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Abstract: 

The one oldest problem that modern mathematicians and scientists often face is locating the correct/required 

solutions of polynomial equations called zeroes (roots). Quadratic polynomials that are the low order 

polynomials of degree 2 present mathematical expression where roots in general represent parabolic curves. 

With growing number of advancements and necessities in real time application, such as defining bounds of a 

set, nature of roots and their relationship in real space, etc. root-finding processes of current days mostly focus 

on three fundamental issues, that is, definition of space, location of roots and their approximation aspects. 

These concerns are being worked and have been substantially facilitated by well-established algebraic 

theorems. Most importantly, most works discuss an approximation and solution for a single root. Graphing is 

a tried and true method for approximating roots like this one. This study is inspired by the need to better 

understand the relationship between root connectivity and its application in the rapidly developing field of 

regional mapping. To ensure the continued viability of lower order polynomial applications, such as quadratic 

polynomials, this study correlates the limitations and scope that root finding techniques present during practical 

processes with the requirements of specificity, identifying the power, and distinctiveness that are used to 

overcome these obstacles. Newton's method of rational mapping based on root finding is detailed here to back 

up the article's claims. Based on previous work in this field, this study demonstrates the benefits of Newton-

based rational mapping, highlighting its applicability to quadratic polynomials and its unique rigidity in 

dynamic settings. 
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1. Introduction 

The ability to solve a mathematical expression for 

zero is a fundamental skill acquired at an early 

stage of education. Algebraic methods can be 

employed to directly solve problems involving 

lines. When dealing with factorable polynomials, 

it is customary to factorize the polynomial 

expression and subsequently equate each factor to 

zero in order to determine the potential solutions. 

The primary objective is to determine one or 

multiple solutions to the given equation.  

 

Polynomials possess distinct characteristics as 

functions, owing to their very straightforward 

structure, which facilitates the determination of 

numerous precise properties. A fundamental aspect 

of root finding lies in determining the root 

multiplicity in a polynomial within a given space 

with the desired correctness. An essential notion in 

the realm of quadratic polynomials is the quadratic 

equation, which furnishes a mathematical 

representation that facilitates the computation of 

the roots of said polynomial. The term "root" in the 

context of polynomials refers to a special label 

assigned to a zero. 

 

The exploration of roots is integral to developing a 

comprehensive understanding of polynomials 

(Math Utah, 2000). A root of a polynomial f(x) 

∈T[x] is defined as d∈T that satisfies the equation 

f(d) = 0. Here, we should provide the fundamental 

divisibility condition on which the root finding 

systems are developed and extended as per 

necessities and further improvement processes.  

 

Condition:For (x-d), if it perfectly divides the 

polynomial f(x,) then we getd as a root of f(x). On 

the other hand, (x-d) does not divides f(x) 

completely, d is not a root of f(x).  

 

Proof:Polynomial f(x) is divisible by (x-d), then, 

condition f(x) = (x−d)h(x) and so: f(d) = (d−d)q(d) 

= 0·q(d) = 0. Thus, we can prove the mentioned 

condition. 

 

On the other hand, if the polynomial f(x) is not 

divisible by the polynomial x-r, then when dividing 

f(x) by x-d using the division with remainders 

method, a constant is always left as remainder. The 

function f(x) can be expressed as (x - d)q(x) + a. 

 

Extending to the condition of divisibility of 

polynomial of degree n, here we give the following 

condition. 

 

Corollary 1:A polynomial with degree k has a 

maximum of k distinct roots. 

Proof: Consider a set {𝑘1, . . . , 𝑘𝑛} consisting of 

distinct roots of 𝑓(𝑥). Here, we test the inequality 

condition𝑛 ≤  𝑘. According to the above 

divisibility condition, the function 𝑓(𝑥) can be 

expressed as (𝑥 −  𝑘1)𝑞1(𝑥), where d1 is a root. 

