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Abstract. The Rif mountains in northern Morocco experience frequently geomorphological hazards, including 

landslides that hamper urban management.This paper aims to develop an objective approach for the assessment 

of landslide susceptibility in the city of Al Hoceima based on a bivariate probabilistic model (weight of 

evidence). This approach allows analyzing the relationships between the spatial occurrence of landslides and the 

different natural and anthropogenic parameters that tend to accentuate and aggravate the formation of this 

phenomenon. The purpose of our work is landslide hazard zoning while ensuring a better zoning of the landslide 

susceptibility with a good prediction. The results of the Receiver Operating Characteristic (ROC) curve show 

that the comparison of the preferred landslide susceptibility map with the inventory map gives a good predictive 

capability (AUC= 0.902). The obtained map shows that high to very high susceptibility zones contain 69% of the 

total landslides inventoried. The mapping products of this work can be considered as a major contribution to the 

elaboration of urban development plans in the city of Al Hoceima. 
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INTRODUCTION 

The Rif mountain range is known as an area exposed to landslides due to its rugged relief, geological structure 

and climatic conditions. These conditions damage the infrastructure and handicap the sustainable development of 

the region. The city of Al Hoceima, situated to the north of the Rif chain on the Mediterranean coast, is the area 

most affected by landslides. This phenomenon is rather precarious as many landslides occur there frequently 

during rainy periods. The rainfall which occurred in recent decades in Al Hoceima region has highlighted the 

vulnerability to landslide phenomena. This vulnerability is increasing due to the intensification of land use and 

socio-economic development. The population growth rate increased relatively during the period 2004-2014, at 

0.25% against 0.1% at the national level. This is due to the internal emigration of populations from the rural 

communes to Al Hoceima city. Most of them built their houses in areas not suitable for construction near rivers 

or in unstable areas. This makes the mapping of landslide susceptibility a high priority in this area to guide the 

future development of urbanization and mitigate damages. 

Numerous works have been devoted to the spatial evaluation of the randomness linked to ground movements in 

the Rif: Millies-Lacroix (1968) drew up, for the Rif as a whole, a forecast map of ground movements at 
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1/1000000. This map integrates five main factors: lithology, topography, climate, vegetation, anthropogenic 

action. In the central Rif, Maurer (1968) was mainly interested in the mapping of landslides, particularly those of 

a superficial nature. Then, Fares (1994) and Margaa (1994) used the ZERMOS (Risk-mapping of areas exposed 

to movements of soil) mapping methods in Taounate and Al Hoceima regions respectively. These methods are 

based on the evaluation of the role of each of the permanent factors retained. Hazard zoning was established 

based on the combination of these permanent factors and their prioritization according to the degree of potential 

risk.   

The objective of this work is to assess the susceptibility to landslides based on a bivariate statistical model, based 

on Bayes theorem (weight of evidence)(Spiegelhater and Kill-Jones, 1984). The potentiality of this model 

derives from its reproducible objective character and the fact that it quantifies the probability of landslide 

occurrence. The analysis of the accuracy of the model is performed by the ROC (Receiver Operating 

Characteristic) curve by comparing the inventory map and the obtained susceptibility map. 

In this work we present a diagnostic of landslides occurring in the area of study through their inventories, 

mapping, and characterization. Then, we develop a database integrating the causative factors of landslides to 

help performing calculation and interpretation of the weighted factors used in this analysis. The final results of 

landslide susceptibility map are validated using the AUC (Area Under the Curve) criterion.  

The town of Al Hoceima is located in the eastern part of the Bokkoya massif of the Rif mountains in northern 

Morocco and is spread over an area of 34 km2.  It is made up of incised valleys, separated by landforms strongly 

sloping which are marked by limestone ridges reaching 406m at Jbel Monte Pamomas, 300m at Jbel Malmusi, 

and by high cliffs that often exceed 100 m at the level of the dolomitic plateaus "Morro nuevo". The east of Al 

Hoceima is dominated by irregular slopes of fairly soft shapes, bordering the sea with an altitude higher than 130 

m (Figure 1). 

 

Figure 1: Situation of the city of Al Hoceima (restitution plan, scale 1/2000) 
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Geologically, the study area is formed by thrust/nappe complex as such is the case of the entire Rif belt. More 

particularly, The Al Hoceima region is characterized by the stacking of four structural nappes separated by 

anomalous contactsput in place starting from the Late Oligocene, (Figure 2): (1) The Boussecour nappe, formed 

by Triassic dolomites and flint limestones, (2) The Eo-Oligocene nappe, consisting mainly of marl formations. 

