# SOME CHARACTERIZATIONS OF BETA HAT GENERALIZED CONTINUOUS FUNCTIONS IN GENERALIZED TOPOLOGICAL SPACES

Section: Research Paper



John Ferwin Z. Camargo<sup>1</sup> and Josephine B. Nalzaro<sup>2</sup>

<sup>1</sup>Bohol Island State University – Calape Campus, San Isidro, Calape, Bohol, Philippines <sup>2</sup>Bohol Island State University – Main Campus, Tagbilaran City, Bohol, Philippines

E-mail: johnferwin.camargo@bisu.edu.ph

### ABSTRACT

This study introduced and investigated  $\mu$ - $\hat{\beta}g$ -continuous, almost  $\mu$ - $\hat{\beta}g$ -continuous and weakly  $\mu$ - $\hat{\beta}g$ -continuous functions in generalized topological spaces. Properties, characterizations and relationships among these functions are also considered. Hereafter, it has been proven that a  $\mu$ -continuous function is  $\mu$ - $\hat{\beta}g$ -continuous. Moreover, a  $\mu$ - $\hat{\beta}g$ -continuous function is almost  $\mu$ - $\hat{\beta}g$ -continuous function.

Keywords: generalized topological spaces, beta hat generalized, continuous functions

## **1. INTRODUCTION**

Since pure mathematics gained importance, mathematicians worldwide have introduced various concepts related to sets. Among these, the closed set holds significant importance in the field of topology. Levine [1] introduced generalized closed set, its set properties, closed and open maps, compactness, and normal and separation axioms. More expansions in general topology such as beta hat generalized closed (briefly  $\hat{\beta}g$ -closed) set, K. Kannan and N. Nagaveni [2]. More so, Császár [3] introduced the concept of generalized topological spaces (briefly GTS) and extended on the  $\mu$ - $\hat{\beta}g$ -closed sets to GTS.

On the other hand, Duangphui et al. [20] defined the concept of  $(\mu, \mu')^{(m,n)}$ -continuous functions in BGTS and some of their properties are introduced and investigated. Also, Baculta et al. [11] defined the  $\mu^{(m,n)}$ - $rg^*b$  continuous, almost  $\mu^{(m,n)}$ - $rg^*b$  continuous and weakly  $\mu^{(m,n)}$ - $rg^*b$  continuous.

In this paper, beta hat generalized continuous functions are investigated in GTS. 2. On  $\mu$ - $\hat{\beta}g$ -CONTINUOUS FUNCTIONS IN GTS

Here we characterize  $\mu$ - $\beta$  g-continuous functions.

**Definition 2.1** A function  $f: (X, \mu_X) \rightarrow (Y, \mu_Y)$  is said to be:

- (i.)  $\mu \hat{\beta}g$ -continuous at a point  $x \in X$  if for each  $\mu_Y$ -open set V containing f(x), there exists a  $\mu_X \hat{\beta}g$ -open set U containing x such that  $f(U) \subseteq V$ .
- (ii.)  $\mu \hat{\beta}g$ -continuous if f is  $\mu \hat{\beta}g$ -continuous at every point  $x \in X$ .

**Example 2.2** Let  $X = \{a, b, c\}$  and  $Y = \{u, v\}$ . Consider the generalized topologies  $\mu_X = \{\emptyset, \{a\}, \{a,b\}\}$  and  $\mu_Y = \{\emptyset, \{u\}\}$ . Thus the  $\mu_X$ -closed sets in X are X,  $\{b,c\}$  and  $\{c\}$ . On the other hand, the  $\mu_Y$ -closed sets in Y are Y and  $\{v\}$ .

| set A in X              | $c_{\mu}(A)$            | $i_{\mu}(c_{\mu}(A))$   | $c_{\mu}(i_{\mu}(c_{\mu}(A)))$ | $\mu$ -open set $U$ s.t. $A \subseteq U$ |
|-------------------------|-------------------------|-------------------------|--------------------------------|------------------------------------------|
| Ø                       | { <i>c</i> }            | Ø                       | { <i>c</i> }                   | all $\mu$ -open set                      |
| X                       | X                       | { <i>a</i> , <i>b</i> } | X                              | none                                     |
| { <i>a</i> }            | X                       | { <i>a</i> , <i>b</i> } | X                              | $\{a\}, \{a, b\}$                        |
| { <i>b</i> }            | { <i>b</i> , <i>c</i> } | Ø                       | { <i>c</i> }                   | $\{a, b\}$                               |
| { <i>c</i> }            | { <i>c</i> }            | Ø                       | { <i>C</i> }                   | none                                     |
| $\{a, b\}$              | X                       | { <i>a</i> , <i>b</i> } | X                              | { <i>a</i> , <i>b</i> }                  |
| { <i>a</i> , <i>c</i> } | X                       | $\{a,b\}$               | X                              | none                                     |
| { <i>b</i> , <i>c</i> } | { <i>b</i> , <i>c</i> } | Ø                       | { <i>c</i> }                   | none                                     |

Now, consider the following:

Thus, the  $\mu_X - \hat{\beta}g$ -closed sets in X are  $\{X, \{c\}, \{a,c\}, \{b,c\}\}$ . It follows that  $\mu_X - \hat{\beta}g$ -open sets in X are  $\emptyset$ ,  $\{a,b\}$ ,  $\{b\}$ ,  $\{a\}$ .

