𝑇𝑛))) = {𝑢𝑖,  𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,  𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢, 𝑤}.  Clearly, 

𝑑𝑖𝑎𝑚(𝐷𝑆(𝐷(𝑇𝑛))) = 3.  Therefore, obviously the radio even geometric mean graceful 

condition is satisfied for every pair of vertices. 

Case 2: 𝒏 ≥ 𝟒. 
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Introduce three new vertices 𝑢, 𝑣 and 𝑤 and join them with the vertices of 𝐷(𝑇𝑛) of degree 

two, six and three respectively.  The resultant graph is 𝐷𝑆(𝐷(𝑇𝑛)) whose vertex set is  

𝑉(𝐷𝑆(𝐷(𝑇𝑛))) = {𝑢𝑖,  𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛} ∪  {𝑢, 𝑣, 𝑤}.  Clearly,  

𝑑𝑖𝑎𝑚(𝐷𝑆(𝐷(𝑇𝑛)) = 3. 

Define a bijection  𝜇: 𝑉(𝐷𝑆(𝐷(𝑇𝑛))) → {2, 4, 6, … . , 2|𝑉(𝐷𝑆(𝐷(𝑇𝑛)))|}  by 

𝜇(𝑢𝑖) = 2𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

𝜇(𝑤𝑖) = 2𝑛 + 2𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

𝜇(𝑣𝑖) = 4𝑛 + 2𝑖, 1 ≤ 𝑖 ≤ 𝑛; 

𝜇(𝑣) = 2𝑛; 

𝜇(𝑤) = 4𝑛; 

𝜇(𝑢) = 6𝑛 + 2. 

To check the radio even geometric mean graceful condition for 𝜇. 

Sub Case (i): Verify the pair (𝑢𝑖,  𝑢𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖 , 𝑢𝑗) + ⌈√𝜇(𝑢𝑖)𝜇(𝑢𝑗)⌉ = 2 + ⌈√(2𝑖)2𝑗  ⌉ ≥ 4 = 1 + 𝑑𝑖𝑎𝑚(𝐷𝑆(𝐷(𝑇𝑛))). 

Sub Case (ii): Verify the pair (𝑢𝑖, 𝑤𝑗) , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1; 

  𝑑(𝑢𝑖 , 𝑤𝑗) + ⌈√𝜇(𝑢𝑖)𝜇(𝑤𝑗) ⌉ ≥ 2 + ⌈√(2𝑖)(2𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (iii): Verify the pair (𝑢𝑖 , 𝑣𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛; 

 𝑑(𝑢𝑖 , 𝑣𝑗) + ⌈√𝜇(𝑢𝑖)𝜇(𝑣𝑗) ⌉ ≥ 1 + ⌈√(2𝑖)(4𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (iv): Verify the pair (𝑢𝑖, 𝑣) , 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖, 𝑣) + ⌈√𝜇(𝑢𝑖)𝜇(𝑣) ⌉ = 2 + ⌈√(2𝑖)(2𝑛)⌉ ≥ 4. 

Sub Case (v): Verify the pair (𝑢𝑖, 𝑤) , 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖, 𝑤) + ⌈√𝜇(𝑢𝑖)𝜇(𝑤) ⌉ ≥ 2 + ⌈√(2𝑖)(4𝑛)⌉ ≥ 4. 

Sub Case (vi): Verify the pair (𝑢𝑖, 𝑢) , 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖, 𝑢) + ⌈√𝜇(𝑢𝑖)𝜇(𝑢) ⌉ = 1 + ⌈√(2𝑖)(6𝑛 + 2)⌉ ≥ 4. 

Sub Case (vii): Verify the pair (𝑤𝑖, 𝑣𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛; 

 𝑑(𝑤𝑖, 𝑣𝑗) + ⌈√𝜇(𝑤𝑖)𝜇(𝑣𝑗) ⌉ ≥ 1 + ⌈√(2𝑛 + 2𝑖)(4𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (viii): Verify the pair (𝑤𝑖, 𝑣) , 1 ≤ 𝑖 ≤ 𝑛 − 1; 
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 𝑑(𝑤𝑖, 𝑣) + ⌈√𝜇(𝑤𝑖)𝜇(𝑣) ⌉ = 2 + ⌈√(2𝑛 + 2𝑖)(2𝑛)⌉ ≥ 4. 

