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Assessment of left ventricular 

systolic function is a primary component 

of every echocardiographic examination. 

The degree of systolic dysfunction is a 

powerful predictor of clinical outcome (1) 

1) Left ventricular ejection fraction  

(EF)   

Definition:  The left ventricular 

ejection fraction (EF) is expressed as the 

ratio of the left ventricular stroke volume 

(SV) to the left ventricular end-diastolic 

volume (LVEDV). SV is obtained by 

subtracting the left ventricular end-systolic 

volume (LVESV) from LVEDV. 

Therefore, EF is calculated by the 

following formula(2): 

EF =  LVEDV-LVESV /LVEDV   × 100    

M-mode and 2D echocardiograms 

are used to measure the left ventricular 

volume .To obtain the left ventricular 

volume using M-mode echocardiograms, 

the maximum minor axis of the left 

ventricle end-diastole (LVDd) and end-

systole (LVDs) is measured on the 

parasternal long-axis or short-axis view, on 

the assumption that the left ventricle is a 

spheroid. Left ventricular volumes are 

usually calculated by the following 

formula of Teichholz (3). 

𝑣 =
7.0

2.4 + 𝐷
× 𝐷3 

(D= linear LV diameter) 

It is acknowledged that this formula 

can be applied to the left ventricle that has 

enlarged and become almost spherical, and 

correlates well with the volume obtained 

by left ventriculography. It cannot be 

applied to patients whose left ventricular 

shapes deviate from a spheroid, and to 

those with regional left ventricular wall 

motion abnormalities during cardiac 

contraction (asynergy) (4). 

To obtain the left ventricular volumes 

on 2D echocardiograms: 

1) The single plane area-length 

method, which calculates the 

volume based on the area of a 

single cross-section. 

2) The modified Simpson method 

(disc method) are available 

The biplane method of discs 

(modified Simpson’s rule) is 

recommended by the ASE and the 

European Association of 

Echocardiography. This method does not 

assume a predetermined geometry of the 

LV, but instead defines the LV geometry 

following manual tracing of the acquired 

LV cavity borders. The LV volume is then 
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quantified by assuming the LV cavity is a 

stack of elliptical discs whose volumes are 

quantified and summated (5). 

Two orthogonal views—apical four-

chamber and apical two-chamber—and 

manual tracing of endocardial borders 

manually traced at end systole and end-

diastole are needed. Automated software 

divides the LV into a stack of discs 

oriented perpendicular to the long axis of 

the ventricle, and summates their 

individual volumes.  From the end-

diastolic frame, the end-diastolic volume is 

calculated, From the end-systolic frame, 

the end-systolic volume is calculated 

(Fig.1) (6). 
 

 

Figure. (1): Modified biplane method of discs measuring LV end diastolic and end systolic volumes  (7) 

2) Stroke volume (SV) and stroke 

index(SI) 

SV, the volume of blood ejected 

from the left ventricle during systole, is an 

index of the left ventricular pumping 

function. It is obtained by calculating the 

end-diastolic volume and end-systolic 

volume using M-mode or 

2Dechocardiography as described before, 

and the difference between these volumes 

is SV (8). 

  

Calculating stroke volume using 

Doppler measures:- 

❖ In apical 5-chamber view record a PW 

Doppler in the outflow tract and trace 

the shape. Record the velocity time 

integral (vti). 

❖ In a parasternal long axis view, zoom 

the LVOT and measure the width 

(edge to edge, just below aortic valve). 

❖ Stroke volume is the area of the 

outflow tract (π× [LVOT   

diameter/2]2) multiplied by the 

outflow tract VTI (9).  

When assessing SV value as an index 

of left ventricular function, it should be 

recognized that the cardiac output and SV 

can be maintained by dilating the left 

ventricle even in patients with impaired 

myocardial systolic function (10).  

3) Cardiac output (CO) and cardiac 

index (CI) 

CO, the volume of blood ejected 

from the left ventricle to the aorta per 

minute, is an index of the left ventricular 

pumping function that is obtained by 
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multiplying the stroke volume by the heart 

rate per minute. The cardiac index is 

obtained by dividing  the cardiac output by 

the body surface area to correct for body 

size (11). 