Let  $f: (X, \mu_X) \to (Y, \mu_Y)$  be defined by  $f(\{a\}) = f(\{b\}) = \{u\}$  and  $f(\{c\}) = \{v\}$ .

- (i.) Consider  $a \in X$ . Note that  $\{u\}$  is the only  $\mu_Y$ -open set containing  $f(\{a\})$ , that is  $f(\{a\}) = \{u\} \subseteq \{u\}$ , and there exists a  $\mu_X \hat{\beta}g$ -open set  $\{a\}$  such that  $f(\{a\}) = \{u\} \subseteq \{u\}$ . Thus f is a  $\mu - \hat{\beta}g$ -continuous at  $a \in X$ .
- (ii.) Now, let  $b \in X$ . Observe that  $\{u\}$  is the only  $\mu_Y$ -open set containing  $f(\{b\})$ , that is  $f(\{b\}) = \{u\} \subseteq \{u\}$ , and there exists a  $\mu_X \hat{\beta}g$ -open set  $\{b\}$  such that  $f(\{b\}) = \{u\} \subseteq \{u\}$ . Thus f is a  $\mu \hat{\beta}g$ -continuous at  $b \in X$ .
- (iii.) Finally, let c ∈ X. Notice that there is no μ<sub>Y</sub>-open set containing f({c} = {v} and so it is vacuously satisfied. Thus f is a μ-β̂g-continuous at c ∈ X. Since, f is μ-β̂g-continuous at points a, b, and c, it follows that f is μ-β̂g-continuous by Definition 1.7.7 (ii).

The next remark follows from Definition 2.1.

**Remark 2.3** *Every*  $\mu$ *-continuous function is*  $\mu$ *-* $\hat{\beta}g$ *-continuous but the converse is not true.* 

**Theorem 2.4.** For a function  $f: (X, \mu) \rightarrow (Y, \nu)$ , the following properties are equivalent:

- (i)  $f \text{ is } \mu \hat{\beta} g \text{-continuous};$
- (ii)  $f^{-1}(V) = \hat{\beta} g i_{\mu} (f^{-1}(V))$  for every  $V \in v$ ;
- (iii)  $f^{-1}(i_{\mu}(f^{-1}(B)) \subseteq \hat{\beta}gi_{\mu}(f^{-1}(B)) \text{ for every } B \subseteq Y, \text{ and};$
- (iv)  $\hat{\beta}gc_{\mu}(f^{-1}(F)) = f^{-1}(F)$  for every v-closed subset F of Y.

*Proof:* Let  $f: (X, \mu) \rightarrow (Y, \nu)$  be a function and let  $x \in X$ .

(i)  $\Leftrightarrow$  (ii) Let  $V \in v$  and  $x \in f^{-1}$  (V). Then  $f(x) \in V$ . Since f is  $\mu - \hat{\beta}g$ -continuous at x, there exists a  $\mu - \hat{\beta}g$ -open set U containing x such that  $f(U) \subseteq V$ . Hence,  $x \in U \subseteq f^{-1}$  (V). This implies that  $x \in \hat{\beta}gi_{\mu}(f^{-1}(V))$ . Thus,  $f^{-1}(V) \subseteq \hat{\beta}gi_{\mu}(f^{-1}(V))$ . Since  $\hat{\beta}gi_{\mu}(f^{-1}(V)) \subseteq f^{-1}$  (V), (ii) follows.

Conversely, let  $x \in X$  and V be a v-open set in Y with  $f(x) \in V$ . By (ii),  $f^{-1}(V) = \hat{\beta}gi_{\mu} (f^{-1}(V))$ . Since  $x \in f^{-1}(V), x \in \hat{\beta}gi_{\mu} (f^{-1}(V))$ . This implies that there exists a  $\mu$ - $\hat{\beta}g$ -open set U with  $x \in U \subseteq (f^{-1}(V))$ . Thus  $f(U) \subseteq V$ . Therefore, f is  $\mu$ - $\hat{\beta}g$ -continuous at x. Since x is arbitrary, f is  $\mu$ - $\hat{\beta}g$ -continuous.

(ii)  $\Rightarrow$  (iii) Let  $B \subseteq Y$ . Since  $i_{\nu}(B)$  is a  $\nu$  - open set in Y, by (ii) we have  $f^{-1}(i_{\nu}(B)) = \hat{\beta}gi_{\mu} (f^{-1}(i_{\nu}(B))) \subseteq \hat{\beta}gi_{\mu} (f^{-1}(B))$ . Therefore,  $f^{-1}(i_{\nu}(B)) \subseteq \hat{\beta}gi_{\mu}(f^{-1}(B))$ .