(3) The Al Hoceima nappe, constituted by the Primary materials including Silurian shales, Devonian limestones, 

sandstones, and Permo-Triassic argillites. These materials are superimposed on the previous nappes in the form 

of Klippe. This Klippe extends from Al Hoceima to Boussekkour valley in the west. (4) The Jbel Amekrane 

nappe formed by the Lias limestones, known for their white color. The outcrop of this nappe at Jbel Palemas 

surmounts the previous nappes in the form of Klippe. The whole, constituting the Bokkaya massif, overthrust 

towards the south on the Tisirene flysch. The Eo-Oligocene nappe being the Tertiary sole. (Mégard, 1963; 

Andrieux, 1971, Mourier, 1982; Azzouz, 1992). 

The region is characterized by a semi-arid Mediterranean climate, marked by temperate winter and hot summer. 

The annual average of rainfall is 385mm. Most of the precipitation has Mediterranean origin coming from 

disturbances from the N and NE. The rain is characterized by irregularity and brutality aggravating the effect 

action on the ground not protected by the vegetal cover. The temperature is influenced by the proximity of the 

Mediterranean coast which reduces the thermal amplitude, the minimum average of winter, being mild, reaches 

10 degrees, while the maximum average of summer is moderate, it reaches 29 degrees. 

 

Figure 2: map and geological section showing the lithology and structure of the Bokkoya massif in Al Hoceima 

region (Geological Map of Al Hoceima, scale 1/50000) 
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MATERIALS AND METHODS 

Figure 3 shows the methodological approach adopted for the analysis of landslide susceptibility in Al Hoceima 

city based on weight of evidence. This approach consists of five steps: 

1) Acquisition and preparation of data to be integrated for landslide susceptibility modeling. 

2) Calculation of the weighted values of the causative factors. 

3) Assessment of the conditional independence of causal factors from landslides.then, the construction of 

neo-predictive variables.  

4) Probabilistic modelling of landslides based on evidence theory. 

5) Validating the results obtained and choosing the best model.  

 
Figure 3: Flowchart showing the data source and the considered steps to produce the landslide susceptibility map 
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Description of the "weight of evidence" model: 

The study aims to assess the susceptibility to landslides using the weight of evidence model. This method has 

been applied in several fields, initially in medicine (Ezzine et al., 2008; Spiegelhater and Kill-Jones, 1984), then 

in geology in the field of mineral exploration (Bonham-Carter, 1994); but recently, this method has been used in 

many studies for the risk assessment of landslide risk (Van Westen, 1993 ; Corominas et al., 2014 ; Thiery, 

2007; Ezzine et al., 2008; Mastere, 2011).  

This method is based on the assumption that future events will occur under conditions similar to those in the past 

(Thiery 2007). This approach considers the landslide phenomenon as a variable to be modelled (S) and the 

causative factors that cause the triggering conditions or the reactivation of this phenomenon as predictive 

variables (B) (Ezzine et al., 2008 ; Thiery, 2007 ; Mastere, 2011). It takes into consideration data from historical 

events to calculate the weights of each predictor variable contributing to the occurrence of landslides.  

A detailed description of the mathematical formulation of the method is given below: 

The probability of occurrence of the phenomenon (S), according to the weight of evidence model, is based on a 

log-linear version of Bayes general theorem and on the concepts of a priori probability and a posteriori 

probability (Van Westen, 1993 ; Bonham-Carter, 1994). The a priori probability is determined by the occurrence 

of a landslide in the AT (Total Studied Area) zone, without taking into account the causative factors of these 

phenomena, it is simply the density of landslides in the study area.  

 

The next step is to examine the relationship between the occurrence of a landslide event and the presence of a 

condition or evidence of a causative factor. Figure 4 shows this relationship between the variable to be modelled 

and the predictive variable, it can be expressed by the following conditional probabilities: 

 

 

Using the conditional probability formula, the last equations can be written as follow: 

 

 

Bonham-Carter (1994) defined two weights for each predictor variable, a negative weight ( and a positive 

one , their values depend on the relationship between past landslide events and predictive variables. These 

weights are calculated according to the probability “odds” or “logit” which is defined as follow: 
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Where P is the a posteriori probability of an event occurring 

 

 

 

 

 

 

 

 

The contrast value C can be used as a guide to determine the relative weight of each predictor variable. In 

addition, it provides information on the association between these variables and the occurrence of landslide 

phenomena, it is defined as follow: 

 

If C is positive, it indicates a positive correlation between the predictor variable and the variable to be modeled. 

C is negative shows a negative correlation between the two, and C equal to 0 indicates that the distribution is 

spatially independent (Ezzine, 2008). 

Concerning the cartography of landslide susceptibility or probability, this phenomenon may be associated with 

one or more predictive variables. Therefore, it is necessary to combine the positive weights of all these variables, 

but provided that they are conditionally independent of each other. Areas with a high weight correspond to a 

higher probability of finding (S). The general expression for combining n factors is given by the following 

equation (Bonham-Carter, 1994): 

 

Conditional Independence Test: 

The application of weight of evidence model assumes that the predictive variables are independent of each other  

in relation to the variable to be modeled (landslide) inventoried and included in the analysis (Thiery et al., 2004). 

