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Abstract 

Detection of landslides is an important part of disaster management, as it permits the 

government to act swiftly to reduce the damage resulting from landslides. The possibility for 

landslide detection to save lives, maintain ecological balance, and optimize the use of limited 

resources and physical infrastructure is enormous. If government officials are able to spot 

landslides early on, they can take steps to lessen their impacts. Manual monitoring is commonly 

used in traditional landslide detection techniques, but this takes time and a lot of manpower. In 

contrast, AI-based landslide detection has significant benefits over conventional techniques. 

Because AI algorithms are capable of processing vast amounts of data in real-time, they can be 

used to detect and respond to landslides much more quickly. This literature review looks at 

how AI can be used to analyse satellite images for detecting landslides. Landslide-prone 

locations can be identified with the help of AI, which can scan massive volumes of satellite 

imagery data, segment the data, and extract the features that are important. Several artificial 

intelligence (AI) methods, such as Machine Learning (ML) and Deep Learning (DL) 

algorithms, are discussed in this paper. Several challenges associated with putting an AI model 

to work on satellite images are also covered. In conclusion, this study is going to be of interest 

to scholars and practitioners in the fields of disaster management and geospatial analysis since 

it gives helpful insights into the implementation of AI algorithms for landslide identification.  

Keywords— Landslide, Satellites, Remote Sensing, Machine Learning, Images, Radiometric, 

Neural Network, Class Imbalance. 

I. INTRODUCTION  

A landslide is simply the downward 

movement of rock, rubble, or earth caused 

by gravity. It is a catastrophic natural 

phenomenon in hilly areas of the Indian 

continent and other parts of the world. When 

this occurs, the consequences for buildings, 

houses, and people can be severe. 

Landslides are dangerous natural hazards in 

hilly areas, therefore identifying them early 

and estimating the damage they cause to 

property and infrastructure has been an 

intriguing problem.  
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Geological hazards (debris flows 

and landslides) have risen in frequency and 

intensity in recent years as a result of climate 

change, earthquakes, and rising urbanization 

[1]. Landslides are a widespread danger in 

sloped terrestrial landscapes in metropolitan 

areas, along traffic corridors, and at rural 

industrial sites [2,3]. From January 2004 

to December 2016, 4862 different 

landslides claimed the lives of 55,997 

individuals, as recorded by the Global Fatal 

Landslide Database (GFLD). 

 

Figure 1. Landslides across the globe (2004 

to 2016) [4]. 

Figure 1 depicts the uneven 

distribution of landslides, with Asia 

accounting for 75% of all landslides. 

Mountains, cliffs, and even the ocean floor 

can all experience landslides due to their 

varying degrees of steepness or gentleness. 

Landslides typically result from geological 

factors such as weathered rock, fissured, 

sheared, or bonded rock substance, 

contrasted soil elements, and poor rock 

adhesiveness [5]. Landslides are also caused 

by deposition and weathering, as well as 

other types of erosion down a slope, such as 

water, fluvial, wave, and glacier erosion [6]. 

Gravity is the main force behind a landslide. 

Many landslides occur as a result of external 

forces such as rain or earthquakes, or as a 

result of human operations that expose the 

ground, such as excavating a slope for a 

road. 

A. Importance of landslide detection 

This area of study has altered its 

focus to answer this important need, as 

landslides cause deaths and injuries on 

roadways in many regions of the world 

every year. Urban planners and risk 

managers can benefit greatly from more 

advanced landslide detection technology. 

The second most lethal natural disaster after 

earthquakes and tsunami is landslides. Most 

landslide area (66.5%) is located in the 

Indian subcontinents, specifically in the 

Northwest Himalayas (Himachal Pradesh, 

Ladakh, Jammu & Kashmir, and 

Uttarakhand) [7]. Urban planning must take 

into account the detection of both active and 

inactive landslide locations, as well as the 

identification of risk-prone zones. Due to the 

importance of researching the level of 

activity and spatial distribution of landslide 

processes, landslide detection is a crucial 

step in improving land management, urban 

design, and then safe occupation in 

mountainous regions for such natural 

dangers.  

Accurate forecasts and warnings are 

necessary to prevent material and human 

losses. When preparing for and responding 

to natural disasters, knowing what triggers 

landslides and how to mitigate their effects 

is crucial. Size, form, and surface 

morphological changes make identifying 

landslides a difficult and complex task. The 

topic of how to rapidly and reliably identify 

landslides and anticipate their occurrence 

remains unanswered, despite the fact that 

various approaches have been offered. 

Using satellite images in conjunction with 

Geographic Information Systems (GIS) and 

on-the-ground investigations, the 

geomorphological circumstances under 

which historical disasters occurred can be 

correlated to expected future ones [8]. 