4) Left ventricular percent fractional 

shortening (%FS) 

Left ventricular %FS is an index of 

systolic function that is obtained by 

measuring the left ventricular end-diastolic 

dimension and left ventricular end-systolic 

dimension, dividing the difference by the 

left ventricular end-diastolic dimension, 

and shown as percentage in accordance 

with the following formula: 

𝐹𝑆 =
𝐿𝑉𝐷𝑑 − 𝐿𝑉𝐷𝑠

𝐿𝑉𝐷𝑑
× 100 % 

A normal value is between 30% and 

50% (12). 
 

5) Myocardial Performance Index  

The myocardial performance index 

(MPI, also known as "Tei" index) is an 

expression of global ventricular 

performance. It is a simple calculation that 

includes both systolic and diastolic 

parameters and can be applied to either the 

left or right ventricle. The MPI 

incorporates three basic time intervals that 

are readily derived from Doppler 

recordings:  

• The ejection time (ET) . 

• Isovolumic contraction time (IVCT). 

• The isovolumic relaxation time (IVRT).  

From these values, the MPI can be 

calculated from the following formula(13): 

MPI = ( IVCT + IVRT ) / ET  

Systolic dysfunction is associated 

with a prolongation of IVCT and a 

shortening of the ET. Therefore, this will 

result in an increase in the MPI, the normal 

range is 0.39 ± 0.05, and values above 0.50 

are considered abnormal (14). 

6) Left Ventricular Mass, Geometry, 

and Relative Wall  Thickness (RWT) 

(15)                              

a) LV Mass = 1.05 (Total LV volume – 

LV Chamber volume) 

Normally indexed to BSA : 

 (women = 44-88 g/m2, men = 50-102  

g/m2)   

b) RWT = 2 × (Inferolateral Wall 

Thickness)/LVInternal Diameter(16). 

• Performed in diastole  

• Normal Geometry= Normal LV 

mass and RWT 

• Concentric Hypertrophy  = ↑ LV 

mass and ↑ RWT 

• Eccentric Hypertrophy = ↑ LV 

mass with Normal RWT 

• Concentric Remodeling = Normal 

LV mass and ↑ RWT 

7) Left ventricular dP/dt 

dP/dt describes the rise in 

intraventricular pressure during early 

systole The change in pressure is 

determined by systolic contraction so the 

faster the rise the better the left ventricular 

systolic function (17). 

Measure the time taken for the 

velocity of the mitral regurgitant jet to rise 

from 1 to 3m/s (the measure has been 

standardized for this pressure rise from 4 

to 36 mmHg). The machine or software 

will normally automatically calculate dP/dt 

if the 1m/s and 3m/s points are marked. 

dP/dt > 1200mmHg/s relates to normal 

function and <800mmHg/s (roughly > 

40ms) is severely depressed function (18). 
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8) Regional wall motion assessment 

Echocardiography, with its high 

spatial and temporal resolution, is an 

ideally suited non-invasive method of  

assessing wall motion. In suspected acute 

coronary syndrome (ACS) wall motion 

abnormality (WMA) precedes changes on 

the ECG and symptoms and hence is 

extremely useful in the early detection of 

ACS. Conversely in patients with 

suspected ACS with inconclusive ECGs, 

normal WM excludes ischaemia (19). 

 

Assessment of regional wall motion : 

Left ventricular wall motion is 

assessed in the apical 4-, 2-, 3-

chamber, parasternal long and short axis 

views. This allows complete visualisation of 

all the left ventricular walls, and hence all 3 

vascular territories, although care must be 

taken to ensure clear endocardial border 

definition. Clear visualisation of the 

endocardial border is crucial for the full 

assessment of wall motion (20). 

Wall motion and wall thickening 

assessments are described in Table 1. 