It is therefore necessary to test the conditional independence between all predictor variables before integrating 

them to create the landslide probability or susceptibility map. 



Landslide susceptibility modeling using the weight of evidence approach: case of Al Hoceima city 

(Northern Morocco) 

 

Section A-Research paper 

 

2390 
Eur. Chem. Bull. 2023, 12(7), 2384-2409 

 

To test the conditional independence between two predictor variables, we used the following equation: 

 

The left side of equation (15) is the number of landslide events observed in the area of overlap of two predictor 

variables B1 and B2. The right side is the predicted number of landslides occurrence in this overlap area. This 

relationship is presented in a contingency table to test the conditional independence between these two variables 

(Table 1). Next, the chi-square test ( ) was applied to all pairs of predictor variables to evaluate the variation 

between expected (Ei) and observed (Oi) landslide frequencies using equation (16).  

 

   Variable   B1  

  Absence Presence Total 

 Absence 
 

 

 

 

 

Variable  B2 Presence 
 

 

 

 

 

 Total 
   

Table I: Contingency table for testing conditional independence. 

Then, the comparison between actual and theoretical Chi-square values  for each pair of predictor variables 

and for the variable to be modeled, according to 1 degree of freedom and at the 99% confidence level ( = 

6.64) had to be determined (Dai & Lee, 2002). Above this value, indicates the presence of a conditional 

dependence between the two variables. In this case, the two variables cannot be integrated in the modeling 

process. Nevertheless, it is recommended to combine them to create a neo-predictive variable (van Westen, 

1993; Thiery et al., 2007; Bonham-Carter, 1991; Mastere, 2011). 

Validation of results: 

The validation of the results obtained by the model is represented graphically, using the ROC (Receiver 

Operating Characteristic) curve. This curve is a statistical tool that allows us to assess the performance of the 

landslide susceptibility model by comparing the validity of forecasts of landslide phenomena of other events 

observed in the field. In this analysis, the construction of the ROC curve is carried out using data from landslides 

reserved for validation (30% of the set of landslides observed in the field) and which were not included in the 

data used to create the susceptibility map. This representation mode is based on the threshold values which 

separate stable and unstable terrains. This curve shows the "Specificity" on the abscissa and the "Sensitivity" on 

the ordinate. "Sensitivity" or (True Positive Rate) represents the proportion of pixels affected by landslides 

correctly classified as unstable. The "Specificity" or (1- False Positive Rate) represents the proportion of pixels 

not affected by landslides correctly classified as stable (Fressard, 2013). The calculation of the sensitivity and the 

specificity associated with the different threshold values is expressed by the following formulas (Devkota et al., 

2013;Thiery, 2007):  
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TP: True Positive, TN:  True Negative; FP: False Positive; FN: False Negative;  

The area under the curve of ROC or AUC (Area Under Curve) can be used as a measure to assess the 

discriminating power of the model. The more the area under the curve is larger, the more the capacity of the 

model's ability to predict the presence and absence of landslides is better (Dumlao & Victor, 2015). AUC is 

calculated by adding the areas of the polygons between the different threshold values (Vakhshoori & Zare, 

2016): 

 

Where  is the specificity and  is the sensitivity to the threshold i. 

Preparation and construction of a database of factors related to the occurrence of landslides:  

Landslides have been already mapped for the entire city of Al Hoceima. These events are represented by 

polygons based on the inventory of landslides and the interpretation of Google Earth satellite images as well as 

on mobile GPS mapping (MobileMapper) to locate landslides and determine its limits. These have been 

demarcated as landslide areas, but in some areas where there are signs of ground instability such as tension 

cracks or tilted trees, these areas have been included in the mapping. In this analysis, the total number of the 

landslides inventoried forming rotational and translational movements was divided into two distinct sets: 70% of 

older landslides (106 events) are used to build the model of landslide sensitivity and 30% (45 events) of 

landslides recently reactivated or triggered are used to validate this model (Figure 4 and 5) (Bui et al., 2011; 

Ozdemir & Altural, 2013;Vakhshoori & Zare, 2016). The last together, independent of the model, can be seen as 

"future" landslides which may explain how model and causal factors predict future landslides. 
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Figure 4: Landslide inventory map showing two sets of landslides used in susceptibility analysis 

 

 
Photo 1 : Rotational landslide affects Eo-oligocene marls in 

the Boujibar district. 