Sub Case (ix): Verify the pair (𝑤𝑖, 𝑤) , 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑤𝑖, 𝑤) + ⌈√𝜇(𝑤𝑖)𝜇(𝑤) ⌉ ≥ 2 + ⌈√(2𝑛 + 2𝑖)(4𝑛)⌉ ≥ 4. 

Sub Case (x): Verify the pair (𝑤𝑖, 𝑢) , 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑤𝑖, 𝑢) + ⌈√𝜇(𝑤𝑖)𝜇(𝑢) ⌉ = 1 + ⌈√(2𝑛 + 2𝑖)(6𝑛 + 2)⌉ ≥ 4. 

Sub Case (xi): Verify the pair (𝑤𝑖, 𝑤𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1; 

 𝑑(𝑤𝑖, 𝑤𝑗) + ⌈√𝜇(𝑤𝑖)𝜇(𝑤𝑗) ⌉ = 2 + ⌈√(2𝑛 + 2𝑖)(2𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (xii): Verify the pair (𝑣𝑖, 𝑣), 1 ≤ 𝑖 ≤ 𝑛; 

 𝑑(𝑣𝑖, 𝑣) + ⌈√𝜇(𝑣𝑖)𝜇(𝑣) ⌉ ≥ 1 + ⌈√(4𝑛 + 2𝑖)(2𝑛)⌉ ≥ 4. 

Sub Case (xiii): Verify the pair (𝑣𝑖 , 𝑤), 1 ≤ 𝑖 ≤ 𝑛; 

 𝑑(𝑣𝑖, 𝑤) + ⌈√𝜇(𝑣𝑖)𝜇(𝑤) ⌉ ≥ 1 + ⌈√(4𝑛 + 2𝑖)(4𝑛)⌉ ≥ 4. 

Sub Case (xiv): Verify the pair (𝑣𝑖, 𝑢), 1 ≤ 𝑖 ≤ 𝑛; 

  𝑑(𝑣𝑖, 𝑢) + ⌈√𝜇(𝑣𝑖)𝜇(𝑢) ⌉ = 2 + ⌈√(4𝑛 + 2𝑖)(6𝑛 + 2)⌉ ≥ 4. 

Sub Case (xv): Verify the pair (𝑣𝑖 , 𝑣𝑗) , 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛; 

  𝑑(𝑣𝑖 , 𝑣𝑗) + ⌈√𝜇(𝑣𝑖)𝜇(𝑣𝑗) ⌉ ≥ 1 + ⌈√(4𝑛 + 2𝑖)(4𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (xvi): Verify the pair (𝑣, 𝑤); 

 𝑑(𝑣, 𝑤) + ⌈√𝜇(𝑣)𝜇(𝑤) ⌉ = 3 + ⌈√(2𝑛)(4𝑛)⌉ ≥ 4. 

Sub Case (xvii): Verify the pair (𝑣, 𝑢); 

 𝑑(𝑣, 𝑢) + ⌈√𝜇(𝑣)𝜇(𝑢) ⌉ = 3 + ⌈√(2𝑛)(6𝑛 + 2)⌉ ≥ 4. 

Sub Case (xviii): Verify the pair (𝑤, 𝑢); 

 𝑑(𝑤, 𝑢) + ⌈√𝜇(𝑤)𝜇(𝑢) ⌉ = 3 + ⌈√(4𝑛)(6𝑛 + 2)⌉ ≥ 4. 

Thus all the pair of vertices satisfies the radio even geometric mean graceful condition. 

Hence  𝐷𝑆(𝐷(𝑇𝑛)) is a radio even geometric mean graceful graph. 
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Example 2.4: 

 

 

 

 

 

 

 

 

 

 

      Fig 2. (a)  Radio Even Geometric Mean Graceful Labeling of 𝐷𝑆(𝐷(𝑇3)). 