(iii)  $\Rightarrow$  (iv) Let *F* be a *v*-closed subset of *Y*. Then,

$$\begin{split} X , \ \ {\it f}^{-1}(F) &= f^{-1}(Y , \ \ F) \\ &= f^{-1}(i_{\nu}(Y , \ \ F)) \\ &\subseteq \beta g i_{\mu}(f^{-1}(Y , \ \ F)) \\ &= \beta g i_{\mu}(X , \ \ {\it f}^{-1}(F)) \\ &= X , \ \ {\it f}{\it B} g c_{\mu}(f^{-1}(F)) \end{split}$$

Thus,  $\hat{\beta}gc_{\mu}(f^{-1}(F)) \subseteq f^{-1}(F)$ . Hence,  $\hat{\beta}gc_{\mu}(f^{-1}(F)) = f^{-1}(F)$ .

(iv)  $\Rightarrow$  (ii) Let  $V \in v$ . Then  $Y \setminus V$  is v-closed set in Y. By (iv),  $\hat{\beta}gc_{\mu}(f^{-1}(Y \setminus V)) = f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) = X \setminus \hat{\beta}gi_{\mu}(f^{-1}(V))$ . This implies that  $f^{-1}(V) = \hat{\beta}gi_{\mu}(f^{-1}(V))$ .

**Theorem 2.5** Let  $f: (X, \mu) \to (Y, \nu)$  be a function. If for each  $\mu_Y$ -open set U of Y,  $f^{-1}(U)$  is  $\mu_X - \hat{\beta}g$ -open in X, then f is  $\mu - \hat{\beta}g$ -continuous.

*Proof*: Let  $x \in X$  and V be any  $\mu_Y$ -open set in Y such that  $f(x) \in V$ . By assumption,  $f^{-1}(V)$  is  $\mu_X - \hat{\beta}g$ -open in X with  $x \in f^{-1}(V)$ . Take  $O = f^{-1}(V)$ . Then  $x \in O$  and  $f(O) \subseteq V$ . Therefore, f is  $\mu - \hat{\beta}g$ -continuous.

**Definition 2.6** A function  $f: (X, \mu_X) \to (Y, \mu_Y)$  is said to be:

- (i.) almost  $\mu \hat{\beta}g$ -continuous at a point  $x \in X$  if for each  $\mu_Y$ -open set V containing f(x), there exists a  $\mu_X \hat{\beta}g$ -open set U containing x such that  $f(U) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ .
- (ii.) almost  $\mu$ - $\hat{\beta}g$ -continuous if f is almost  $\mu$ - $\hat{\beta}g$ -continuous at every point  $x \in X$ .

**Example 2.7** Illustrating this in the example below.

- (i.) Consider  $a \in X$ . Note that  $\{u\}$  is the only  $\mu_Y$ -open set containing  $f(\{a\})$ , that is  $f(\{a\}) = \{u\} \subseteq \{u\}$ , and there exists a  $\mu_X \hat{\beta}g$ -open set  $\{a\}$  such that  $f(\{a\}) = \{u\} \subseteq \{u\} = i_{\mu_Y}(c_{\mu_Y}(\{u\}))$ . Thus f is almost  $\mu \hat{\beta}g$ -continuous at  $a \in X$ .
- (ii.) Now, let  $b \in X$ . Observe that  $\{u\}$  is the only  $\mu_Y$ -open set containing  $f(\{b\})$ , that is  $f(\{b\}) = \{u\} \subseteq \{u\}$ , and there exists a  $\mu_X \hat{\beta}g$ -open set  $\{b\}$  such that  $f(\{b\}) = \{u\} \subseteq \{u\} \subseteq \{u\} = i_{\mu_Y}(c_{\mu_Y}(\{u\}))$ . Thus f is almost  $\mu \hat{\beta}g$ -continuous at  $b \in X$ .
- (iii.) Finally, let  $c \in X$ . Notice that there is no  $\mu_Y$ -open set containing  $f(\{c\} = v \text{ and so it is vacuously satisfied. Thus } f \text{ is almost } \mu \hat{\beta}g$ -continuous at  $c \in X$ .

Since, f is almost  $\mu$ - $\hat{\beta}g$ -continuous at points a, b, and c, it follows that f is almost  $\mu$ - $\hat{\beta}g$ -continuous.

**Theorem 2.8** If  $f: (X, \mu_X) \to (Y, \mu_Y)$  is  $\mu - \hat{\beta}g$ -continuous, then f is almost  $\mu - \hat{\beta}g$ -continuous.

*Proof*: Let  $x \in X$  and V be a  $\mu_Y$ -open set with  $f(x) \in V$ . Since f is  $\mu$ - $\hat{\beta}g$ -continuous at x, there exists a  $\mu_X$ - $\hat{\beta}g$ -open set U with  $x \in U \subseteq f^{-1}(V)$ . Thus,  $f(U) \subseteq V = i_{\mu_X}(V) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Therefore, by Definition 4.1.6, f is almost  $\mu$ - $\hat{\beta}g$ -continuous.