Remote sensing is widely employed for 

collecting features along with exposing 

landscape modifications, the factors causing 

the landslide, and the procedure of recovery. 

Because of this, exciting new possibilities 

for early prediction, identification, and 

assessment of tectonic or climatic natural 

hazards with potential economic, social, and 

environmental repercussions have opened 

up thanks to advancements in information 

processing technologies and AI. This survey 

looks at ways to identify landslides in 

satellite images using AI techniques.  
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II. PROCESS FLOW 

The conventional method for 

detecting and mapping landslides is field 

investigations, which are part of the 

geomorphological analysis. Old landslides 

are challenging to spot with this strategy. 

AI-based autonomous landslip detection is 

crucial for preventing this. As a whole, the 

experimental procedure has six stages. First, 

samples of landslide images were prepared 

from the satellites. Second, the obtained 

images underwent preliminary processing to 

strip out the irrelevant information. Third, 

segmentation is performed after the images 

have been processed, and there are four 

different segmentation techniques are 

available. Fourth, methods such as spectral 

analysis, textural analysis, shape analysis, 

and topographical analysis are used to obtain 

the crucial features from the segmented 

images. Fifth, AI models based on ML or 

DL were employed to identify landslides. 

Finally, the effectiveness of the 

landslide detection model was assessed. In 

Figure 2, we can see the full experimental 

setup used for automatic landslip detection.  

 

Fig. 2. Flow of Landslide Detection using AI 

III. DATA Acquisition 

Landslides can be detected from 

satellite images using a variety of publicly 

available databases. Some of the datasets are 

detailed below 

The Bijie landslide dataset [9] 

contains 770 landslide samples and 2003 

non-landslide samples for the city of Bijie in 

Guizhou Province. Images of rock slides and 

falls predominate in the landslide collection, 

whereas images of mountains, towns, roads, 

rivers, woods, and crops can be found in the 

curated environmental remote sensing 

collection. We believe this dataset to be the 

first of its kind available to the public; it is 

both high-quality and extensive, and it was 

gathered via remote sensing. Landslides 

were manufactured to encourage 

investigation into automatic landslide 

recognition via optical remote sensing 

images, despite regional differences in 

landslide characteristics. 

The LongRange Sichuan-Tibetan 

Corridor (LRSTTC) dataset [10] was built 

with the help of human visual assessment of 

Google Earth images of the corridor. (1) 

Since landslides typically occur in regions 

with noticeable spatial and temporal 

changes in optical images, new landslides 
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can be easily spotted using Google Earth 

images. (2) Many geomorphological 

features can be used to identify previous 

landslides. In addition to expert verification, 

some landslides in the LRSTTC dataset 

were checked in the field. 

FORMOSAT-2 [11], which 

provides high-resolution, inexpensive 

imagery, is still owned by Taiwan. 

FORMOSAT-2 imagery is superior to 

previous satellite images for monitoring 

landslides in Taiwan over time. As an 

optical satellite, FORMOSAT-2 uses four 

multispectral bands. Panchromatic bands 

have a resolution of 2 meters, while 

multispectral bands resolve at 8 meters. The 

imagery has an 8-bit radiometric resolution. 

A land cover map is included with every 

piece of imagery. On a land cover map, you 

can find the "ground truth" labels for the 

data. Each pixel in the image is given its 

accurate classification. Using manually 

processed images, land use is mapped. 

Vegetation, water, riverbed, landslides, and 

other land uses (including farms and 

settlements) are the five types of land cover 

in this model.  

In the Landslide4Sense [12] (L4S) 

benchmark data collection, Sentinel-2 multi-

spectral (band1-band12), DEM, and ALOS 

PALSAR slope data make up 13 of the 14 

data layers. Multi-spectral Sentinel-2 

(band1-band12) data, a DEM, and slope data 

from ALOS PALSAR are only some of the 

14 layers that make up the L4S competition's 

benchmark data set. The L4S dataset 

contains 3,799 image patches for training, 

245 for validation, and 800 for testing.  

Landsat-8 data [13] has both optical 

and infrared (OLI) and thermal (TIRS) 

detectors. With a spatial resolution of 30 m 

for eight of the nine shortwave spectral 

bands and just 15 m for the panchromatic 

band, the OLI gathers imagery over an area 

of 185 km 30 km. Over an area of 185 

kilometres, the TIRS captures thermal 

imagery with a resolution of 100 meters in 

two thermal bands.  