 

 

 

 

 

 

 

           

 

        (b).  Radio Even Geometric Mean Graceful Labeling of 𝐷𝑆(𝐷(𝑇7)). 
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Theorem 2.5: 𝐷𝑆(𝑄𝑛) is a radio even geometric mean graceful graph. 

Proof: 

                        Let 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛  be the vertices of path 𝑃𝑛.  Consider the vertices 𝑢𝑖 and 𝑤𝑖,  

1 ≤ 𝑖 ≤ 𝑛 − 1.  Join 𝑢𝑖 with 𝑣𝑖 and 𝑤𝑖 with 𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1.  Also join 𝑢𝑖 with 𝑤𝑖, 1 ≤

𝑖 ≤ 𝑛 − 1.  The new graph is 𝑄𝑛. 

  Case 1: 𝒏 = 𝟐, 𝟑. 

Introduce a new vertex 𝑢 and join it with the vertices of  𝑄𝑛 of degree two.  The new graph 

thus obtained is 𝐷𝑆(𝑄𝑛) whose vertex set is  𝑉(𝐷𝑆(𝑄𝑛)) = {𝑢𝑖,  𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1,  𝑣𝑖 , 1 ≤

𝑖 ≤ 𝑛} ∪  {𝑢}.  Clearly, 𝑑𝑖𝑎𝑚(𝐷𝑆(𝑄𝑛)) = 2.  Therefore, obviously the radio even geometric 

mean graceful condition is satisfied for every pair of vertices. 

Case 2: 𝒏 ≥ 𝟒. 

Introduce two new vertices 𝑢, 𝑣 and join them with the vertices of  𝑄𝑛 of degree two and four 

respectively.  The new graph thus obtained is 𝐷𝑆(𝑄𝑛) whose vertex set is  𝑉(𝐷𝑆(𝑄𝑛)) =

{𝑢𝑖,  𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢, 𝑣}.  Clearly, 𝑑𝑖𝑎𝑚(𝐷𝑆(𝑄𝑛)) = 3.   

Define a bijection  𝜇: 𝑉(𝐷𝑆(𝑄𝑛)) → {2, 4, 6, … . , 2|𝑉(𝐷𝑆(𝑄𝑛))|}  by 

𝜇(𝑤𝑖) = 2𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

𝜇(𝑣𝑖) = 4𝑛 + 2𝑖, 1 ≤ 𝑖 ≤ 𝑛; 

𝜇(𝑢𝑖) = 2𝑛 + 2𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

𝜇(𝑣) = 2𝑛; 

𝜇(𝑢) = 4𝑛. 

To check the radio even geometric mean graceful condition for 𝜇. 

Sub Case (i): Verify the pair (𝑤𝑖, 𝑤𝑗), 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1; 

  𝑑(𝑤𝑖, 𝑤𝑗) + ⌈√𝜇(𝑤𝑖)𝜇(𝑤𝑗)⌉ = 2 + ⌈√(2𝑖)2𝑗 ⌉ ≥ 4 = 1 +  𝑑𝑖𝑎𝑚(𝐷𝑆(𝑄𝑛)). 

Sub Case (ii): Verify the pair (𝑤𝑖, 𝑣), 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑤𝑖, 𝑣)  + ⌈√𝜇(𝑤𝑖)𝜇(𝑣)  ⌉ ≥ 2 + ⌈√(2𝑖)2𝑛⌉ ≥ 4. 

Sub Case (iii): Verify the pair (𝑤𝑖,  𝑢𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1; 

 𝑑(𝑤𝑖,  𝑢𝑗) + ⌈√𝜇(𝑤𝑖)𝜇(𝑢𝑗)⌉ ≥ 2 + ⌈√2𝑖(2𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (iv): Verify the pair (𝑤𝑖, 𝑢), 1 ≤ 𝑖 ≤ 𝑛 − 1; 
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 𝑑(𝑤𝑖, 𝑢)  + ⌈√𝜇(𝑤𝑖)𝜇(𝑢) ⌉ ≥ 1 + ⌈√2𝑖(4𝑛)⌉ ≥ 4. 