 
Photo 2: Complex landslide characterized by numerous 

escarpments affecting the marl soils in the Boujibar district. 
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Photo 3 : Escarpment of a rotational slide affects the 

schistous terrains in the Talayoussef sector 

 
Photo 4 : Translational landslide affects the schist soils 

beside the Chafarina Hotel located in Talayoussef 

Figure 5: Representative photos of some inventoried landslides in the city of Al Hoceima 

The basis of the primary acquisition of spatial data is represented by the restitution plan of the city of Al 

Hoceima on a 1/2000 scale (2016 edition). A digital Terrain Model (DTM) was generated from data for contour 

lines traced in this plane (equidistance of 1m). It is offered at a resolution of 5m and projected according to the 

Moroccan projection system Lambert zone 1 (Merchich / North Morocco). It serves in mapping thematic layers 

of certain morphological parameters: slope, elevation, aspect, profile curvature, and plan curvature. From the 

image of Google Earth at high spatial resolution (2016 edition), we obtained the thematic layers of the land use: 

the different categories of land use and distance to roads. The density of the hydrographic network was produced 

from the river streams drawn on the plan restitution using the Spatial Analyst Tools "Line density" command. 

Geological factors are considered to be the most influential factors in the landslide susceptibility mapping due to 

their influence on the mechanical and structural characteristics of lithological units. In this study, the lithology 

and faults are extracted from the Al Hoceima geological map at 1/50000 (1984 edition). Finally, to evaluate the 

seismic factor in this analysis, we used the 1/40000 scale seismic microzonation map produced by Talhaoui et al. 

(2004). Although, the precipitation factor is considered to be relatively uniform due to a single station that covers 

the entire territory of Al Hoceima and was therefore not included in the analysis. The diversity of the sources of 

these data is a bit varied in their scales, which affects the precision of the susceptibility model. To avoid this 

problem, all the thematic layers were integrated into a geographic information system (GIS) and are subject to 

georeferenced management, then all thematic layers have been converted to a raster format (Figure 6). The mesh 

size of all the causal factor maps used in this analysis was fixed at 5 * 5. This dimension is the same size as a 

DTM developed for this study. 
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Figure 6. landslides causal factors: a) lithology, b) distance to faults, c) seismic microzoning, d) slope, e) aspect, 

f) Elevation, g) plan curvature, h) profile curvature, i) drainage density, (j) land use, k) distance to roads. 

RESULTS 

Calculation and interpretation of weighted values:   

The application of weight of the evidence approach method has been carried out following the steps summarized 

in the previous paragraphs. Table 2 shows the results of the calculation of the weighting values obtained for 

eleven factors: lithology, slope, distance to faults, density of the hydrographic network, slope exposure, land use, 

seismic microzoning, hypsometry, transverse curvature, longitudinal curvature and distance to roads. 

The relationship between landslides and causative factors is as follows: 

In the case of the slope, the higher the slope, the greater the occurrence of landslides. For example, below 20%, 

the contrast is very low, reaching -2.141, and above 20% up to 50%, the contrast is greater than 0.58. This 

indicates that the occurrence of landslides increases with the slope. 

In the case of the geological factors, such as lithology and faults: Lithology has shown a very strong effect on 

landslides. The positive contrast value was noted in areas which are very sensitive to landslides (C=2.03 for 

Silurian shales, C= 1.50 for Eo-oligocene marls and C= 1.086 for Triassic red sandstones and argillites). Most 
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landslides occur mainly along faults. The contrast value is positive at a distance less than 150m from the fault 

(C> 0.22), indicating a favorable area for landslides, whereas at a distance greater than this value, the contrast 

becomes negative, indicating an unfavorable area for landslides. 

The values obtained by the analysis of the drainage factor show that the areas affected by landslides are 

characterized by a very high density of the river network (> 8km/km2 or 80m/Ha). This can be attributed to the 

fact that the landslide can be caused by gullying or by high density of the river drainage  

In the case of profile and plane curvatures, the contrast value is positive in the concave morphology (C= 0.429 

and C= 0.252, respectively), on the other hand, it is negative in the convex morphology and in the plane areas. 

The reason is that the concave morphology retains rainwater longer and favors the occurrence of landslides. 

In the case of slope exposure, landslides are very abundant on the north (C= 0.930), northeast (C= 0.208) and 

northwest (C= 0.220) slopes. This is due to the influence of disturbances of Mediterranean origin. These slopes 

constitute barriers that intercept these disturbances, which can generate stormy rainfall and therefore amplify the 

triggering or reactivation of landslides. On the other hand, the frequency of landslides is very low in the other 

slopes that are sheltered from these disturbances. This is explained by negative contrast values. 

In the case of land use, the highest contrast values are found in areas of bare soil or with some vegetation (C= 

0.63) and in areas of tree or shrub or herbaceous vegetation (C= 0.471). 

For seismic microzoning, the contrast is very high in the interval (1.30- 1.70). This is an area of ancient 

landslides with strong fractures and steep slopes, characterized by deposits with loose and unconsolidated 

structure. These conditions are the main disturbing elements of the slope equilibrium in the face of seismic 

events. 