Sentinel-1 and Sentinel-2 data 

[14] are collected from Earth-monitoring 

satellites launched by the European Space 

Agency (ESA). High-resolution remote 

sensing imagery from both satellites is 

crucial for locating, mapping, and keeping 

an eye on landslides. High-resolution radar 

images of Earth's surface are acquired by the 

Sentinel-1 synthetic aperture radar (SAR) 

satellite around the clock, every day of the 

week. SAR data is excellent for spotting 

landslides even in locations with regular 

cloud cover or extensive vegetation because 

it can see through both. Sentinel-1 radar 

images can be used to spot landslides by 

inspecting them for signs of abnormal 

ground elevation or displacement, as well as 

for changes in surface roughness and 

scattering quality. The optical multispectral 

imaging satellite Sentinel-2 captures images 

of Earth's surface in a high resolution across 

13 spectral bands. Using Sentinel-2's high 

spatial and spectral resolution images, 

landslides and other types of land cover can 

be precisely detected and mapped. Sentinel-

1 and Sentinel-2 time series images can also 

be used to monitor the development of 

landslides and evaluate the risks they pose 

over time. 

ALOS World 3 D-30m (AW3D30) 

[15] is chosen as the Digital Elevation 

Model (DEM) input due to its global spatial 

coverage (600 S to 600 N latitudes), 

availability, and time span coverage (2006 

to 2011). The dataset also includes a Digital 

Surface Model with a resolution and a 

horizontal GSD of 5m and 30m. The DEM 

is employed in determining the gradient of a 

landscape. This is based on the four 

neighboring pixels (Bottom, top, left, and 

right of the central pixel) in the image. 

IV. IMAGE PROCESSING 

Improving an image or extracting 

useful data from it are both examples of 

image processing. Several distortions have 

to be fixed before the data can be evaluated 

and post-processed. Pre-analysis image 

processing includes any steps taken to 

eliminate or reduce artefacts brought on by 
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the camera, sensor, or observing conditions. 

Common examples of pre-processing work 

include: 

 

A. Radiometric Correction 

Radiometric aberrations are caused 

primarily by sensor properties and 

illumination conditions. When the time a 

picture was acquired does not match the 

time energy from the objects in the image 

was emitted or reflected, common imaging 

difficulties develop. Before any useful 

analysis or interpretation of the photos can 

be undertaken, the radiometric distortion 

must be addressed. The two basic types of 

radiometric corrections are Sensor 

Irregularities and Sun Angle/Topography 

Radiometric Corrections. The Sun 

radiometric corrections limit the impacts of 

diffuse sunlight by forecasting the shade 

curve, notably at the water's surface and in 

the mountains [16]. Radiometric noise 

generated by fluctuations in sensor 

sensitivity or sensor degradation, on the 

other hand, is reduced via sensor irregularity 

adjustments [17]. As part of the correction 

procedure, a new set of correlations between 

the calibrated irradiance measurement and 

the sensor output signal is computed. This 

method is also known as calibration. 

Landsat Collection 1 data, for 

example, is available in both tiers 1 and 2, is 

radiometrically adjusted, and varies in 

quality. Tier 2 scenes are radiometrically 

compatible with Tier 1 scenes, but they do 

not meet the Tier 1 geometry standards due 

to factors such as severe cloud cover, 

insufficient ground control, or less precise 

orbital information from an earlier Landsat 

sensor. 

 

B. Atmospheric Corrections 

Radiation from the Earth's surface 

interacts with the atmosphere several times 

before reaching the sensor. Clouds and 

pollution in the atmosphere, for example, 

can make it difficult to observe clearly. As a 

result, ambient noise appears in many 

photos and must be eliminated for proper 

representation [18]. The two basic types of 

atmospheric correction approaches are the 

Absolute Correction Method (ACM) and the 

Relative Correction Method (RCM). The 

ACM corrects for atmospheric distortions 

by taking into consideration a number of 

time-dependent characteristics such as solar 

zenith angle, sensor observing 

angle, aerosol cumulative optical depth, 

and upper-atmosphere irradiance. However, 

precise measurements of the atmosphere are 

difficult to obtain, and absolute correction 

methods are notoriously complicated. We 

typically use RCM, which entails aligning a 

series of photos captured on different dates 

inside the same scene to an external 

reference image. 

 

C. Geometric Correction 

Geometric distortions in remotely 

sensed data are widespread as a result of 

factors such as altitude, sensor, or earth 

oscillations. In an ideal scenario, we'd have 

two photographs taken at different times of 

the same area on the ground, each identified 

to the exact pixel. We need to make 

geometric adjustments to account for these 

geometric distortions and determine the link 

between the image CRS and the Geographic 

CRS if we want greater spatial coincidences 

between the images [19]. Image-to-map 

rectification or image-to-image registration 

(co-registration) is used to make geometric 

modifications by establishing affine 

linkages with ground control points in both 

the image CRS and the Geographic CRS. 