Table 1: Methods for Evaluation of Regional Wall Motion Abnormalities(21) :  

Visual/subjective 

normal, hypokinetic, akinetic, dyskinetic 

Semiquantiative 

WMS or WMSI 

1. = normal 

2. = hypokinetic, i.e. reduced endocardial excursion and wall thickening 

3. = akinetic, absent endocardial excursion and thickening 

4. = dyskinetic, systolic bulging with no thickening 

WMSI = Total score of segments/Total number of segments. 

WMS, wall motion score; WMSI, wall motion score index 

 

Tissue Doppler Imaging (TDI) 

DI images low-velocity, high 

amplitude myocardial velocity  signals  and 

is obtained by pulsed Doppler  or colour 

Doppler (CTDI) . CTDI acquires tissue 

velocity information from the entire sector 

and thus multiple sites can be interrogated 

simultaneously and analysed offline (22). 

TDI has been validated extensively in 

a variety of cardiac pathologies including 

HF, AMI, hypertension, diabetes and in 

stress echocardiography  where TDI 

systolic velocities are used as an adjunct to 

WMSI (23). 

The systolic motion of the mitral 

annulus toward the apex (Sm) is a sensitive 

marker of impaired LV systolic function, 

even in those with a normal LVEF. Sm 

velocity is a predictor of outcomes and in 

patients with cardiac disease , mortality 

was higher when Sm was < 3 cm/s. In HF 

patients, CTDI Sm velocity and diastolic 

arterial pressure were independent 

predictors of outcome (24). 

9) Speckle Tracking echocardiography : 

Discussed later 

Evaluation of Diastolic Function: 

Echocardiography has been the 

mainstay for understanding the physiology 

of diastolic function, and identifying the 

pathophysiology of diastolic dysfunction 

Fig. 2(25) 
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Figure (2)  Stages of diastolic dysfunction Schematic representation of the typical patterns seen with mitral 

inflow,  pulmonary venous flow, tissue Doppler echocardiography, and color M-mode propagation velocity 

(Vp) for normal (young and adult), impaired relaxation, pseudonormal , and restrictive diastolic function. The 

stages of diastolic dysfunction can be determined using an integrated approach with these four different 

modalities for assessment of diastolic flow pattern (26). 
 

Table (2) : Criteria used to define grades of diastolic  dysfunction (27). 

 
Criteria 

Normal 
Young 

Normal 
Adult 

Impaired 
Relaxation 
(Grade 1) 

Pseudonormal 
(Grade 2) 

Restrictive 
Reversible 
(Grade 3) 

Restrictive 
Irreversible 
(Grade 4) 

 
E/A ratio 1-2 1-2 <1.0 

1-1.5 (reverses   
with Valsalva 

maneuver) 
>1.5 

1.5-2.0 
 

Deceleration time (ms) <240 150-240 ≥240 150-200 <150 <150 

IVRT (ms) 70-90 70-90 0>90 <90 <70 <70 

PV S2/D ratio <1 ≥1 ≥1 <1 <1 <1 

Ardur – Adur (ms) ≥30 ≤0 ≤0or≥30 ≥30 ≥30 ≥30 

Ar velocity (cm/s) <35 <35 <35 ≥35 ≥35 ≥35 

Propagation velocity (cm/s) >55 >55 >45 <45 <45 <45 

Mitral E′velocity (cm/s) >10 >8 <8 <8 <8 <8 

Left atrium Normal Normal Normal or 
mildly 

enlarged LA 

Mild to 
moderate LA  
enlargement 

Severe LA 
enlargement 

Severe LA 
enlargement 
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Doppler techniques in assessment of 

diastolic filling patterns 

There is a large body of scientific 

evidence validating the typical patterns of 

diastolic filling in normal subjects, and 

those with diastolic dysfunction. These 

filling patterns are generally not 

characteristic of a particular disease 

process, but represent the end product of a 

complex set of pathophysiologic events. 

Furthermore, these patterns can also be 

affected by operator-related issues (e.g., 

precise placement of the sample volume) 

and physiologic factors (e.g., heart rate and 

volume status) and are not a reflection of 

true diastolic function (28).   