All the remaining roots must likewise be solutions 

of 𝑞1(𝑥), as 𝑓(𝑘𝑖)  =  (𝑘𝑖 −  𝑘1)𝑞1(𝑘𝑖)  =  0 

and 𝑘𝑖 −  𝑘1 =  0. In particular, assuming 

that𝑞1(𝑥) be defined as (𝑥 −  𝑘2)𝑞2(𝑥). By 

continuing this approach, the function f(x) can be 

represented as: 

𝑓(𝑥) =  (𝑥 − 𝑘1)𝑞1(𝑥) 
      =  (𝑥 − 𝑘1)(𝑥 − 𝑘2)𝑞2(𝑥)  = ···  

      =  (𝑥 − 𝑘1) ··· (𝑥 − 𝑘𝑛)𝑞𝑛(𝑥) 

 

Therefore, it follows that 𝑛 ≤  𝑎. Certainly, it is 

possible for a polynomial of degree a to possess 

fewer than a roots. Here, we can see the 

multiplicity of root within a defined space is 

important to be determined to make use of them in 

real time purposes. More explicitly, let us say that 

we wish to determine the discs of radius ε in the 

complex plane C, such that each disc contains 

precisely one root of the polynomial function 

𝑓(𝑧),𝑧𝐶 and ε is sufficiently small and greater 

than zero. In practice this question poses difficulty 

in root finding methods and lead to erroneous 

outcomes if not placed under suitable conditions. 

 

The bound as mentioned above with specific bits 

of precision is actually necessary to approximate 

each root in the context of the problem. The 

aforementioned bound exhibits a direct 

proportionality with the polynomial's unique roots 

count and the logarithms of the ratios between the 

smallest and largest root differences, the largest 

root, and the largest coefficient (Clark & Cooper, 

2018).We can give an approach to examine the 

smaller orbit, sayPα of a pointα that was presented 

by McMullen and Sullivan (1998) in the work they 

did on the dynamics of homomorphic maps. They 

found: 

 

𝑃𝛼 = {𝑠 ∈ ¯ 𝑄; 𝑓°𝑙(𝑠) = 𝑓°𝑙(𝛼)for some𝑛 ∈  𝑍 ≥
0} 

 

The set Pα is considered to be infinite, provided α 

is a super-attractive fixed point of degree d. To 

establish a diophantine equivalent that adheres 

more conventionally, Pα can be defined as the 

collection of "torsion translations" of α occurring 

within the dynamical system linked to f. As an 

illustration, within the conventional framework of 

the multiplicative group G, an element x belonging 
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to αμ∞ (where μ∞ denotes the group of roots of 

unity) fulfils the condition xl = αl for a positive 

integer l. 

 

Now, let us move to the main type of polynomials 

that is the quadratic polynomials whose roots, their 

characteristics and conditions of mapping based 

application areas are discussed. Suppose t, k, and c 

be three numbers. Think about the formalsum 

tx2+kx+c(UtahEdu, 2018).  

 

Assume that t  0.This formal sum is referred to as 

a quadratic polynomial within an intermediate x. 

Let's say t =0 and k 0.This formal sum is referred 

to as a linear polynomial within an intermediate x.  

Assume a=b=0.This formal sum is referred to as a 

constant polynomial. 

 

Note: A particular example of certain more general 

things known as polynomials with one 

indeterminate is a formalsum tx2+kx+c. 

 

Roots of quadratic equationare 𝑥 =  (−𝑘 ±

 −√𝐷)/2𝑡, where 𝐷 =  𝑘2 –  4𝑡𝑐. 

We include here the validation on the relationship 

between coefficients of quadratic polynomial and 

its roots.  

 

Condition: Let 𝑡, 𝑘, 𝑐 be real numbers, that hold 

a𝑡 ≠ 0. Suppose𝑡a number such that𝑓(𝑥) be the 

quadratic polynomial where𝑓(𝑥) = 𝑡𝑥2 + 𝑘𝑥 + 𝑐. 

(a) Assume that𝑡 is a solution of 𝑓(𝑥). Suppose𝛽 =

−
𝑘

𝑡
− 𝑡. Then the statement below holds: 

I. 𝑓(𝑥) = 𝑡(𝑥 − 𝛼)(𝑥 − 𝛽)as polynomial. 

II. 𝛽is a root of 𝑓(𝑥). 

III. 𝛼𝛽 =
𝑐

𝑡
. 

 

(b) We can say∆𝑓= 𝑘2 − 4𝑡𝑐. Here,∆𝑓is called the 

polynomial 𝑓(𝑥)’s discriminant. In this case, 

statement holds as shown: 

I. 𝑓(𝑥) = 𝑘[(𝑥 +
𝑘

2𝑡
)

2
−

∆𝑓

4𝑡2]is considered as 

polynomials. (The equality condition is 

referred as ‘completing the square for the 

quadratic polynomial 𝑓(𝑥)’. ). 