The manual identification time and effort 

required by traditional geometric fixes [20] 

are significant disadvantages. 

Orthorectification requires more data than 

georeferencing with ground control points, 

however, providers are increasingly offering 

this service as a result of advances in remote 

sensing technology. Most earth observation 

applications necessitate orthorectification to 

correct inaccuracies induced by sensor tilt 

and terrain (relief displacement). 



Section A-Research paper 
 

A Survey on Automatic Landslide Detection Using Satellite Images 

 

1133 Eur. Chem. Bull. 2023,12(Special Issue 5),1128-1143 

Both the Landsat 8 OLI data and the 

Sentinel-2A MSI outputs contain 

geometrically adjusted images. 

 

D. Image Enhancement 

The satellite photographs are dark 

and foreboding. As a result, it's critical to 

improve photos while retaining vital details. 

When analyzing an image's quality on a 

more subjective level, contrast is an 

important component to consider. To 

discern these distinctions, human vision 

relies on the contrast between objects and 

their backgrounds. It is the hue and intensity 

contrast between the foreground and 

backdrop.  

Numerous techniques have been 

developed to improve contrast and address 

other brightness-related issues in image 

processing. Image enhancement methods 

are classified into two types: spatial and 

frequency domain [21]. This technique is 

required while preparing datasets to improve 

image quality. We need higher-quality 

remote-sensing photos for effective training 

if we want to employ DL algorithms for 

image categorization. Low-illumination 

optical remote sensing images fail to deliver 

when it comes to image classification and 

recognition due to their dismal aesthetic 

impacts and modest feature deviations [22]. 

 

E. Annotation 

Landslide borders are recognized in 

remote sensing photos using supervised 

semantic segmentation. Semantic 

segmentation assesses whether or not an 

area portrayed in an image is part of a 

landslide pixel by pixel. Ground-truth labels 

are required to train and assess supervised 

semantic segmentation models [23]. Model 

evaluations are tainted by noise caused by 

labeling errors. As a result, it is critical to 

draw exact borders around landslide sites. 

Existing landslide mapping findings 

for the newly obtained picture are incorrect 

due to differences in vegetation cover and 

the shapefile. We took aerial remote-sensing 

images of landslides and manually mapped 

each one. The shapefile comprised the 

landslide boundaries that were discovered 

throughout the mapping process. 

 

F. Cropping 

DL-based landslide detection 

techniques require a lot of GPU memory and 

processing power. The initial remote 

sensing image is too large for 

landslide detection with CNNs or 

Transformers. It must be divided into 

manageable sections. Remote sensing 

photos with higher resolution show more 

complex information on landslides than ever 

before. Meanwhile, an image patch of 

uniform size represents a small region of the 

world. A big patch size causes GPU memory 

overflow in this circumstance, whereas a 

small patch size cannot cover wide-scale 

landslides. It is critical to find a balance 

between these factors [24]. 

 

V. SEGMENTATION 

The process of dividing an image 

into different sections or segments based on 

parameters such as luminance, color, 

texture, and shape is known as 

segmentation. Segmentation is an important 

stage in landslide identification from 

satellite pictures because it allows for the 

localization and mapping of landslide areas 

[25]. Landslide detection can make use of a 

variety of segmentation techniques, such as 

threshold, edge, region, and object-based 

approaches. 

A. Threshold-based segmentation:  

These threshold-based image 

segments are straightforward and commonly 

used. The threshold value in landslide 

detection can be changed based on the 

spectral qualities of the landslide [26], such 

as its brightness, color, or texture. The 

threshold value can be determined by hand 

or automatically using statistical procedures 

such as Otsu's method [27]. This technique 
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may be effective for finding landslides that 

have a substantial spectral difference from 

their surroundings. 

B. Region-based segmentation: 

An image is separated into portions 

using this method based on the degree of 

pixel similarity between them. The 

similarity can be characterized using 

textural, spectral, and contextual elements 

of the image [28,29]. Watershed 

segmentation and mean shift clustering are 

two region-based segmentation algorithms 

used in landslide detection. This technique 

can be useful for locating landslide hotspots 

with modest color and texture changes. 

C. Edge-based segmentation: 

This technique can employ edges or 

other dramatic changes in an image to 

produce discrete portions. To determine the 

borders of land cover classes or objects, 

satellite images can be processed using edge 

detection techniques including Sobel and 

canny edge detectors [30]. Landslides with 

well-defined boundaries are great 

candidates for detection using edge-based 

segmentation. 

D. Object-based segmentation: 

This technique segments an image 

based on the recognition and separation of 

items or features within the image. Image 

attributes such as shape, size, and texture are 

retrieved and used to cluster related pixels 

into larger objects in order to perform 

object-based segmentation [31]. Using 

object-based segmentation, regions prone to 

landslides can be recognized by separating 

the satellite image into its component land 

cover categories. 