- **Theorem 2.9** For a function  $f: (X, \mu_X) \to (Y, \mu_Y)$ , the following properties are equivalent:
  - (i.)  $f \text{ is almost } \mu \hat{\beta} g \text{-continuous at } x \in X;$
  - (ii.)  $x \in \hat{\beta}gi_{\mu_Y}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V)))) \text{ for very } V \in \mu_Y \text{ containing } f(x);$

- (iii.)  $x \in \hat{\beta} gi_{\mu_X}(f^{-1}(V))$  for every  $\mu$ -regular open subset V of Y containing f(x);
- (iv.) For every  $\mu$ -regular open subset V containing f(x), there exists  $\mu_X \hat{\beta}g$ -open set U containing x such that  $f(U) \in V$ .

*Proof*: Let  $x \in X$  and  $f: (X, \mu_X) \to (Y, \mu_Y)$  be a function.

(i)  $\Rightarrow$  (ii) Let  $V \in \mu_Y$  containing f(x). Then  $x \in f^{-1}(V)$ . Since f is almost  $\mu - \hat{\beta}g$ -continuous at x, there exists a  $\mu_X - \hat{\beta}g$ -open set U containing x such that  $f(U) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Therefore,  $x \in U \subseteq f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V)))$ . This implies that  $x \in \hat{\beta}gi_{\mu_Y}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))))$ .

(ii)  $\Rightarrow$  (iii) Let *V* be any  $\mu$ -regular open subset *Y* containing f(x). Then  $f(x) \in V = i_{\mu_Y}(c_{\mu_Y}(V))$ . Since *V* is  $\mu_V$ -open, by (ii), we have

$$x \in \hat{\beta} g i_{\mu_{Y}}(f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(V)))) = \hat{\beta} g i_{\mu_{Y}}(f^{-1}(i_{\mu_{Y}}(V)).$$

(iii)  $\Rightarrow$  (iv) Let V be any  $\mu$ -regular open subset Y containing f(x). Then by (iii),  $x \in \hat{\beta}gi_{\mu_v}(f^{-1}(V))$ . Thus, there exists a  $\mu_x - \hat{\beta}g$ -open set U with  $x \in U \subseteq f^{-1}(V)$ . Hence,  $f(U) \subseteq V$ .

(iv)  $\Rightarrow$  (i) Let  $V \in \mu_Y$  with  $f(x) \in V \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Since  $i_{\mu_Y}(c_{\mu_Y}(V))$  is  $\mu$ -regular open, by (iv) there exists a  $\mu_X$ - $\hat{\beta}g$ -open set U containing x such that  $f(U) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Therefore, f is almost  $\mu$ - $\hat{\beta}g$ -continuous at  $x \in X$ .

**Theorem 2.10** Let  $f:(X, \mu_X) \to (Y, \mu_Y)$  be a function. Then the following properties are equivalent:

- (i) f is almost  $\mu$ - $\hat{\beta}g$ -continuous;
- (ii)  $f^{-1}(V) \subseteq \hat{\beta} g i_{\mu_Y}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V)))) \text{ for every } V \in \mu_Y;$
- (iii)  $\hat{\beta}gc_{\mu_Y}(f^{-1}(c_{\mu_Y}(i_{\mu_Y}(F)))) \subseteq f^{-1}(F)$  for every  $\mu_Y$ -closed subset F of Y;
- (iv)  $\hat{\beta}gc_{\mu_Y}(f^{-1}(c_{\mu_Y}(i_{\mu_Y}(c_{\mu_Y}(B))))) \subseteq f^{-1}(c_{\mu_Y}(B) \text{ for every subset } B \text{ of } Y;$
- (v)  $f^{-1}(\tilde{i}_{\mu_Y}(B)) \subseteq \hat{\beta} g i_{\mu_X}(f^{-1}i_{\mu_Y}(c_{\mu_Y}(B)))) \text{ for every subset } B \text{ of } Y;$
- (vi)  $f^{-1}(V) = \hat{\beta} g i_{\mu_v} (f^{-1}(V))$  for every  $\mu$ -regular open subset V of Y.
- (vii)  $f^{-1}(F) = \hat{\beta}gc_{\mu_v}(f^{-1}(F))$  for every  $\mu$ -regular closed subset F of Y.

*Proof*: Let  $f: (X, \mu_X) \to (Y, \mu_Y)$  be a function.

(i)  $\Rightarrow$  (ii) Let *V* be a  $\mu_Y$ -open set in *Y* and  $x \in f^{-1}(V)$ . Since *f* is almost  $\mu$ - $\hat{\beta}g$ -continuous, there exists a  $\mu_X$ - $\hat{\beta}g$ -open set *U* containing *x* such that  $f(U) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . This implies that  $x \in \hat{\beta}gi_{\mu_X}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))))$ . Therefore,  $f^{-1}(V) \subseteq \hat{\beta}gi_{\mu_X}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))))$ .