In the case of altitude, the contrast value is positive at altitudes below 200m (C>0.88). While it is negative at 

altitudes above 200m. This may be due to the dominance of a landslide sensitive lithology and a very high 

drainage density, which favors a high possibility of landslide occurrence. 

In the case of the distance to roads, the contrast is positive at a distance greater than 100m. This means that the 

number of landslides located in the vicinity of roads is relatively small compared to the number of the other 

landslides in area of study. This indicates that there are other factors involved in the occurrence of these 

phenomena.  

Causative factor 

(predictor variable) 

Total pixels of 

each class 

landslide pixels 

in each class 

W+ W- C 

Distance to faults (m)      

0-75 397524 5583 0.147 -0.080 0.228 

75-150 300746 4392 0.187 -0.070 0.257 

150-225 201797 2445 -0.002 0.000 -0.003 

225-300 128301 1488 -0.047 0.005 -0.052 

300> 184309 818 -1.014 0.109 -1.123 

Aspect      

North 223551 5314 0.684 -0.247 0.930 
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Northeast 188615 2716 0.173 -0.035 0.208 

East 158663 1094 -0.571 0.064 -0.635 

Southeast 132108 835 -0.659 0.058 -0.717 

South 107835 451 -1.074 0.063 -1.137 

Southwest 84852 332 -1.141 0.050 -1.191 

West 122311 1164 -0.246 0.024 -0.271 

Northwest 194100 2820 0.182 -0.039 0.220 

Flat 642 0  0.001  

Elevation (m)      

0-100 368813 7527 0.528 -0.357 0.884 

100-200 311388 6676 0.578 -0.310 0.888 

200-300 259872 503 -1.847 0.209 -2.056 

>300 272604 20 -5.121 0.257 -5.378 

Drainage density 

(km/km
2
) 

     

0-2 444850 767 -1.963 0.410 -2.372 

2-4 254135 1354 -0.831 0.141 -0.971 

4-6 202485 723 -1.233 0.134 -1.367 

6-8 135173 1361 -0.189 0.021 -0.211 

>8 176034 10521 1.643 -1.105 2.748 

Lithology      

Limestone or dolomite 713233 247 -3.569 0.887 -4.456 

Silurian schists 216223 9044 1.267 -0.762 2.030 

Eo-Oligocene marl 101143 4168 1.252 -0.248 1.500 

Red sandstone and clays 28906 973 1.042 -0.045 1.086 

Consolidated dune sand 104548 197 -1.874 0.078 -1.951 

unconsolidated dune sand 26346 81 -1.383 0.017 -1.399 

Alluvium 22278 16 -2.839 0.018 -2.857 

Seismic microzonation 

(dominant periods) 

     

0.10s- 0.50s 123850 1362 -0.100 0.011 -0.111 

0.50s- 0.90s 226727 2000 -0.323 0.062 -0.385 

0.90s- 1.30s 214488 1905 -0.316 0.057 -0.373 

1.30s - 1.70s 647612 9459 0.187 -0.267 0.455 

Land use      

Building 215858 348 -2.030 0.174 -2.204 

Herbaceous vegetation 92886 1716 0.426 -0.045 0.471 

Cultivated land 110238 1445 0.077 -0.008 0.085 

Bare Soil or with little 

vegetation 

766033 11217 0.190 -0.440 0.629 

Forest 27662 0  0.023  

Slope (degree)      

0°-10° 287072 525 -1.904 0.237 -2.141 

10°-20° 406521 3950 -0.225 0.097 -0.323 

20°-30° 352762 6230 0.380 -0.209 0.589 

30°-40° 128107 3448 0.811 -0.157 0.968 

40°-50° 24843 571 0.649 -0.019 0.668 
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>50° 13372 2 -4.409 0.011 -4.420 

Plan curvature      

Concave 474926 7301 0.239 -0.190 0.429 

Flat 181680 1147 -0.660 0.082 -0.742 

convexe 556071 6278 -0.074 0.059 -0.132 

Profile curvature      

Concave 526951 7308 0.135 -0.117 0.252 

Flat 144874 899 -0.677 0.065 -0.742 

Convexe 540852 6519 -0.008 0.006 -0.014 

Distance to roads (m)      

0-50 256957 2272 2.053 0.071 -0.084 

50-100 167548 2217 1.878 -0.015 -0.044 

100-150 118957 1569 1.880 -0.010 0.010 

150-200 93084 1506 1.791 -0.028 0.035 

>200 576131 7162 1.905 -0.022 0.079 

Table 2: Spatial correlation between each causative factor and landslides. W+ : Positive weight ; W─ : Negative 

weight ; C : Contrast 

Evaluation of conditional independence: 

Before proceeding with the calculation of the probability of landslides occurrence, a chi-square test ( ) was 

calculated to assess the conditional independence between the predictor variables. This calculation was 

performed taking into account that one pixel representing the barycentre of each landslide (Thiery et al., 2004). 