(1) Transmitral Flow Assessment : 

The most traditional technique of 

assessment of LV filling patterns involves 

using pulsed-wave Doppler mitral flow 

velocity recordings. The following are the 

variables derived from mitral inflow 

interrogation:     

• peak early diastolic transmitral flow 

velocity  (E).  

• peak late diastolic transmitral flow 

velocity (A). 

• early filling deceleration time (DT). 

• Awave duration (Adur) (29).                   

    

There are many factors that affect the 

transmitral velocity waveform; among 

them are heart rate and rhythm, aging, and 

preload. As the heart rate increases, time 

for diastasis is reduced, the A wave occurs 

earlier and its maximum velocity is 

increased. At rates of greater than 100 

beats/min fusion of the E wave and A 

waves occurs resulting in monophasic 

diastolic filling. In atrial fibrillation the A 

wave is lost and the height of the E wave is 

determined by the length of the preceding 

cardiac cycle (30).  

Normal individuals demonstrate a 

rapidly accelerating E wave, relatively 

rapid deceleration, and an A wave 

significantly smaller than the E wave. The 

E/A ratio is greater than 1. With normal 

aging, there is slowing of LV relaxation 

and, hence, a gradual decrease of the peak 

E wave velocity, and an increase of A 

wave peak velocity. In most individuals, E 

and A waves become approximately equal 

in the sixth decade of life (31). 

The evolution of traditional diastolic 

parameters with progressively worsening 

diastolic function, occurs in the following 

manner: For patients with diastolic 

dysfunction, three abnormal filling patterns 

are initially recognized (32). 

In stage 1 diastolic dysfunction 

(abnormal relaxation) :  

There is Prolongation to IVRT 

(greater than 90 ms) as LV pressure falls 

slowly. The early LA/LV pressure gradient 

is therefore relatively low and this is 

reflected in a diminished E wave maximal 

velocity. As early filling is decreased, LA 

volume is larger at the time of atrial 

contraction and this results in a higher A 

wave. There is reversal of the normal E/A 

ratio (less than 1) and deceleration time is 

prolonged (greater than 240 ms). These 

findings are associated with a low 

pulmonary capillary wedge pressure 

(15mmHg) (30).                              

Stage 2 diastolic dysfunction, or 

pseudonormal pattern :  

Results from a combination of 

impaired relaxation and elevated filling 

pressures is associated with a normal 

appearance of the transmitral inflow with 

an E/A ratio between 1 and 1.5, a DT 

between 160 and 240 ms, and an IVRT 

between 60 and 100 ms (33). 
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Stage 3 diastolic dysfunction or 

restrictive filling: 

With disease progression, occurs when 

there is a high LA pressure and a non 

distensible Ventricle ,there is a very high E 

wave, a low A wave, and a significantly 

decreased DT. The E/A ratio is usually 

greater than 2 with a DT less than 160 ms, 

and IVRT less than 70 ms. These findings 

reflect a high LA pressure at MV opening, 

and rapid filling of the LV that terminates 

rapidly. The A wave is low velocity due to 

either atrial dysfunction or a high 

LVEDP(26).   

Stage 4: 

Further observations have 

subcategorized this last pattern to either 

reversible or fixed restrictive pattern (stage 

4) depending on the response to the 

Valsalva maneuver or other preload 

reducing maneuvers (34).                              

The major challenge in the 

interpretation of Doppler mitral inflow 

patterns  is in distinguishing the normal from 

the pseudonormal pattern. To accurately 

assess and stratify the degree of diastolic 

abnormality, further measurements are 

generally necessary. There are several 

traditional methods that are useful in 

distinguishing normal from pseudonormal 

patterns, including the Valsalva maneuver, 

pulmonary venous (PV) flow measurements, 

and the tissue Doppler annular velocities (E′) 

Fig. (3) (28). 

 

 

 

Figure (3) different patterns of diastolic dysfunction (35). 

 

  

http://www.fac.org.ar/scvc/llave/echo/roeland/roelandi.htm#postf4
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 (2) Pulmonary Venous Flow 

PV flow velocity variables provide 

an integrated approach with mitral inflow 

in the evaluation of diastolic dysfunction. 