 

VI. FEATURE EXTRACTION 

A technique called feature extraction 

is employed to discover and extract relevant 

data from segmented satellite images for 

landslide identification [32]. Satellite 

images can be studied for features that help 

distinguish between different types of land 

cover or locate areas in danger of landslides. 

Some of the feature extraction techniques 

that can be used for landslide detection 

include spectral features, texture features, 

and form features. 

A. Spectral features:  

The spectrum properties of an 

image, or how it reflects or emits 

electromagnetic radiation at different 

wavelengths, form the basis for spectral 

features. To extract spectral features, 

different bands of the satellite image, such 

as the near-infrared, visible, and thermal 

bands, can be employed. Spectral features 

include the mean, minimum, 

maximum, standard deviation, and variation 

of pixel values. These features can be used 

to classify different types of land cover, as 

well as to locate places prone to landslides. 

B. Textural features:  

We refer to the spatial distribution of 

the image's pixel values as its "textural 

features." These features can be extracted 

using statistical measures such as co-

occurrence, gray-level run-length, 

and difference matrices. Textural features 

include contrast, homogeneity, entropy, and 

correlation [33]. Textural patterns may 

indicate areas that are more prone to 

landslides, and these areas can be identified 

using texture features. 

C. Shape-based features:  

Shape-based features define the 

geometric aspects of the items in an image. 

These features can be built using 

information on the position, size, and 

orientation of objects in an image. Shape-

based features include circularity, area, 

compactness, perimeter, and length. Shape-

based features can be used to identify 

landslides with distinctive geometric 

characteristics, such as elongated or 

irregular shapes. 

D. Topographical features:  

Topographical features such as 

slope, aspect, curvature, and elevation can 

all be inferred using DEM [34]. Geographic 

variables affect slope instability [35,36]. 
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Certain topographical features, depending 

on the terrain, can be used to pinpoint 

locations prone to landslides. 

E. Spectral features:  

Spectral features are based on the 

spectral characteristics of the image, which 

refers to the way in which the image reflects 

or emits electromagnetic radiation at 

different wavelengths. Spectral features can 

be derived from different bands of the 

satellite image, such as visible, near-

infrared, and thermal bands. Spectral 

features include mean, standard deviation, 

maximum, minimum, and variance of the 

pixel values. These features were utilized to 

differentiate between different land cover 

types and identify areas of potential 

landslide activity. 

 

VII. CLASSIFICATION 

Landslide classification using 

satellite images can be done using various 

techniques like ML and DL [37-40]. 

A. Machine Learning 

Because ML techniques can 

automatically learn and identify complex 

patterns and features in data, they are 

increasingly being used to detect landslides 

using satellite images. The following are 

some popular ML algorithms for spotting 

landslides in satellite images: 

 

1. MLC (Maximum Likelihood 

Classifier): Because the spectral signature is 

assumed to have a normal distribution, this 

method is a statistical classifier. It estimates 

the possibility that a pixel belongs to each 

class based on its spectral values and places 

it in the class with the highest probability. 

2. SVM (Support Vector Machine): 

SVM finds the optimal hyperplane for class 

separation in high-dimensional feature 

spaces. SVM first transforms the input into 

a higher-dimensional space before 

classifying it. The hyperplane that divides 

the groups effectively is then identified. 

3. DT (Decision Tree): DT is a simple 

and effective algorithm that operates by 

segmenting the feature space into decision 

rule hierarchies. It separates the data into 

subgroups depending on the feature with the 

most informational value until a stopping 

requirement is satisfied. 

4. RF (Random Forest): The RF 

method is an ensemble learning strategy that 

uses a combination of several DTs to 

improve classification precision. RF trains 

multiple decision trees on distinct sections 

of the training data and then combines the 

results to create correct predictions. 

5. NN (Neural Networks): The term 

"NN" refers to a class of ML algorithms that 

draw inspiration from how the human brain 

functions. They learn a set of weights in 

order to provide correct class labels from 

input information. NN may be used for 

pixel-based classification of satellite 

photographs by training the network using 

labelled data and then applying it to new 

images. 

6. K-means clustering: K-means is a 

simple and effective clustering approach 

that splits data into K groups based on 

common criteria. The approach starts by 

randomly allocating K centroids and then 

refines those centroids until convergence is 

attained. 

7. Hierarchical clustering: Hierarchical 

clustering is one technique for breaking 

down clustering algorithms into 

progressively granular stages. The algorithm 

first treats each data point as a separate 

cluster before combining them in later 

rounds based on similarities. 