(ii)  $\Rightarrow$  (iii) Let F be any  $\mu_{Y}$ -closed set. Then  $Y \setminus F$  is  $\mu_{Y}$ -open. By (ii),

Hence,  $X \setminus f^{-1}(F) \subseteq X \setminus \hat{\beta}gc_{\mu_X}(f^{-1}(c_{\mu_Y}(i_{\mu_Y}(F))))$ . It follows that  $\hat{\beta}gc_{\mu_X}(f^{-1}(c_{\mu_Y}(i_{\mu_Y}(F)))) \subseteq f^{-1}(F)$ .

(iii)  $\Rightarrow$  (iv) Let *B* be any subset of *Y*. Since  $c_{\mu_Y}(B)$  is a  $\mu_Y$ -closed subset of *Y*, by (iii),  $\hat{\beta}gc_{\mu_X}(f^{-1}(c_{\mu_Y}(i_{\mu_Y}(c_{\mu_Y}(B))))) \subseteq f^{-1}(c_{\mu_Y}(B)).$ 

(iv)  $\Rightarrow$  (v) Let *B* be any subset of *Y*. Then,

$$\begin{split} f^{-1}(i_{\mu_{Y}}(B) &= f^{-1}(Y, (c_{\mu_{Y}}(Y, B))) \\ &= X, f^{-1}(c_{\mu_{Y}}(Y, B)) \\ &\subseteq X, \beta g c_{\mu_{X}}(f^{-1}(c_{\mu_{Y}}(i_{\mu_{Y}}(c_{\mu_{Y}}(Y, B))))) \\ &= \beta g i_{\mu_{X}}(f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(i_{\mu_{Y}}(B))))). \end{split}$$

(v)  $\Rightarrow$  (vi) Let V be any  $\mu$ -regular open subset of Y. Then V is  $\mu_Y$ -open in Y. Hence,  $V = i_{\mu_Y}(V)$ . Since V is  $\mu$ -regular open,

$$V = i_{\mu_Y}(c_{\mu_Y}(V)) = i_{\mu_Y}(c_{\mu_Y}(i_{\mu_Y}(V))).$$

By (v),

$$\begin{split} f^{-1}(i_{\mu_{Y}}(V) &= f^{-1}(V) \\ &\subseteq \beta g i_{\mu_{X}}(f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(i_{\mu_{Y}}(V))))) \\ &= \# g i_{\mu_{X}}(f^{-1}(V)) \\ &\subseteq f^{-1}(V). \end{split}$$

Therefore,  $f^{-1}(V) = \hat{\beta} g i_{\mu_X}(f^{-1}(V))$ . (vi)  $\Rightarrow$  (vii) Let *F* be any  $\mu$ -regular closed subset of *Y*. Then  $X \setminus F$  is a  $\mu$ -regular open subset of *Y*. By (vi),

$$f^{-1}(Y \setminus F) = \hat{\beta} g i_{\mu_Y}(f^{-1}(Y \setminus F)).$$

Thus,  $X \setminus f^{-1}(F) = \hat{\beta}gi_{\mu_X}(X \setminus f^{-1}(F)) = X \setminus \hat{\beta}gc_{\mu_X}(f^{-1}(F))$ . Therefore,  $f^{-1}(F) = \hat{\beta}gc_{\mu_X}(f^{-1}(F))$ .

(vii)  $\Rightarrow$  (i) Let  $x \in X$  and V be any  $\mu_Y$ - open set in Y with  $f(x) \in V$ . Then,  $V = i_{\mu_Y}(V) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Since  $i_{\mu_Y}(c_{\mu_Y}(V))$  is  $\mu$ -regular open, by (vii),  $f^{-1}(Y \setminus (i_{\mu_Y}(c_{\mu_Y}(V)))) = \hat{\beta}gc_{\mu_X}(f^{-1}(Y \setminus (i_{\mu_Y}(c_{\mu_Y}(V)))))$ . Thus,

$$\begin{split} X, \quad f^{-1}\mathfrak{f}i_{\mu_{Y}}(c_{\mu_{Y}}(V))) &= \beta g c_{\mu_{X}}(X, \quad f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(V)))) \\ &= X, \quad \beta g i_{\mu_{X}}(f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(V)))). \end{split}$$

It follows that  $f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))) = \hat{\beta}gi_{\mu_X}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))))$ . Since  $f(x) \in V \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ ,  $x \in f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))) = \hat{\beta}gi_{\mu_X}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))))$ . Hence, there exists a  $\mu_X$ - $\hat{\beta}g$ -open set O with  $x \in O \subseteq f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V)))$ . This implies that  $f(O) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Therefore, the theorem follows.