The four useful variables from the PV flow 

interrogation are peak systolic PV flow 

velocity (S), peak diastolic PV flow 

velocity (D), peak PV atrial reversal flow 

velocity (PVa), and PVa duration  

(adur)(30). 

The S wave may be biphasic, the 

early phase (Se) attributed to LA relaxation 

and the later (Sl) associated with apical 

displacement of the MV annulus. The D 

wave is associated with MV opening and 

LV filling prior to atrial contraction. Atrial 

contraction forces blood into the LV but 

also retrograde into the pulmonary veins 

So the flow from the PV to the LA occurs 

in three phases: 

• systolic phase (peak early and late 

systolic PV flow velocity) . 

• early diastolic phase (peak diastolic 

PV flow velocity). 

• retrograde flow during the late 

diastole with atrial contraction. 

The S wave is higher in normal 

subjects than the D wave and when it is 

biphasic Sl will be higher than Se The ratio 

of S velocity to D velocity is 

approximately 1.3–1.5 in normals with the 

S flow velocity integral occupying 60–

68% of the total flow velocity integral. As 

with the transmitral E and A waves, 

pulmonary vein S and D waves may fuse 

at high heart rates, and as with the 

transmitral flow, age related changes have 

been described. The D wave decreases and 

the Ar and S wave increase with advancing 

age (36). 

As LA pressure rises its compliance 

is diminished. The magnitude of the S 

wave is primarily related to LA 

compliance and therefore the pulmonary 

vein systolic fraction (the proportion of the 

total pulmonary venous flow velocity 

integral contributed by the S wave) is 

inversely related to mean LA pressure. 

With a normal LA pressure, the majority 

of the flow into LA occurs in systole. 

However, when the mean LA pressure 

increases, the majority of the antegrade 

flow occurs in diastole with a concomitant 

reduction in systolic flow. A decreased 

systolic fraction of less than 40% is 

associated with an elevated mean LA 

pressure greater than 15 mmHg (8).  

 (3)Tissue-Doppler Imaging for 

Evaluation of Diastolic Function 

Doppler tissue imaging (DTI), also 

known as tissue Doppler imaging (TDI), 

enables the measurement of the high 

amplitude, low velocity signals of 

myocardial motion, rather than blood flow 

velocities as with standard Doppler 

interrogation (29). 

The main advantage of DTI 

information is that it is less load-dependant 

than standard Doppler. The assessment of 

early myocardial relaxation velocities 

provides an additional window on LV 

diastolic function in a manner 

complementary to evaluation of mitral 

inflow and PV flow patterns (37). 
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Thus, a cardiac cycle is represented by 

three waveforms  

1) Sa, systolic myocardial velocity above 

the baseline. 

2) Ea, early diastolic myocardial relaxation 

velocity below the baseline. 

3)  Aa, myocardial velocity associated 

with atrial contraction, below the 

baseline. The subscripts “a” for annulus 

or “m” for myo- cardial (Ea or Em) or 

the superscript “prime” (E′) are used to 

differentiate tissue Doppler velocities 

from the corresponding standard 

Doppler blood flow velocities(38).  

Normal values for é  at the medial 

mitral annulus are from 10 cm/s to 15 cm/s 

and those at the lateral annulus are from 15 

cm/s to 20 cm/s. The E-  peak velocity is 

higher than the A  velocity in normals and 

like the transmitral E wave, E-  decreases 

with age. E-  velocity is reduced in diastolic 

dysfunction but does not change with 

variations in preload (39). 

A normal ratio of E/é is <8. The ratio 

does not change with impaired relaxation 

as both E and é are reduced. As diastolic 

function deteriorates , the LA pressure 

rises causing an increase in E but no 

change in é. The E/ é  ratio continues to 

increase with the appearance of a 

restrictive pattern of transmitral flow 

caused by further increases in LA pressure. 

The E/ é  َratio has also been used to 

predict LV filling pressure. An E/ é  ratio < 

8 accurately predicts a normal mean LV 

end diastolic pressure (LVEDP) and an E/é  

ratio of >15 accurately predicts a mean 

LVEDP of >15mmHg. However, 

intermediate values of E/ é  are associated 

with a wide variation in mean LVEDP(40). 