In this step, all the predictor variables used in this analysis were converted into a binary configuration (presence 

or absence of landslides) based on the positive and negative weights calculated for each variable (Mezughi et al., 

2011; Pradhan & Buchroithner, 2010; Regmi et al., 2010). The classes of the factors which have positive weights 

have been assigned as factors for the presence of a landslide event, and classes which have negative weights are 

considered to be factors for the absence of a landslide event.  

The reading of table 3 allows us to identify the test of independence between all pairs of binary predictive 

variables. The chi-square value ( ) calculated for each pair is compared to the table value for 1 degree of 

freedom at the 99% confidence level (6.64). The comparison of the theoretical 𝒳2 and the observed 𝒳2 shows 

that 6 pairs of variables present a conditional dependence. This is the case of the factor "altitude" with the factors 

"drainage density", "lithology" and "seismic microzoning", it is also the case of transverse curvature with the 

slope and longitudinal curvature, as it is the case of the density of the hydrographic network with the distance to 

roads. These pairs of factors cannot be integrated into the modelling process. However, they can be combined in 

a new predictive variable (neo-predictive variable) and then introduced into the spatial analysis as a single 

variable (Van Westen, 1993 ; Bonham-Carter, 1994 ; Ezzine et al., 2008; Mastere, 2011; Thiery, 2007). In my 

case, the combination of river network density and road distances and between transverse and longitudinal 

curvature, is not possible, because they are conditionally dependent. Given that these variables are among the 

most important factors in triggering landslides in Al Hoceima, I propose to introduce them in the spatial analysis 

as a neo-predictive variable "density of the hydrographic network + distance to roads". Thus, the grouping of 

classes of these neo-predictive variables was done as follows:  
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a) - Density of the hydrographic network + distance to roads (NV(DD+DR)): were considered to be the most 

important factors influencing the occurrence of landslides. They generally represent the area most threatened by 

slope instability. Thus, five classes are considered: 

 

- Class 1 : density from 0 to 2 km/km2 + distance to the road greater than 200 m 

- Class 2 : density of 2 to 4 km/km2 + distance to the road between 150 and 200 m 

- Class 3 : density of 4 to 6 km/km2 + distance to the road between 100 and 150 m 

- Class 4 : density of 6 to 8 km/km2 + distance to the road between 50 and100 m 

- Class 5 : density greater than 8 km/km2 + distance to the road less than 50 m 

b) - transverse curvature + longitudinal curvature (NV(PC+PT)): can be easily grouped together from a 

geomorphological point of view. They depend mainly on the concavity and convexity of the surface. These 

geomorphological characteristics can lead to a change in the whole slope and often promote instability in slopes 

that are in potential equilibrium. Thus, the grouping "transverse curvature + longitudinal curvature" includes the 

three classes: 

- Class 1 : longitudinal curvature (concave form) + transverse curvature (concave shape)  

- Class 2 : longitudinal curvature (flat form) + transverse curvature (flat form)  

- Class 3 : longitudinal curvature (convex form) + transverse curvature (convex form) 

The variables to be combined have been tested by Cramer's V test (Thiery, 2007; Mastere, 2011)in order to 

explore the level of association between them, as recommended. The value obtained of the Cramer’s V is equal 

to 0.29 for (NV(DD+DR)) and 0.37 for (NV(PC+PT)). These values indicate a medium to strong relationship 

between the combined factors (Kim, 2017), indicating that we can then group these variables together and 

introduce them into this analysis. 

 A E DD L LU S PC PT DF DR SM 

A  1.034 0.654 5.090 0.193 0.592 1.875 0.158 0.911 0.863 1.976 

E   8.321 7.128 2.195 0.027 3.99 0.596 3.317 5.653 7.847 

DD    1.210 5.936 2.736 1.497 2.194 0.361 9.299 0.110 

L     0.599 0.027 2.023 0.596 3.317 2.927 3.447 

LU      0.149 0.159 0.214 2.630 0.113 0.824 

S       0.399 7.323 0.019 2.604 1.275 

PC        14.75 0.067 5.164 0.281 

PT         0.030 0.011 0.581 

DF          0.318 4.962 

DR           1.023 

SM            

Table 3: Conditional Independence Assessment Results. A: Aspect, E: Elevation, DD: Drainage density, L: 

Lithology, LU: Land use, S: Slope, PC: Profile curvature, PT: Plan curvature, DF: Distance to faults, DR: 

Distance to roads, SM: Seismic microzoning. Values in bold indicate a conditional dependence between two 

factors. The chi-square test is performed with 1 degree of freedom and at a confidence level of 99% (𝒳2= 6.64). 