**Definition 2.11** A function  $f: (X, \mu_X) \rightarrow (Y, \mu_Y)$  is said to be:

- (i.) weakly  $\mu \hat{\beta}g$ -continuous at a point  $x \in X$  if for each  $\mu_Y$ -open set V containing f(x), there exists a  $\mu_X \hat{\beta}g$ -open set U containing x such that  $f(U) \subseteq c_{\mu_Y}(V)$ .
- (ii.) weakly  $\mu$ - $\hat{\beta}g$ -continuous if f is weakly  $\mu$ - $\hat{\beta}g$ -continuous at every point  $x \in X$ .

#### Example 2.12 To illustrate,

- (i.) Consider  $a \in X$ . Note that  $\{u\}$  is the only  $\mu_Y$ -open set containing  $f(\{a\})$ , that is  $f(\{a\}) = \{u\} \subseteq \{u\}$ , and there exists a  $\mu_X \hat{\beta}g$ -open set  $\{a\}$  such that  $f(\{a\}) = \{u\} \subseteq Y = c_{\mu_Y}(\{u\})$ . Thus f is weakly  $\mu \hat{\beta}g$ -continuous at  $a \in X$ .
- (ii.) Now, let  $b \in X$ . Observe that  $\{u\}$  is the only  $\mu_Y$ -open set containing  $f(\{b\})$ , that is  $f(\{b\}) = \{u\} \subseteq \{u\}$ , and there exists a  $\mu_X \hat{\beta}g$ -open set  $\{b\}$  such that  $f(\{b\}) = \{u\} \subseteq Y = c_{\mu_Y}(\{u\})$ . Thus f is weakly  $\mu \hat{\beta}g$ -continuous at  $b \in X$ .
- (iii.) Finally, let  $c \in X$ . Notice that there is no  $\mu_Y$ -open set containing  $f(\{c\} = v \text{ and so it is vacuously satisfied. Thus } f$  is weakly  $\mu \hat{\beta}g$ -continuous at  $c \in X$ .

Since, f is weakly  $\mu$ - $\hat{\beta}g$ -continuous at points a, b, and c, it follows that f is weakly  $\mu$ - $\hat{\beta}g$ -continuous.

**Theorem 2.13** If  $f: (X, \mu_X) \to (Y, \mu_Y)$  is almost  $\mu - \hat{\beta}g$ -continuous, then f is weakly  $\mu - \hat{\beta}g$ -continuous.

*Proof*: Let *f* be almost  $\mu - \hat{\beta}g$ -continuous. Let  $x \in X$  and *V* be a  $\mu_Y$ -open set in *Y* containing f(x). Since *f* is almost  $\mu - \hat{\beta}g$ -continuous, there exists a  $\mu_X - \hat{\beta}g$ -open set *U* containing *x* such that  $f(U) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Since  $i_{\mu_Y}(c_{\mu_Y}(V)) \subseteq c_{\mu_Y}(V)$ , it follows that there exists a  $\mu_X - \hat{\beta}g$ -open set *U* containing *x* such that  $f(U) \subseteq c_{\mu_Y}(V)$ . Therefore, *f* is weakly  $\mu - \hat{\beta}g$ -continuous.

**Theorem 2.14** For a function  $f: (X, \mu_X) \to (Y, \mu_Y)$ , the following properties are equivalent:

- (i.) f is weakly  $\mu$ - $\hat{\beta}g$ -continuous;
- (ii.)  $f^{-1}(V) \subseteq \hat{\beta}gi_{\mu_X}(f^{-1}(c_{\mu_X}(V)))$  for every  $\mu_Y$ -open subset V of Y;
- (iii.)  $\hat{\beta}gc_{\mu_{Y}}(f^{-1}(i_{\mu_{Y}}(F))) \subseteq f^{-1}(F)$  for every  $\mu_{Y}$ -closed subset F of Y;
- (iv.)  $\hat{\beta}gc_{\mu_{Y}}(f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(A)))) \subseteq f^{-1}(c_{\mu_{Y}}(A))$  for every subset A of Y;
- (v.)  $f^{-1}(i_{\mu_Y}(V)) \subseteq \hat{\beta}gi_{\mu_X}(f^{-1}(c_{\mu_Y}(i_{\mu_Y}(A))))$  for every subset A of Y;
- (vi.)  $\hat{\beta}gc_{\mu_{v}}(f^{-1}(i_{\mu_{v}}(V))) \subseteq f^{-1}(c_{\mu_{v}}(V))$  for every  $\mu_{v}$ -open subset V of Y.

*Proof*: Let  $f: (X, \mu_X) \to (Y, \mu_Y)$  be a function.

(i)  $\Rightarrow$  (ii) Let *V* be any  $\mu_Y$ -open subset of *Y*. If  $f^{-1}(V) = \emptyset$ , then we are done. Let  $x \in f^{-1}(V)$ . Since *f* is weakly  $\mu$ - $\hat{\beta}g$ -continuous, there exists a  $\mu_X$ - $\hat{\beta}g$ -open set *U* containing *x* such that  $f(U) \subseteq c_{\mu_Y}(V)$ . This implies that  $x \in f^{-1}(c_{\mu_Y}(V))$ . Therefore,  $x \in \hat{\beta}gi_{\mu_X}(f^{-1}(c_{\mu_Y}(V)))$  and (ii) holds.