8. SOM (Self-Organizing Maps): 

SOM, a neural network-based clustering 

approach, can execute its clustering magic 

by projecting the input data onto a low-

dimensional grid of nodes. The grid's nodes 

indicate clusters and data points are assigned 

to the one that is geographically closest to 

them. 

9. PCA (Principal Component 

Analysis): PCA is a dimensionality 

reduction technique used to minimize data 
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variance and then group it with K-means or 

hierarchical clustering. 

10. (FCM) Fuzzy c-means 

clustering: In the FCM soft clustering 

procedure, each data point is assigned a 

membership weight for each cluster. The 

membership weights indicate how well a 

data point fits into a cluster. The algorithm 

iteratively updates the membership weights 

and cluster centres until convergence is 

obtained.  

 

B. Deep Learning 

The purpose of DL, a branch of ML, is to 

train neural networks with multiple layers to 

automatically learn and detect complex 

patterns and characteristics in data. The 

ability of DL techniques to handle massive 

and high-dimensional data and identify 

minor landslide properties has resulted in 

promising outcomes in the context of 

landslide recognition in satellite images. 

Some prominent DL approaches for 

detecting landslides in imagery from 

satellites are as follows: 

1. CNNs (Convolutional Neural 

Networks): CNNs are a well-known DL 

approach for image classification. They do 

this by extracting spatial properties at 

various scales from the input image using 

convolutional filters. These features are 

transmitted through a network of completely 

linked layers to generate a classification 

result. 

2. RNNs (Recurrent Neural Networks): 

RNNs, a form of DL algorithm commonly 

used for sequential data analysis, can help 

with satellite picture time series. They work 

by taking in data one piece at a time and 

processing it while keeping a secret record 

of it. The hidden state must be updated at 

each time step for the network to recognize 

temporal dependencies and patterns. 

3. CRNNs (Convolutional Recurrent 

Neural Networks): Convolutional neural 

networks (CRNNs) are used to classify 

images and videos. They work by first 

passing the input image through 

convolutional filters to extract spatial 

properties, followed by recurrent layers to 

capture temporal correlations and patterns. 

4. DBNs (Deep Belief Networks): 

DBNs are a DL technique for unsupervised 

feature learning and categorization. 

Unsupervised learning is used to learn a 

hierarchy of representations from the 

incoming data. Each succeeding layer in the 

hierarchy learns a compressed 

representation of the input, which can then 

be utilized for classification. 

5. DCNNs (Deep Convolutional 

Neural Networks): Because of their 

increased number of convolutional layers, 

DCNNs may learn more detailed 

characteristics. They apply additional layers 

of convolutional filters to the input image in 

order for the network to learn more abstract 

and sophisticated information. 

6. Autoencoders: Autoencoders are a 

DL approach used to reduce dimensionality 

and learn unsupervised features. The 

network is programmed to reconstruct the 

original image from the compressed one, 

and this is how they work. The reduced 

representation can then be used for 

classification. 

7. GANs (Generative Adversarial 

Networks): GANs are a DL technique that 

employs a generator and a discriminator 

network. The generator element produces 

false samples, whereas the discriminator 

element attempts to distinguish between 

them. Both networks are trained, with the 

former aiming to deceive the latter during 

the classification process. GANs can be used 

to identify satellite photos by producing 

additional samples and increasing the 

stability of the classification model. 

8. LSTMs (Long Short-Term Memory 

Networks): RNNs are a method for dealing 

with the vanishing gradient problem. They 

use gating techniques to recall or forget 

particular hidden states at specific periods in 

order to capture long-term dependencies in 

sequential data. 

9. (ResNet) Residual Networks: 

ResNet uses skip connections to overcome 

the vanishing gradient problem, making 

them a subtype of deep convolutional neural 
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networks. They work by allowing the 

network to learn residual features, which are 

then integrated with the input data to 

produce the output. As a result, the network 

can learn more nuanced and sophisticated 

features than typical DCNNs. 

10. Capsule Networks: Capsule 

Networks, as a DL technique, can cope with 

spatial interactions between features. 

Capsules are neural networks that encode 

the possibility of an entity's existence as well 

as its properties. By integrating capsules into 

higher-level entities, the network can then 

learn spatial connections between features. 

Table 1 gives a detailed analysis of how the 

researchers used AI models on satellite 

images to detect landslides. 

 

Table 1. AI models on satellite images to detect landslides  

 

Data Objective Pre-process Model Metrics 

Sentinel-2 

Imagery [41] 

To detect landslides 

investigates the viability of an 

integration architecture 

comprising a DL network and 

rule-based object-based 

image analysis (OBIA). 