II. Assume∆𝑓≥ 0. Define 𝑡± =
−𝑘±√∆𝑓

2𝑡
 

respectively. Then 𝑓(𝑥) = 𝑡(𝑥 − 𝑡+)(𝑥 −
𝑡−) as polynomial. 

III. Now Suppose ∆𝑓< 0. Define 𝜁 =
−𝑘+𝑖√−∆𝑓

2𝑡
 

respectively. Then 𝑓(𝑥) = 𝑡(𝑥 − 𝜁)(𝑥 − 𝜁) 

as polynomial. 

 

Remark. Theorem (1) states that every real-

coefficient quadratic polynomial f(x) possesses 

two roots and can be reduced to linear polynomials 

through factorization. Furthermore, when the pair 

of roots involved are α and β, and the polynomials 

f(x) are defined as ‖ 𝑓(𝑥) = 𝑡𝑥2 + 𝑘𝑥 + 𝑐, then 

𝛼 + 𝛽 = −
𝑘

𝑡
 𝑎𝑛𝑑 𝛼𝛽 =

𝑐

𝑡
.. 

Furthermore, regarding the quadratic equation 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0_____(∗) 

 

There are precisely three mutually exclusive 

possibilities when x is undetermined (CUKH, 

2020): 

1) We assume that∆𝑓> 0. Consequently, there are 

precisely two unique solutions to the equation 

(*) using the real numbers. 

2) We assume that∆𝑓= 0. Consequently, there is 

precisely one repeated solution to the equation 

(*) among the real numbers. 

3) We assume that∆𝑓< 0. Subsequently, the 

equation (*) yields precisely two solutions, both 

of which are complex conjugatives of the 

complex number (with the exception of real 

numbers). 

 

Regardless, among the complex numbers, there 

exists at least one solution to the equation (*). 

This research is a venture to emphasize on root 

connectivity and their application in region 

mapping which is a growing field of interest 

nowadays. The research relates the constraints and 

scope that the root finding techniques pose while 

they are used in practical processes and 

accordingly, the need of specificity, identifying 

power and distinctiveness that are being used to 

overcome the hurdles of root localization and 

optimization ensuring the vitality of lower order 

polynomial usages, such as quadratic polynomials 

that we focus in this research. Instances of 

Newton’s root finding based rational mapping 

approach is discussed as a justification of 

objectives of this article.On the basis of existing 

advancements as achieved in this area, the research 

highlights the advantages of Newton based rational 

mapping as workable for quadratic polynomials 

and distinctive in its dynamic rigidity(Legrain, 

2013). 

 

2. Background of the Study 

Determining the roots (zeroes) of polynomial 

equations remains a longstanding challenge that 

persists among contemporary scientists and 

mathematicians. Mathematicians found that 

fundamental knowledge about the characteristics 

and locations of the roots was necessary when they 

came upon the polynomial root-finding problem 

(O'Daniel& Ray, 2006). 
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The formulation of foundational algebraic 

theorems such as those proposed by Descartes and 

Sturm provided analysts with information 

regarding the number, nature, and position of real 

roots. These theorems can provide the necessary 

backing to locate a polynomial's roots. Established 

algebraic theorems have greatly aided in the 

polynomial solutions of three fundamental 

problems. The works of discrete space based root 

finding is particularly a subject that is widely 

evolved based on its practical applications and 

purpose of enhancing accuracy. 

 

Combinatorial entities known as maps, ribbon or 

embedded graphs, describe the manner in which a 

graph is embedded in a surface. These objects have 

garnered significant attention from diverse 

perspectives due to their profound associations 

with discrete mathematics, algebra, and physics. 

Maps possess notable enumerative characteristics, 

and the process of enumerating maps has become 

a well-established field in its own right. This 

enumeration can be achieved by several 

approaches such as generating functions, matrix 

integral techniques, algebraic combinatorics, or 

bijective methods (Chapuy, 2017). 

 

It is essential to acknowledge the foundational 

principles of the classical Fatou-Julia theory in 

complex dynamics, which are expounded upon in 

the works of P. Blanchard and J. Milnor. These 

works function as sources of reference for the 

Fatou-Julia theory and contribute to the 

understanding of fundamental concepts such as 

polynomial mapping, distinctiveness in root 

localization, and connectivity. In brief, consider 

the rational map(𝑧) = 𝑃(𝑧)/𝑄(𝑧), which maps the 

extended complex plane onto itself. Here, (𝑧) and 

(𝑧) are polynomials that do not share any common 

factors. 