(ii)  $\Rightarrow$  (iii) Let F be a  $\mu_Y$ -closed subset of Y. Then  $Y \setminus F$  is a  $\mu_Y$ -open set subset of Y. By (ii),  $X, f^{-1}(F) = f^{-1}(Y, F) \subseteq \beta g i_{\mu_X} (f^{-1}(c_{\mu_Y}(Y, F)))$   $= \beta g i_{\mu_Y} (f^{-1}(Y, i_{\mu_Y}(F)))$   $= \beta g i_{\mu_Y} (X, if^{-1}(i_{\mu_Y}(F)))$  $= f X, \beta g c_{\mu_X} (f^{-1}(i_{\mu_Y}(F))).$ 

Thus,

$$egin{aligned} &f^{-1}(Y \ , \ \ c_{\mu_{Y}}(V)) \subseteq eta gi_{\mu_{X}}(f^{-1}(c_{\mu_{Y}}(Y \ , \ \ c_{\mu_{Y}}(V)))) \ &= eta gi_{\mu_{X}}(f^{-1}(Y \ , \ \ i_{\mu_{X}}(c_{\mu_{Y}}(V)))) \ &= eta gi_{\mu_{X}}(X \ , \ \ (f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(V))))). \end{aligned}$$

6101

Hence,  $X \setminus f^{-1}(c_{\mu_Y}(V)) \subseteq X \setminus \hat{\beta}gc_{\mu_X}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V))))$ . This implies that  $\hat{\beta}gc_{\mu_X}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(V)))) \subseteq f^{-1}(c_{\mu_Y}(V))$ . Since  $V \subseteq c_{\mu_Y}(V)$ , we have  $i_{\mu_Y}(V) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . Therefore,  $\hat{\beta}gc_{\mu_X}(f^{-1}(i_{\mu_Y}(V))) \subseteq f^{-1}(c_{\mu_Y}(V))$ .

(vi)  $\Rightarrow$  (i) Let  $x \in X$  and V be a  $\mu_Y$ -open set in Y containing f(x). Then  $V = i_{\mu_Y}(V) \subseteq i_{\mu_Y}(c_{\mu_Y}(V))$ . By (vi),

$$\begin{split} x \in f^{-1}(V) &\subseteq f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(V))) \\ &= fX , \quad (f^{-1}(c_{\mu_{Y}}(Y , c_{\mu_{Y}}(V)))) \\ &\subseteq X , \quad \beta gc_{\mu_{X}}(f^{-1}(i_{\mu_{Y}}(Y , c_{\mu_{Y}}(V)))) \\ &= X , \quad \beta gc_{\mu_{X}}(f^{-1}(Y , c_{\mu_{Y}}(V))) \\ &= f\beta gi_{\mu_{X}}(f^{-1}(c_{\mu_{Y}}(V))). \end{split}$$

Thus, there exist a  $\mu_X - \hat{\beta}g$ -open set U with  $x \in U$  and  $f(U) \subseteq c_{\mu_Y}(V)$ . Therefore, f is weakly  $\mu - \hat{\beta}g$ -continuous.

**Theorem 2.15** Let  $f: (X, \mu_X) \to (Y, \mu_Y)$  be a function. Then the following are equivalent:

- (i) f is weakly  $\mu$ - $\hat{\beta}g$ -continuous;
- (ii)  $\hat{\beta}gc_{\mu_{Y}}(f^{-1}(i_{\mu_{Y}}(F))) \subseteq f^{-1}(F)$  for every  $\mu_{Y}$ -regular closed subset F of Y;
- (iii)  $\hat{\beta}gc_{\mu_{Y}}(f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(G)))) \subseteq f^{-1}(c_{\mu_{Y}}(G))$  for every  $\mu_{Y}$ - $\beta$ -open subset G of Y;
- (iv)  $\hat{\beta}gc_{\mu_X}(f^{-1}(i_{\mu_Y}(c_{\mu_Y}(G)))) \subseteq f^{-1}(c_{\mu_Y}(G))$  for every  $\mu_Y$ -semiopen subset G of Y.

*Proof*: Let  $f: (X, \mu_X) \to (Y, \mu_Y)$  be a function.

(i)  $\Rightarrow$  (ii) Follows from Theorem 2.15 (iii).