 

Combination of the factor maps and model validity: 
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To examine the influence of each factor on the predictive power of our hazard map, we selected eight 

combinations of different independent factors (Table 4) (Mezughi et al., 2011; Pradhan et al. 2010; Thiery et al. 

2004; Mastere, 2011), representing topographic, hydrological, geological, seismic and land use factors (Regmi et 

al., 2010; Mezughi et al., 2011). Then, the final probability for each mesh and for each model (or combination) is 

calculated using the a posteriori probability equation (14) (Bonham-Carter, 1994; Chamorro, 2010). This allows 

mapping of twelve landslide susceptibility maps in Al Hoceima (Figure 7).  

Model Combination of factors AUC 

1 M1= S+A+PC+DD+L+DF+LU+SM 0.899 

2 M2= S+ DD+ L+DF+LU 0.889 

3 M3= EV+ CL+DRH+L+DF+OS+MS 0.891 

4 M4= S+A+PC+DD+DF+LU+SM 0.829 

5 M5= S+A+PC+DD+LU 0.822 

6 M6= S+A+PC+DF+DD+LU 0.824 

7 M7= S+A+PC+DF+DR+LU 0.769 

8 M8= S+A+PC+NV(DD+DR)+L+DF+LU 0.900 

9 M9= S+PC+L+DF+LU+DR 0.894 

10 M10=S+L+DF+PT+DD+SM 0.892 

11 M11=S+A+NV(DD+DR)+NV(PC+PT)+L+DF+LU+SM 0.902 

12 M12=S+NV(PC+PT)+A+DD+L+DF+LU 0.897 

Table 4: Combination of Predictor Variables for twelve models 

 

The predictive or discriminating ability of each model is determined by the area under the curve (AUC) (Figure 

8). Based on these values, it can be seen that models 1, 8, 11 and 12 provide good results. Thus, they predict 

more landslides in the high susceptibility area than the other models. On the other hand, there is a decrease in 

AUC values for the other models. Model 7 represents the smallest value; this is due to the variables of river 

system density, lithology and seismic microzoning which are not included in the analysis. In addition, the AUC 

values for Models 4, 5 and 6 are relatively higher than the previous model, where lithology, fault distance and 

seismic microzoning factors are not used in the analysis. The absence of these factors in these four models 

contributes to the decrease in their predictive power. Also, we can see that the distribution of probability classes 

shows a disturbance in our area of study (Figure 7: M4, M5, M6 and M7), which results in sensitive areas to 

landslide within the carbonate formations of the Bokkoya massif. Also, the elimination of the slope factor in 

Model 3 and the slope exposure factors and the longitudinal curvature in Model 2 contributes to a decrease in the 

AUC value when compared with the values of models that include these factors. This indicates that 

morphological factors have an influence on landslide genesis. In Model 10, the land cover factor has not been 

introduced; the decrease in the AUC value attests the great importance of this parameter in the study of landslide 

hazard. The elimination of the factor of the density of the hydrographic network as well as the seismic factor has 

relatively decreased the AUC value of model 9. However, the integration of the neo-predictive variables "river 

network density + distance to roads" and "transverse curvature + longitudinal curvature" increases the predictive 

power of my model ('M8', AUC = 0.90; 'M11', AUC=0.902; 'M12', AUC=0.897). This shows that the neo-

variables formed clearly contribute to the improvement of the predictive power of the model, as well as give very 

clearly improved results compared to other combinations, especially since they result from the integration of 

important factors in the genesis of landslides in the studied area. Among the 12 representative combinations of 

the various factor landslide triggers in the study area, there is one high-prediction combination calculated from 
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the AUC (area under the curve) prediction curve. This is the combination of model 11 with AUC= 0.902. This 

value was found from the integration of a set of factors contributing to improve the model predictive power, 

responsible for landslides in the city of Al Hoceima, namely lithology, faults, slope, relief morphology, slope 

exposure, hydrographic network, seismicity and land use. 
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Figure 7: The landslide susceptibility maps of the study area realized from twelve studied combinations. 

 

Figure 8: ROC curves obtained by the twelve models studied  
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Hazard Zoning: 

In order to facilitate the reading and interpretation of the hazard map, we have adopted a method frequently used 

by several authors (Mastere, 2011; Thiery et al., 2004; Van Den Eeckhaut et al., 2009) and from which we will 

select the classes of hazard landslide. This method reclassifies the map into several intervals based on abrupt 

changes in the cumulative a posteriori probability curve represented here by thresholds. As in the above 

cumulative curve (Figure 9), three threshold probabilities have been identified on the curve where the limits of 

the susceptibility classes have been defined: low (0 – 0.088), moderate (0.088 - 0.05), high (0.05 - 0.129), and 

very high (0.129 – 0.778). Based on these classes, hazard landslide zoning was carried out in Al Hoceima and its 

periphery (Figure 10).  