Sub Case (v): Verify the pair (𝑤𝑖, 𝑣𝑗), 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛; 

 𝑑(𝑤𝑖,  𝑣𝑗) + ⌈√𝜇(𝑤𝑖)𝜇(𝑣𝑗)⌉ ≥ 1 + ⌈√2𝑖(4𝑛 + 2𝑗)  ⌉ ≥ 4. 

Sub Case (vi): Verify the pair (𝑢𝑖, 𝑣), 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖, 𝑣) + ⌈√𝜇(𝑢𝑖)𝜇(𝑣) ⌉ ≥ 2 + ⌈√(2𝑛 + 2𝑖)(2𝑛)⌉ ≥ 4. 

Sub Case (vii): Verify the pair (𝑢𝑖, 𝑢), 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖, 𝑢) + ⌈√𝜇(𝑢𝑖)𝜇(𝑢) ⌉ = 1 + ⌈√(2𝑛 + 2𝑖)(4𝑛)⌉ ≥ 4. 

Sub Case (viii): Verify the pair (𝑢𝑖 ,  𝑣𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 ; 

 𝑑(𝑢𝑖 ,  𝑣𝑗) + ⌈√𝜇(𝑢𝑖)𝜇(𝑣𝑗)⌉ ≥ 1 + ⌈√(2𝑛 + 2𝑖)(4𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (ix): Verify the pair (𝑢𝑖,  𝑢𝑗), 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1; 

 𝑑(𝑢𝑖 , 𝑢𝑗) + ⌈√𝜇(𝑢𝑖)𝜇(𝑢𝑗) ⌉ = 2 + ⌈√(2𝑛 + 2𝑖)(2𝑛 + 2𝑗)  ⌉ ≥ 4. 

Sub Case (x): Verify the pair (𝑣𝑖 ,  𝑣𝑗), 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛; 

 𝑑(𝑣𝑖 ,  𝑣𝑗) + ⌈√𝜇(𝑣𝑖)𝜇(𝑣𝑗) ⌉ ≥ 1 + ⌈√(4𝑛 + 2𝑖)(4𝑛 + 2𝑗) ⌉ ≥ 4. 

Sub Case (xi): Verify the pair (𝑣𝑖, 𝑢), 1 ≤ 𝑖 ≤ 𝑛; 

 𝑑(𝑣𝑖, 𝑢) + ⌈√𝜇(𝑣𝑖)𝜇(𝑢) ⌉ ≥ 1 + ⌈√(4𝑛 + 2𝑖)(4𝑛)⌉ ≥ 4. 

Sub Case (xii): Verify the pair (𝑣𝑖, 𝑣), 1 ≤ 𝑖 ≤ 𝑛; 

 𝑑(𝑣𝑖, 𝑣) + ⌈√𝜇(𝑣𝑖)𝜇(𝑣) ⌉ ≥ 1 + ⌈√(4𝑛 + 2𝑖)(2𝑛)⌉ ≥ 4. 

Sub Case (xiii): Verify the pair (𝑢, 𝑣); 

 𝑑(𝑢, 𝑣) + ⌈√𝜇(𝑢)𝜇(𝑣)⌉ = 3 + ⌈√(2𝑛)(4𝑛)⌉ ≥ 4. 

Thus all the pair of vertices satisfies the radio even geometric mean graceful condition. 

Hence  𝐷𝑆(𝑄𝑛) is a radio even geometric mean graceful graph. 
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Example 2.6: 

 

 

 

 

 

 

 

      

           Fig 3. (a) Radio Even Geometric Mean Graceful Labeling of 𝐷𝑆(𝑄3). 

 

 

 

 

 

 

                   

 

          Fig 3. (b) Radio Even Geometric Mean Graceful Labeling of 𝐷𝑆(𝑄6). 
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