 

A point M is referred to as a fixed point of the 

function R if 𝑅(𝑀) equals M, and the multiplier of 

the function R at a fixed point M is denoted by the 

complex number 𝐿(𝑀)  =  𝑅′(𝑀). 
 

The behavior of a fixed point is determined by the 

value of the multiplier. It can be classified as super-

attracting when the multiplier’s absolute value is 

zero (|𝐿(𝑀)| = 0), attracting when the 

multiplier’s absolute value is between zero and one 

(0 < |𝐿(𝑀)| < 1), repelling when the multiplier’s 

absolute value becomes more than one (|𝐿(𝑀)| >
1), or indifferent when the multiplier’s absolute 

value equals to one (|𝐿(𝑀)| = 1). 

 

Let 𝑧0 denote a stationary point in 𝑅𝑛 that does not 

exhibit stationarity in 𝑅c for any value of cwhere 

0 < 𝑐 < 𝑛. The set 𝑜𝑟𝑏(𝑧0) can be defined as 

{𝑧0, 𝑅(𝑧0), … , 𝑅𝑛 − 1(𝑧0)}, which is referred to 

as a n-length cycle or more commonly called, an n-

cycle. It should be noted that the orbit of 𝑧𝑗 is equal 

to the orbit of 𝑧0, denoted as 𝑜𝑟𝑏(𝑧𝑗) = 𝑜𝑟𝑏(𝑧0), 

for every 𝑧𝑗 belonging to the orbit of 𝑧0. 

Additionally, the group action R operates as a 

permutation on the orbit of 𝑧0. 

 

The multiplier of an n-cycle is denoted as 

𝐿(𝑜𝑟𝑏(𝑧0))  =  (𝑅𝑛)′(𝑧0), where L is a complex 

number.At every point 𝑧c in the cycle, the 

derivative (𝑅𝑛)′ exhibits uniformity in its value.A 

cycle {𝑧0, 𝑧1, … , 𝑧𝑛 − 1} with 𝑛 elements is 

classified as attracting, resisting, or indifferent 

based on the value of the corresponding multiplier, 

following the same rules as well-located points. 

 

The Julia set of a rational map R, written as J(R), 

refers to the closure of the set of repelling periodic 

points. The complement of the Fatou set (𝑅) is 

denoted as its complement. If 𝑧0 is an attractive 

fixed point of R, then the area of convergence (𝑧0) 

is a subset of the Fatou set and the Julia set 𝐽(R) is 

equal to the topological border ∂(𝑧0). 

 

The relationship between the global dynamics of 

Newton's method when applied to complex 

quadratic polynomials and the dynamics of the 

function z 7→ z^2 is consistently shown to be 

conjugate, as previously seen in the early studies 

conducted by E. Schröder and A. Cayley. It was 

also noted by the researchers that this seemingly 

straightforward scenario ceases to hold when 

Newton's method is employed on polynomials of 

higher degrees. In such cases, the demarcation 

lines separating a number of basins comprising 

attractionsthat attracts fixed points (often referred 

to as the Julia set) exhibit, in general, complex and 

convoluted topological properties. 

 

Here, we define the Newton’s rational map 

as(Amat et al., 2020): 

Consider the function𝑚 ∶  𝐶 →  𝐶, which can 

either be a 𝑝 >  2degree polynomial or a complete 

transcendental map. A transcendental map as a 

whole refers to a map of holomorphic type on the 

complex plane C that possesses an essential 

singularity at infinity. The method devised by 

Newton, commonly known as the Newton map 

corresponding to function m, is formally defined as 

𝑁 =  𝑁𝑚 ∶=  𝐼𝑝 −  𝑚/𝑚′. 
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The comprehension of the topological properties of 

the Julia set resulting from the application of 

Newton's technique workable on polynomilas or 

whole transcendental functions is of academic 

importance, as it provides insights into 

holomorphic dynamics and presents intriguing 

numerical implications [HSS01]. One of the 

concerns that has garnered significant interest over 

a considerable period of time is whether the stable 

components of the approach, such as the basins of 

attraction of the attractive fixed points, exhibit 

simple connectivity. It has been established that the 

answer is indeed positive as a consequence of a 

broader theorem, the demonstration of which is 

expounded upon in the works of Shi (2009), FJT 

(2008, 2011), BT (1996), and BFJK (2014b).  