Reduction in lateral Ea velocity less 

than 8–10 cm/sec is an indication of 

impaired LV relaxation. In contrast to 

standard mitral flow inflow patterns, Ea 

velocities tend to remain consistently 

reduced through all phases of diastolic 

dysfunction. In addition to assessing 

diastolic function, Ea velocities can be 

used to estimate LV filling pressures, to 

discriminate between constrictive 

pericarditis and restrictive 

cardiomyopathy, and to differentiate 

athlete’s heart from hypertrophic 

cardiomyopathy (HCM)  (41). 

Estimation of LV filling pressures: 

Several investigators have performed 

simultaneous cardiac catheterization and 

echocardiographic studies to estimate LV 

filling pressures using the ratio of the 

mitral inflow E-wave and the tissue 

Doppler Ea-wave. Different regression 

formulas have been proposed to calculate 

either LV end diastolic pressure (LVEDP) 

or pulmonary capillary wedge pressure. 

Perhaps more practical than specific 

regression formulae is the correlation with 

the ratio of E/Ea alone. E/Ea more than 

10–15  correlates with an elevated LVEDP 

(>12 mmHg).E/Ea less than 8 correlates 

with a normal LVEDP Fig. (4 & 5) (42). 
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Figure  (4) Diagnostic algorithm for the estimation of LV filling  pressures  in patients with 

normal ejection fraction (26) 

 

Figure (5)   Diagnostic algorithm for the estimation of pressures  in   patients with depressed 

ejection fraction (26). 
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(4 )  Color M-Mode 

Color M-mode Doppler imaging 

from the apical four-chamber window is an 

alternative method to relate mitral inflow 

to LV relaxation, again in a less load 

dependent manner than standard 

transmitral Doppler  The velocity of 

propagation of flow (Vp) from the LV base 

toward the apex is measured in early 

diastole. The slope of this flow signal is 

thought to represent the LV 

intraventricular gradient, influenced by 

active recoil (suction forces) and 

relaxation. This is accomplished by 

measuring the slope of the leading edge of 

flow (the transition from black to color) or 

an isovelocity line (e.g., the first aliasing 

velocity line). Normal Vp exceeds 55 cm 

per second. Vp less than 45 cm per second 

is thought to indicate impaired 

relaxation(43). 

Speckle tracking echocardiography 

Speckle-tracking echocardiography 

has emerged as a quantitative technique for 

evaluating myocardial function through 

analyzing the motion of speckles identified 

on 2-dimensional echocardiograms (44). 

It provides non-Doppler, angle-

independent, and objective analysis of 

myocardial deformation and left 

ventricular systolic and diastolic 

functions(8).  

By tracking the displacement of the 

speckles during the different phases of 

cardiac cycle, the strain and strain rate can 

be rapidly measured offline after adequate 

acquisition of images. Data regarding the 

accuracy, feasibility and clinical 

applications of speckle-tracking are rapidly 

accumulating (44). 

Speckle-tracking echocardiography 

provides semi-automated information of 

myocardial deformation in the 3 spatial 

directions: longitudinal, circumferential 

and radial. Also provides data of left 

ventricle (LV) rotation (45). 

Before the introduction of this 

sophisticated echocardiographic technique, 

only magnetic resonance imaging (MRI) 

had been used for analysis of the several 

deformation components that characterize 

myocardial dynamics (44). 

Although  speckle tracking was 

introduced for the analysis of LV function, 

its use has been extended to be applicable 

to other cardiac chambers, as right 

ventricle, left and right atrium (26). 

Terminology and Definition 

❖ Strain(ε) 

A measure that evaluates the degree 

of deformation of analyzed segment in 

relation to its initial dimensions and 

expressed as a percentage. The strain 

equation (ε) is as follows: 

ε = (L-L0)/L0 = ΔL/L0 

L; length of the object after deformation, 

 L0; the basal length of the object. 