(ii)  $\Rightarrow$  (iii) Let G be  $\mu_Y - \beta$ -open subset of Y. The  $G \subseteq ((c_{\mu_Y}(i_{\mu_Y}(c_{\mu_Y}(G)))))$ . It follows that  $c_{\mu_Y}(G) \subseteq c_{\mu_Y}(c_{\mu_Y}(c_{\mu_Y}(G)))) = (c_{\mu_Y}(i_{\mu_Y}(c_{\mu_Y}(G))))$ . Now,  $(i_{\mu_Y}(c_{\mu_Y}(G)))$  is a  $\mu_Y$ -regular closed subset of Y. By (ii), we have

$$\hat{\beta}gc_{\mu_{X}}(f^{-1}(i_{\mu_{Y}}(c_{\mu_{Y}}(G)))) \subseteq f^{-1}(c_{\mu_{Y}}(G)).$$

(iii)  $\Rightarrow$  (iv) Let G be  $\mu_{\gamma}$ -semiopen set in Y. Then G is  $\mu_{\gamma}$ - $\beta$ -open. By (iii),  $\hat{\beta}gc_{\mu_{\gamma}}(f^{-1}(i_{\mu_{\gamma}}(c_{\mu_{\gamma}}(G)))) \subseteq f^{-1}(c_{\mu_{\gamma}}(G)).$ 

(iv)  $\Rightarrow$  (i) Let V be any  $\mu_{Y}$ -open subset of Y. Then V is  $\mu_{Y}$ -semiopen. By Theorem 2.15 (iv), f is weakly  $\mu$ - $\hat{\beta}g$ -continuous.

## SOME CHARACTERIZATIONS OF BETA HAT GENERALIZED CONTINUOUS FUNCTIONS IN GENERALIZED TOPOLOGICAL SPACES

Section: Research Paper

From Remark 2.3, Theorem 2.5, Theorem 2.8, and Theorem 2.14, we have the following implications but the converses are not true.

 $\mu$ -continuous  $\Rightarrow \mu - \hat{\beta}g$ -continuous

almost  $\mu$ - $\hat{\beta}g$ -continuous

↓

↓

weakly  $\mu$ - $\hat{\beta}g$ -continuous

(The symbol  $\Rightarrow$  means an implication).

#### REFERENCES

- [1] N. Levine, *Generalized Closed Sets in Topology*, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
- [2] K. Kannan and N. Nagaveni, On  $\beta$ -Generalized Closed Sets and Open Sets in Topological Spaces, International Journal of Mathematical Analysis, Vol. 6, 2012, no.57, 2819-2828.
- [3] Császár, Á., *Generalized Topology, Generalized Continuity*, Acta Mathematica Hungaria 96 (2002), 351-357.
- [4] Dugundji, J., *Topology*, New Delhi Prentice Hall of India Private Ltd., 1975.
- [5] M.Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374 481.
- [6] Császár, Á., *Generalized Open Sets in Generalized Topologies*, Acta Mathematica Hungaria 106 (2005), 53-56.
- [7] Orge, K., *Some Forms of Generalized Closed Sets in Generalized Topologies*, Thesis, Mindanao State University-Iligan Institute of Technology, March 2012.

- [8] N. Levine, *Generalized Closed Sets in Topology*, Rend. Circ. Mat. Palermo, 19 (2) (1970), 82-88.
- [9] Lipschutz, S., Ph. D., *Schaum's Outline of Theory and Problems of General Topology*, McGraw-Hill Incorporated, United States, 1965.
- [10] Tampos, M.L., Alpha Generalized Closed Sets in Generalized and Bigeneralized Topological Spaces, Thesis, Bohol Island State University Main Campus, March 2016
- [11] Baculta, J. J. Regular Generalized Star b-sets in Generalized, Bigeneralized and Generalized Fuzzy Topological Spaces, Dissertation. Mindanao State University Iligan Institutute of Technology, May 2015.
- [12] Császár, Á., Generalized Open Sets in Generalized Topologies, Acta Mathematica Hungaria 106 (1-2) (2002), 351-357.
- [13] Levine, N., *Generalized Closed Sets in Topology*, Rend. Circ. Mat. Palermo, 19 (1982), 82-88, 89-96.
- [14] Császár, Á., *Generalized Open Sets in Generalized Topologies*, Acta Mathematica Hungaria 120 (2008), 275-279.
- [15] Njastad, O., On Some Classes of Nearly Open Sets, Pacific Journal Math, 15 (1965), 961-970.
- [16] Barbe M. R. Stadler and Peter F. Stadler, *Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry*. (2001)
- [17] Wright, S., *The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution.* In: Jones, D. F., ed., Int. Proceedings of the Sixth International Congress on Genetics. Vol.1, (1932) 356-366.
- [18] Palaniappan N and Rao KC (1993) *Regular generalized closed sets*, Kyunpook Math. J33: 211-219.
- [19] Benchalli S.S., Wali R.S., *On rw-Closed Sets in Topological Spaces*. Bulliten of the Malaysian Mathematical Sciences Society. (2)30(2)(2007), 99-110.
- [20] Duangphui, T., Boonpok, C., Viriyapong C., *Continuous Functions on Bigeneralized Topological Spaces.* Int. Journal of Math. Analysis Vol.5,2011, no.24, 1165-1174.