 

Exact zeros of the function g constitute the finite 

fixed points of the set N. Moreover, it is important 

to highlight that each of these locations exhibits an 

appealing quality, as indicated by the modulus of 

the derivative of N being less than 1 at these 

specific positions. Undoubtedly, in the case where 

the root of function g corresponds to a simple 

function, the fixed point of function N becomes 

super-attracting, since the derivative of N equals 

zero. 

 

Determining whether N is a rational map and 

possesses holomorphic properties on the Riemann 

sphere Cb is possible if g is a polynomial of degree 

p> 2. It is easily verifiable that the point at infinity 

functions as a repulsive fixed point of N in this 

specific scenario. When N signifies the Newton 

map of a complex plane transcendental function g 

that is defined in its entirety, then N can be 

categorised as a meromorphic transcendental 

function.  

 

In this classification, the singularity at infinity is 

considered to be an essential singularity, except in 

cases where g(z) can be composed as the product 

of a polynomial P(z) and an exponential function 

exp(Q(z)), where P and Q are polynomials. In such 

cases, N can be classified as a rational function. In 

this particular instance, the point at infinity serves 

as a parabolic curve of N fixed points, exhibiting a 

derivative of 1. In both instances, it can be 

observed that all finite fixed points of N exhibit an 

attractive characteristic. 

 

Given figure below is the dynamic plane of 

Newton’s method for a polynomial and 

transcendental map as a whole. 

 

 
Figure 1: Dynamic plane of Newton’s method for 

a polynomial and entire transcendental map 

(Source: BARANSKI et al. (2018) 

 

3. Related Works 

In this section, a neatly sorted latest review on 

scholarly works is presented that particularly 

highlight the existing progress in root finding and 

error corrections of quadratic polynomials are 

broadly discussed.  

 

Reid O’Connor & Norton (2022), in their survey 

based analysis on the growth of understanding on 

quadratic polynomials and their purposes in 

mathematical applications revealed that challenges 

related to fundamental ideas, specifically algebraic 

conventions hindered the students' ability to 

comprehend and manipulate quadratic equations. 

The analysis of student errors has unveiled 

fallacies concerning the fundamental properties of 

quadratic equations and the null factor law. The 

present study hypothesised that the observed 

results might be ascribed to the limited time 

allotment for instructing quadratic concepts, as 

explicitly outlined in the implemented curriculum. 

The results of the study indicated that the 

incorporation of the Australian Curriculum: 

Mathematics F-10 did not significantly promote 

the development of these children's conceptual 

understanding or procedural competence in 

fundamental mathematical principles. 

 

Yuksel (2022) presented a computationally 

efficient and numerically robust algorithm for the 

determination of real roots. The research defined 

the intervals over which the provided polynomial 

function exhibited monotonic behaviour. The 

algorithm utilised a robust variant of Newton's 

iteration method to locate the real root within each 

interval. This approach ensures both fast and 

guaranteed convergence, while also achieving the 

specified error constraint within the limitations 

imposed. Furthermore, the approach for cubic 

polynomials demonstrated superior accuracy and 

efficiency compared to both the analytical solution 

and the direct use of Newton iterations. The 

process of extending polynomials to arbitrary 

degrees. 
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CernaMaguiña et al., 2020(2020) presented some 

results of large prime numbers (consisted of 

millions of digits) as factors by using quadratic 

polynomials justifying the purpose of such 

approach as an endeavor to produce large prime 

number fast and easily by means of factorization of 

polynomials. Their research provided supporting 

theories that provided a way of building up 

factorization problems of quadratic polynomials 

that can produce large prime number tending to 

infinity. 

 

Marklof&Yesha (2019) discussed that by 

imposing explicit Diophantine conditions on the 

coefficients of polynomials of degree two, 

convergence of the averaged pair correlation 

density can be guaranteed. The boundary is 

consistent with the attributes of the Poisson 

distribution. The utilisation of integer-valued 

quadratic polynomials as energy level 

representations in a particular class of integrable 

quantum systems provides additional evidence in 

favour of the Berry-Tabor conjecture, which is a 

concept under the umbrella of quantum chaos 

theory. 