Not Mentioned ResU-Net-

OBIA 

P–73.14%,  

R – 80.33%,  

F– 76.56% 

Bijie Landslide 

Dataset [42] 

To improve landslide 

detection, satellite imagery 

with scene classification 

should be used. By creatively 

integrating a focus 

mechanism into the 

model, successfully obtain 

data from satellite imagery. 

Image 

Enhancement 

Distant 

Domain 

Transfer 

Learning 

A - 96.03% 

LRSTTC [43] Two approaches are 

described for the 

identification and 

segmentation of new and old 

landslides, and ice 

avalanches, namely Mask R-

CNN and transfer learning 

Mask R-CNN. 

Resize 

Annotation 

Mask R-CNN mPA – 87.71%  

mIoU –77.94%  

P– 81.18%  

R–78.47%  

F – 79% 

Sentinel-2A [44] Creates the squeeze-and-

excitation network (SENet) 

as a channel attention 

mechanism for use in the 

feature fusion portion of U-

Net, and it builds an attention 

U-Net landside extraction 

model by integrating SENet 

with U-Net. Sentinel-2A 

images are used to train the 

network. 

Atmospheric 

Correction 

Annotation 

Augmentation 

Attentional U-

Net 

F- 93.53% 

P - 93.19% 

R - 94.61% 

mIoU -94.30% 

Kappa -93.30%. 

Recent Landslide 

Database 

(RecLD) [45] 

Provides a unique machine-

learning and deep-learning 

strategy for identifying 

normal-terrain landslides 

utilizing integrated 

geodatabases. 

Layer 

Derivation 

Landslide 

Inventory 

DCNN-11 A – 89.32% 

P - 92.58% 

R - 85.07% 

S – 93.43% 

F1 – 88.66% 

 

 

Multiple 

Databases [46] 

Using powerful machine and 

DL techniques, mapped the 

landslide susceptibility areas 

in the Garhwal Himalaya 

Information 

Gain Ratio  

DL Neural 

Network 

R – 83% 

S - 96% 

Kappa - 81% 

P – 93% 
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region. Five different models 

were studied and compared. 

Multi-

Collinearity 

Analysis 

AUC– 92.5% 

Bijie Landslide 

Dataset [47]  

Create the Dynahead-Yolo 

model, integrated the 

YOLOv3 framework's 

space, scale, and task-aware 

attention mechanisms. 

Improves the capability to 

decode landslides in 

complicated background 

settings by focusing on the 

finer details of landslides 

images with varying 

proportions. 

Augmentation 

Annotation 

Dynahead-

Yolo 

F1 - 87 % 

P - 87.17% 

R - 87.56% 

mAP – 85.53% 

Bijie Landslide 

Dataset [48] 

Introduce a unique UNet 

model for autonomous 

identification of landslide, in 

which the reversed image 

pyramid features (RIPFs) are 

modified to compensate for 

the information loss resulting 

from successive convolution 

and pooling. 

Radiometric 

Correction  

Orthographic 

Correction 

Atmospheric 

Correction 

Image Fusion 

RIPF-UNet 

Model 

F – 92.34 % 

P - 89.91% 

R - 94.90% 

A – 97.25% 

GF-2 Remote 

Sensing Images 

[49] 

Completed the task of 

landslide susceptibility 

mapping in Hanyin County, 

China using the LSNet 

model. LSNet's results were 

evaluated against those of 

SVM and the kernel logistic 

regression model. 

Cropping 

Annotation 

Landslide Net 

(LSNet)  

A – 95% 

P - 95.1% 

R – 95.1% 

S – 94.9% 

F1 – 95.1% 

 

 

SAR Images [50] 

To produce multichannel 

images for reliable 

categorization, not just of the 

target area but also of their 

surrounding areas. The best 

multichannel CNN 

architectures for 

landslide classification of 

SAR images are determined 

after a thorough analysis of 

the available structures. 

Cropping 

Data Balancing 

Multi-CNN  A – 74% 

P - 66.5% 

R – 78.2% 

F – 71.9% 

 

A-Accuracy, R-Recall, P-Precision, mIoU-Mean Intersection of Union, F-F1 Score, S-Specificity, 

mAP-Mean average precision, AUC-Area under curve   

VIII. CHALLENGES 

The following are the most 

important issues with existing DL-based 

landslide detection techniques: 

A. Timely acquisition.  

Providing a viable solution for near 

real-time threat identification is a big issue 

that can only be handled by integrating AI 

algorithms' capabilities.  

B. Recognising the landslide’s 

spatial, spectral, 

and temporal characteristics is difficult 

[51]:  

The spatial, temporal, and spectral 

aspects of landslides may be difficult to 

determine. The outer look of a landslide can 

vary greatly depending on the surrounding 

weather, geology, and geography. Because 

of the aforementioned influences, 

implementing a universal mechanism for 
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identifying landslides is difficult. Deep and 

shallow landslides have a large spatial 

disparity. Because of the frequent and 

noticeable variances in landslide features, 

identifying landslides with basic criteria is 

critical. Because landslides can take many 

forms, broad rules must be used to classify 

them. Some landslides that have recently 

occurred can be easily identified as such. 