Depending on the direction, 

lengthening or thickening deformation 

gives a positive value, whereas a 

shortening or thinning deformation gives a 

negative one (46). 
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❖ Strain Rate (ε′) 

The strain rate (ε′) represents the 

myocardial deformation in relation to time. 

It is expressed as seconds. Strain rate is 

less dependent on LV load variations than 

strain. However, because the strain rate 

signal is noisier and less reproducible, most 

of the clinical studies still use strain 

measurements ε`=Δε/Δt = (ΔL/L0)/Δt = 

(ΔL/(Δt)/L0 = ΔV/L0,  Where ΔV; is the 

velocity gradient in the segment 

studied(44). 

❖ Longitudinal Strain 

It represents myocardial deformation 

directed from the base to the apex. 

Through longitudinal strain analysis in 4-

chamber, 2-chamber, and 3- chamber 

views, regional and global strain values 

can be measured. Global longitudinal 

strain (GLS) has been validated as a 

quantitative index for global LV function 

(Fig.6). The same measurement can be 

applied to the analysis of myocardial 

deformation of the left atrium and right 

ventricle (15). 

❖ Circumferential Strain 

Represents LV myocardial fiber 

shortening along the circular perimeter on 

a short-axis view. Circumferential strain is 

represented by negative curves. Also, it is 

possible to obtain a global circumferential 

strain value (GCS) (Fig.7) (47).  

❖ Radial Strain 

Represents myocardial deformation 

toward the center of the LV cavity, 

indicating the LV thickening and thinning 

motion during the cardiac cycle. Radial 

strain values are obtained by speckle-

tracking analysis of basal, mid and apical 

LV short-axis views, radial strain is 

represented by positive curves (Fig.8) (48). 

❖ Left Ventricular Torsion/twist 

A component of the normal LV 

systolic contraction arising from the 

reciprocal rotation of the LV apex and base 

during systole. Left ventricular torsion is 

calculated as the net difference rotation 

between the apical and basal segments, Fig 

9 (26). 

 

❖ Untwisting 

Untwisting velocity is thought to be a 

critical manifestation of active relaxation, 

which makes it a relevant investigation for 

diastole and, mainly, isovolumic relaxation 

because it is less load dependent compared 

to other diastolic parameters (49). 
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Figure (6): Longitudinal strain acquired from AP4C, AP2C and AP3C AP4C: apical four chamber, 

AP2C: apical two chamber, AP3C: apical three chamber and GLS: global longitudinal strain 

(50). 

 

 

Figure (7): Circumferential strain acquired from SAX, PM level SAX PM: short axis, papillary muscle 

level (51). 
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Figure (8) Speckle-tracking echocardiographic analysis of myocardial deformation showing 

measurements of radial strain and circumferential strain (52). 

 
Figure (9) Graphic depiction of left ventricular rotational dynamics showing rotation of the cardiac 

base (left) and apex (right). In the bottom panel, a diagram of left ventricular (LV) torsion 

measurement is represented as the net difference between mean apical and basal rotation; 

AVC indicates aortic valve closure (44). 
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Clinical  

Applications: 

In general, speckle-tracking 

echocardiography allows further data of 

myocardial systolic and diastolic dynamics 

beyond traditional echocardiographic 

techniques (53). 

A. Hypertension: 

Arterial hypertension is an ideal 

model for assessing the changes in 

different varieties of deformation occurring 

hand in hand with the development of LV 

concentric geometry. 

This is a crucial issue because 

experiences using standard 

echocardiography have shown that 

impairment of mid wall fractional 

shortening of the circumferential fibers 

precedes the reduction of the LVEF. 

Speckle-tracking echocardiography has 

helped in the understanding that the 

interaction of the different deformations is 

much more complex. In particular, it seems 

that longitudinal and radial strain are 

impaired when circumferential strain and 

LV torsion is still normal, acting as a 

compensatory mechanisms to preserve a 

normal ejection fraction (EF) (54). 

B. Diabetes mellitus: 

In asymptomatic diabetic patients with 

normal LVEF, Speckle- tracking 

echocardiography can detect subclinical LV 

systolic dysfunction before the overt 

appearance of diabetic cardiomyopathy (55). 