 

Ayad et al. (2000) presented the possibility of 

irreducibility in quadratic polynomials in a field 

with characteristic p >=0 where their coefficients 

resided in the same field. Additionally, the 

researchers could painstakingly establish the 

stability of polynomial f(X) = X2 – X + 1 in Q.The 

researchers agreed of the elementary level that 

their research outcome could serve in proving the 

stability of quadratic polynomials over number 

fields, with particular emphasis on the rational 

field and finite fields of characteristic p >=3. 

 

4. Conceptualization and Methodology 

The base of this research is motivated on grounds 

of finding the iterative roots by constructing 2-

dimensional polynomial mapping framework. In 

practice, 2-dimentional polynomial mapping is 

difficult to construct and needs refinement to 

improve the convergence towards the desired root 

is an interval. Degree-preserving mappings are a 

unique class of two-dimensional map of 2-degree 

polynomials that were discovered in Chenetal. 

(2009). 

 

The polynomial mappings of this class exhibit a 

degree of less than two when subjected to 

repetition. In the classroom, symbolic 

computations are illustrated through a 

straightforward examination of two-dimensional 

homogeneous polynomial mappings. Each 

mapping containing quadratic iterative roots in 

polynomial form is identified. The general 

expression for two-dimensional quadratic 

homogeneous polynomial mappings is as follows: 

Fl:[
𝑥
𝑦][

𝑚1𝑥2 + 𝑚2𝑥𝑦 + 𝑚3𝑦2 
𝑝1𝑥2 + 𝑝2𝑥𝑦 + 𝑝3𝑦2

] 

Where, l = (l1,l2); l1 = (m1, m2, m3) and l2 = (p1, 

p2, p3) and mi,piC for i = 1, 2, 3. See that the 

iterative roots of Fl are of quadratic polynomial 

form(Yu et al., 2012). 

 

To obtain more insight on the role of degree-

preserving attributes in polynomial mapping and 

optimization in the convergence in a specified set, 

we explored a few practical analyses on Newton’s 

iteration mapping in rational space and emphasize 

on its parameter and dynamic rigidity features that 

in turn are effective in providing distinctive local 

connectivity.  

 

As per the work of Drach& Schleicher (2022), a 

rational function's Newton map differs 

significantly from apolynomial's in several key 

aspects. Perhaps the most evident fact is that NR 

can possess a finite number of additional fixed 

locations, which correspond to the poles of R. For 

the same reason, the degree of NR may vary further 

than the number of unique roots of R, which is an 

additional variance. In fact, the degree of NR is also 

indicated by the number of distinct poles in R. 

 

The approach is considered feasible to explore 

because while dealing with finite elements and 

curved borders, polynomial mapping method is the 

most popular. As shown in the illustrative example 

provided by Lagrange (2013), if a model element 

is examined on I that is mapped onto a physical 

element Te, and has local coordinates ξ = (u, v). A 

transformation υ is defined in this instance. 

 

The example below shows the relationship 

between the reference element and the actual 

space.  

 

 
Figure 2: General Visualization of Quadratic 

Polynomial Mapping  

(Source:Legrain (2013)) 
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When isoparametric finite elements are utilised, 

this polynomial transformation is constructed 

using the identical shape functions that are applied 

to approximate the unknown field. For low order 

finite elements with a regular node distribution—

such as linear, quadratic, or even cubic—this 

method is frequently employed. There, Newton’s 

mapping is believed to serve the purpose. 

 

As stated in the work of Drach& Schleicher (2022), 

Principle of rational rigidity: dynamical version 

can be explained as: 

 

By employing symbolic dynamics, it becomes 

possible to distinguish each point z in the orbit of 

the Julia set from every other point z' in the 

dynamics of a given polynomial Newton map. In 

contrast, renormalizable Newton dynamics permits 

the inclusion of a non-rigid embedded polynomial 

Julia set comprising the two points z and z'. 

 

It is stated in this passage that the area of 

renormalization is renormalizable when the 

Newton dynamics is renormalizable and its Julia 

set (called a little Julia set) is quasiconformally 

analogous to the given polynomial Julia set; 

therefore, the first one has its roots embedded in 

the latter. 