The boundary between the uninjured land 

surface and the failure areas is obvious in 

shallow and modest landslides (such as 

debris flows). However, in the case of large 

and complex landslides, the boundary 

between stable and failed areas is difficult to 

predict. Transport depletion and deposition 

zones are examples of failed places. It may 

be difficult to detect landslide borders in 

older landslides. Due to the wide variety of 

landslide occurrences, not all landslides are 

easily and clearly recognizable in any 

satellite image.  

C. Inadequate landslide images:  

A lack of training data is one of the 

most prevalent impediments to successfully 

deploying a data-driven model based on DL. 

This is due to the need for a huge volume of 

high-quality data during the essential 

training stage of an AI algorithm.  

D. Poor spatial resolution [52]:  

For landslide detection, high-

resolution images are required for model 

construction in AI frameworks. High-

resolution data is required for landslide 

detection and instance segmentation over 

landslide images. VIA (VGG image 

annotator) class labelling relies on a clear 

delineation between the failure region (i.e., 

deposition area, depletion) and the 

unaffected landscape. Because of the 

landslide's age, it's difficult to distinguish 

what's a landslide and what isn't. Improving 

the reliability and accuracy of landslide 

recognition necessitates consideration of 

both image resolution and landslide pattern.  

E. Security and authenticity:  

The open nature of the 

communication medium presents severe 

trustworthiness and safety concerns. Image 

authentication of space-borne and open-

source images addresses challenges of 

image integrity, authenticity, and 

provenance verification. Space-borne 

images often analyse emitted and reflected 

radiation from a large distance to record, 

monitor, and identify the physical features 

of a location. Digital images, on the other 

hand, may now be quickly manipulated, 

copied, reproduced, and disseminated at low 

cost due to advances in technologies and the 

ubiquitous accessibility of the internet. The 

advancement of network technology has had 

a tremendous impact on data security and 

privacy. To secure the digital content from 

future dangers, content authentication, 

duplicate prevention, and copyright 

protection are essential. 

F. Class imbalance [53]:  

Using satellite images to detect 

landslides is a common issue. Class 

imbalance occurs when the training data 

contains a disproportionately small number 

of examples from one class (say, landslides) 

compared to the other class (say, non-

landslides). In other words, there is an 

imbalance in the training data between the 

classes. When attempting to detect 

landslides, the number of images that do not 

contain a landslide is typically significantly 

greater than the number of images that do 

contain a landslide. This is because 

landslides are uncommon in comparison to 

the overall area under study. Due to the class 

imbalance, the ML model may be biased 

towards the majority class (i.e., non-

landslide), resulting in poor identification of 

the minority class (i.e., landslide). Consider 

an AI model that has good accuracy in 

differentiating non-landslide areas but low 

recall in predicting landslide locations since 

it was trained on imbalanced data. That 

instance, the algorithm may properly 

identify most spots that are not prone to 

landslides while ignoring other prone areas. 

There are several techniques for dealing 

with the class imbalance problem in 

landslide detection. Common strategies for 
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achieving this balance in training data 

include oversampling the minority class, 

undersampling the majority class, and 

creating artificial minority samples. It is also 

conceivable to use cost-sensitive learning 

approaches during training to give the 

minority class more weight in the learning 

process. 

IX. CONCLUSION 

In conclusion, the application of AI-

based algorithms to the analysis of satellite 

images for the identification of landslides is 

an intriguing and FAST-DEVELOPING topic 

with enormous potential for enhancing the 

ability to track and MINIMIZE landslide 

hazards. In this review, we take a look at the 

numerous AI strategies that have been 

applied to the problem of landslide detection 

and discuss some of the main elements that 

may influence the reliability of these 

techniques. This technique can assist 

prevent mortality and property loss, and 

MINIMIZE the ecological effects of 

landslides, by giving precise and early 

information on landslide hazards. However, 

there are still some obstacles that must be 

overcome, such as the requirement for high-

quality and balanced data. But AI 

models may gain insight from past data, 

these models can get better over time, 

resulting in more accurate 

landslide detection. In this article, the state 

of AI-based landslide detection using 

satellite images has been well-surveyed. The 

advancement of this field of research has the 

potential to save the lives of individuals who 

live in landslide-prone areas by allowing for 

better monitoring and management of 

landslide risks. Also, we're hoping that the 

findings of this survey will guide researchers 

in the right direction as they continue to 

explore this important area. 
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