C. Coronary Artery Disease: 

Recent studies reported that a lower 

longitudinal strain value in asymptomatic 

patients without wall motion abnormalities 

is a strong predictor of stable coronary 

artery disease. In acute myocardial 

infarction recent studies have showed that 

longitudinal strain is related to the levels of 

cardiac troponin T and to the infarct 

size(56).  

In addition, it has been shown that a 

cut off value of −4.5% for regional 

longitudinal strain discriminates between 

segments with a viable myocardium and 

those with transmural scar tissue on 

contrast-enhanced MRI, with sensitivity of 

81.2% and specificity of 81.6%(57). 

D.Heart Failure: 

Recent studies on heart failure with 

preserved ejection fraction have reported that 

LV longitudinal strain progressively 

deteriorates from NYHA class I to class IV, 

also LV radial and circumferential systolic 

impairment occurring in NYHA classes III 

and IV. Studies also showed that systolic 

twisting, torsion, and diastolic untwisting are 

significantly increased in patients with mild 

diastolic dysfunction (58). 

In heart failure with reduced ejection 

fraction a recent study has found global 

circumferential strain to be a powerful 

predictor of cardiac events (59). 

E. Identification of Subclinical 

Dysfunction During Chemotherapy 

Cardiac toxicity remains an important 

side effect of chemotherapeutic agents, early 

detection of cardiac injury is important 

because it may facilitate early therapeutic 

measures. Speckle-tracking 

echocardiography has been shown to reliably 

detect preclinical abnormalities in regional 

and global myocardial function (60).  

F. Mechanical Dyssynchrony: 
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CRT is an effective treatment option 

for patients with NYHA class II, III and 

ambulatory class IV heart failure patient 

with LVEF of ≤ 35% and QRS prolongation 

who remain symptomatic despite optimal 

medical therapy (61). 

However, about 30% of patients fail to 

show a satisfactory response to cardiac 

resynchronization therapy, and several 

studies have been made to recognize non 

responders before implantation. A variety of 

echocardiographic parameters to predict the 

response to CRT have been tested (62). 

In a multicenter trial, none of the 

conventional and tissue Doppler-based 

echocardiographic indices of dyssynchrony 

was shown to be a reliable predictor of the 

response to CRT (63). 

Prospective randomized trials for 

predicting the responders to CRT therapy 

by speckle tracking echocardiography are 

still lacking (64). 

G. Heart Transplantation: 

Recent study reported impairment in 

LV twisting, torsion, and untwisting rates 

in heart transplant recipients in comparison 

to age-matched controls and to patients 

underwent other types of cardiac surgeries 

Fig (10) 

 

 

Figure (10): Comparative representation of left ventricular twisting measurements in an age-matched healthy 

individual (left), a patient after non-transplant cardiac surgery (middle), and in a heart transplant (HTX) 

recipient (right). The ventricular twisting function appears strongly reduced after heart transplantation (65). 

 

H. Left Atrial Function: 

Preliminary data on of the peak atrial 

longitudinal strain suggested that arterial 

hypertension and diabetes have a major 

impact on LA function, even in absence of 

LA enlargement that further impairs LA 

performance in an additive manner 

Fig.(11) (66).  
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Figure (11): Left atrial function analysis by speckle-tracking echocardiography showing sample peak 

atrial longitudinal strain measurements in a healthy individual (A), a hypertensive patient (B), 

a diabetic patient (C), and a hypertensive and diabetic patient (D) with a preserved ejection 

fraction and no enlargement of the left atrium. Both hypertension and diabetes have a major 

impact on left atrial myocardial deformation. Coexistence of both conditions further impairs 

left atrial performance in an additive manner (44). 

Limitations of 2D speckle tracking: 

All speckle-tracking–derived 

measurements require more capability in 

image acquisition, obtaining correct 

endocardial border delineation, obtaining 

suitable echocardiographic views, 

interobserver and intra observer variability. 

Furthermore, it is not suitable in patients 

with non-sinus rhythms. And also the 

results depend critically on the machine 

with which the analyses are performed(67). 
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