 

For example, if we want to prove rigidity, we may 

say that any two polynomials whose Julia sets are 

combinatorially indistinguishable are already 

quasiconformally conjugate since they have the 

same Julia sets. For polynomial spaces that 

translate polynomials beyond quadratic, local 

connectivity of the connectedness locus is false. 

However, there are particular cases in which this 

rigidity hypothesis holds true, such as when the 

underlying polynomial dynamics is not 

renormalizable. However, we offer a comparable 

rigidity principle for parameter spaces of rational 

maps, which we call the "rational rigidity concept 

in parameter space version." 

 

5. Findings and Discussion 

Based on the fundamental relationship between 

Julia set and Newton’s mapping, we studied a few 

theoretically justified and experimentally 

established propositions that provided us valid 

justification that all Newton maps representing the 

Julia sets are comprised of closed curves.The 

primary objective of Newton's method is to 

determine the solutions or roots of a given 

polynomial function, denoted as pol (that is 

supporting for quadratic polynomial). Every root 

serves as an attractive fixed point Npolfor a given 

function, and the set of points whose orbits 

converge to these roots can be referred to as the 

basins of roots. The dynamics inside the basins is 

therefore comprehensively understood, therefore 

making it more intriguing to examine their 

complement (Drach& Schleicher, 2022). 

 

Let Npol be a polynomial Newton map of degree 

m>=2. For each point zC, it may be inferred that 

at least one of the following possibilities is valid: 

 

The variable z is a member of the basin of 

attraction of a root of the polynomial pol.The fiber 

of z is trivial. 

The element z is a member ofNpol, or is associated 

withNpol, the filled Julia set of Renormalizable 

dynamics, which is a subset of the polynomial-like 

restriction of with a connected Julia set. 

The above theory is extended to work along with 

the following corollaries(Drach& Schleicher, 

2022):   

 

Corollary 1:If a Newton map is conformally 

conjugate to a polynomial, then its Fatou set is 

denoted as A∗A, where A∗ represents the totally 

invariant attracting domain corresponding to a 

super-attracting fixed point. 

 

Proof:It follows that no subsequence of wss1 can 

be contained entirely within a single component of 

the Fatou set, and we assume as much without 

sacrificing generality. As a result of this 

assumption, the sequence {ws}s≥1 leaves any 

given component of F(Np1eq1)infinite time. Given 

the Julia set's local connectedness, there are only 

infinitely many spherical components of 

F(Np1eq1) with radius greater than any given > 

0.We're about to solve that. Sooneror later, points 

of {ws}s≥1 leave any Fatou component of Np1eq1 

with spherical diameter≥ k. Keep in mind that for 

all sufficiently big numbers, the sphere distance 

between (ws) and (ws) is smaller than k, where ws 

is any point on the border of the component where 

ws is placed, in particular, ws is located on 

J(Np1eq1). Totally in agreement, wsw as s. Since 

is continuous on J(Np1eq1), the thenws converges 

to the samew. 

 The concept being described involves the 

combination of two unchanging domains that 

attract, which correspond to two finite fixed 

points that also attract. 

 The Fatou set can be described as the 

amalgamation of an infinite number of 

components, with each component being 

characterized by its property. 
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 The Julia set is a closed curve that exhibits self-

intersecting properties. The entirely invariant 

attracting domain corresponds to a finite 

attractive fixed point. In this particular scenario, 

it can be observed that the Julia set exhibits the 

characteristic of being Jordan Curve. 

 

Corollary 2: The local connectivity of Newton 

refers to the degree of connectedness within a 

specific region or neighborhood surrounding a 

point in the context of Newton's method. The topic 

of interest is the general case of Julia sets. For 

every Newton map of a certain degree, the Julia set 

is locally connected, given that every polynomial-

like restriction of the map can be transformed into 

a polynomial in a specific manner. 

 

The corollary presented herein establishes the local 

connection of Julia sets of Newton maps in 

numerous non-trivial instances. As an illustration, 

the set in question encompasses all polynomials 

lacking bounded Fatou components, hence 

encompassing numerous instances of polynomials 

exhibiting non-locally connected Julia sets. 

Additionally, it encompasses all polynomials that 

are geometrically finite. The aforementioned 

polynomials exhibit Julia sets that are locally 

connected, indicating that a significant portion of 

their Fatou components are relatively tiny, as per a 

widely recognized criterion for assessing the local 

connectedness of sets. 

 

The original version of the Fatou-Shishikura 

inequality, as mentioned earlier, examines the 

relationship between the quantity of non-re Since 

then, there has been a development of some kind 

of art that encompasses increasingly dynamic 

characteristics in this inequality, particularly for 

polynomials. For example, the sum of the repelling 

periodic orbits that are not landing places of 

periodic dynamic rays can be combined with the 

total number of non-repelling orbits, as well as the 

count of wandering triangles (which are sets of 

three rays that converge to a point that is not finally 

periodic). 

 

Now, to signify the importance of lower degree 

polynomial in Newton’s rational mapping, relevant 

theory states that: 

 

The Newton map of a rational function has been 

determined to be a rational map of degree two or 

greater. If solely if all of N's fixed points are 

straightforward and if all but one of their 

multipliers are of the form p/q, where p is an 

element of the set of natural numbers excluding 0, 

and q is an element of the set of natural numbers, 

such that the absolute difference.Furthermore, it 

can be shown that every finite fixed point of the set 

of natural numbers N, with a multiplier p q, can be 

classified as either a root (in the case where p is 

less than q) or a pole. 

 

Agreeing with the validation as established by 

Monard (2017) theoretically that the number of 

unique roots of polynomial p is equal to the degree 

of the Newton map, ignoring multiplicities. The 

Julia set, indicated by the symbol J(f), of a Newton 

map Np of degree 2 is commonly known to take 

the shape of a quasi-circle that extends to infinity 

(∞). Notably, if the polynomial has a degree of 2, 

the Julia set becomes a straight line. Additionally, 

the two regions that are not part of the Julia set are 

referred to as the basins of the two roots. 

 

If we compare two practical applications, we 

provide two methods of boundary  

 

Method 1:For any w in J, the set of n in ∪
𝑛𝑁𝑃𝑐 − 𝑛(𝑤)is dense in J. The approach, 

therefore, involves two steps: (i) selecting a point 

w0 from J, and (ii) iteratively computing the pre-

images P−n c (w0). 

 

Disadvantage to Improve: The primary limitation 

of the previous method is its attempt to accurately 

represent the chaotic character of Julia sets, which 

is not compatible with the  

 

Method 2:It is derived from the discovery that for 

a function of the form Pc(z) = z^2 + c, tending to 

infinity is a super-attracting point. This implies the 

existence of a positive radius R such that the set U 

= ˆ C \ DR(A preliminary analysis also 

demonstrates that the function R = max(2, |c|)The 

technique then proceeds as follows: Fix a huge 

number Nmax (let's say 500). 

 

Procedure:Instead than placing emphasis on the 

border itself, here attention is directed towards 

seeing the set of points denoted as APc (∞) in the 

most accurate manner possible. This is achieved by 

calculating, for each point of a particular grid, the 

escape rate. This Newton map is occasionally 

referred to as the filled-in Julia set.Another 

advantage of Method 2 over Method 1 is that, for 

polynomials of degree more than 2, it becomes 

challenging (Monard, 2017). 

 

The Newton map visualization in Filled-in Julia set 

is given below: 
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Figure 3: Visualization of Filled-in Julia Set, that is Newton Rational Mapping 

(Source: Monard, 2017) 

 

6. Conclusion 

The utilization of Newton maps, we far as it is 

explored theoretically and in practical 

implementations has the potential to yield more 

comprehensive mapping outcomes compared to 

those derived just from generalized polynomial 

mapping. To put it another way, the orbit of a point 

can be distinguished from all other orbits in 

combinatorial terms, or it will converge to the 

filled-in form of Julia set that displays polynomial-

like rigidity matched with the original map. 

Newton maps, as they exhibit the patterm of 

transcendental whole functions are an example of 

the natural class of rational maps that deserve 

attention. Dynamics of rational Newton maps may 

be shown to be very similar to the dynamics of 

polynomial Newton maps, particularly 

polynomials of low degrees, that is quadratic or 

cubic (Here, we provide a distinctive root finding 

justification and its use when quadratic 

polynomials are used in a small bounded space). 

The mapping shows an exception that the infinity 

point is no longer a repelling but fixed point. So, 

with Newton mapping of lower order polynomials 

when they are worked in a small space of natural 

numbers shows clear evidences of dynamic rigidity 

providing fixed location of roots accurately. 
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