 

Figure 9: Cumulative probability curve of the landslide hazard. The arrows indicate the thresholds of the 

different classes of the hazard..  

 

According to this classification, the percentage of surface area of each hazard class was calculated. As shown in 

Table 5, 78.24% of the area of study is designated as low or no hazardous, with medium hazard areas covering 

only 10.36% of the area of study. On the other hand, the high and very high hazard zones represent 5.51% and 

5.89% respectively. Comparison between the obtained hazard map and the distribution of landslides in the area 

of study shows that 48.45% of the landslides are located in a very high hazard area, 20.58% fall in a high hazard 

area, 21.55% fall in a medium hazard area and 9.42% fall in a no or low hazard area. 
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Table 5: Characteristics of the four classes of susceptibility to landslides 

Class Probability Susceptibility 

to landslides 

% in study area % in depletion area 

1 0 – 0.0088 Low 78.24 9.42 

2 0.0088 - 0.05 Medium 10.36 21.55 

3 0.05  - 0.129 High 5.51 20.58 

4 0.129 – 0.778 Very High 5.89 48.45 

  

According to this classification, a large part of the area of study is in areas of very low susceptibility. But some 

central parts of Al Hoceima, in the Bokkoya massif, show some areas of medium susceptibility. The high and 

very high sensitivity zones are mainly located in the north of the city within the ancient landslides of great 

magnitude. 

 

Figure 10: Landslide susceptibility map derived from the model 11 probability map. 

DISCUSSION AND CONCLUSION 

The landslide susceptibility modeling using the evidence theory gives very satisfactory objective results 

compared to other qualitative methods (Fares(1994); Margaa (1994)).  The latter methods are of great interest in 

selecting a number of determining factors and defining their individual contributions to landslide movement. 
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However, they have certain limitations, especially at threshold levels and the prioritization of each of the 

determining factors in relation to its relative importance in the genesis of ground motion. Thus, qualitative 

judgement of the obtained results from different levels of hazard (high, moderate, low) without any 

quantification of these terms. However, the evidence theory method currently used by several authors (Pradhan 

et al., 2010; Mohammady et al., 2012; Devkota et al., 2013; Dumlao & Victor, 2015; Ozdemir & Altural, 2013; 

Vakhshoori & Zare, 2016; Bai et al., 2010; Mastere, 2011) has given quantitative results based on the coupling 

between statistical and probabilistic models. It allows the calculation of positive or negative weights for each 

causative factor and the determination of combinations of factors generating landslides in the study area. Thus, 

the use of the ROC curve allows to validate the results and to choose the model with the right prediction 

capacity. 

The factors identified in this study all have a strong correlation with landslides occurred. The results show that 

geological conditions: lithology and faults can have a positive influence on the initiation of landslides. For 

example, as the results show, landslides are concentrated in lithology dominated by marls, or shales, or by red 

clays and sandstones and also close to the faults. The last result is confirmed in the field by numerous landslides 

observed at the nearby of the Ajdir active fault (Poujol et al., 2014) crossing Al Hoceima. In addition, the 

hydrographic network and steep slopes constitute a significant effect on the occurrence of these phenomena. 

They are followed by the moderate influence of other factors: such as anthropic action and seismic microzoning 

which have a moderate effect on the occurrence of these events.  

Comparison of the results of the AUC of the different combinations allowed me to identify the best simulations 

obtained, these are the combinations 'M1', AUC=0.899; 'M8', AUC = 0.90; 'M11', AUC=0.902 and 'M12', 

AUC=0.897. It can be seen that the tests integrating the predictive neo-variables have improved the predictive 

capacity of the model. The AUC value of combination 11 allowed to deduce that the neo-predictive variables 

contribute to the improvement of the predictive potential of the model.. The combination of the inventoried 

landslides with the a posteriori probability map (susceptibility map) allows to classify the majority of the 

observed landslide grids in high and very high hazard classes (69% of the observed landslides fall into high and 

very high susceptibility classes). These areas are mainly located within the old landslides of large magnitude 

marked by important landslides and strong regressive erosion, highlighting the very advanced degree of surface 

degradation. 

The preferred map has a more accurate hazard zonation. It is based on the main instability factors affecting the 

entire study area. The lithological nature, the structure and shape of the slope, and the topography, create the 

conditions for movement, which is triggered by heavy rainfall or by seismic activities with various modalities 

depending on land use and anthropogenic activities. It is a kind of exploratory document, likely to help 

especially in the context of risk prevention. Examination of the obtained map shows that the areas with high and 

very high hazard (frequent to very frequent landslides) are related to valleys and essentially to the level of 

schistose and marl formations. These zones are generally characterized by low cohesion, steep slope, clay 

intercalations, intense fracturing. These sectors are considered non-constructible. Those noted of average hazard 

(rather frequent landslides) are likely to be developed on condition that unstable landslides are stabilized and 

gullies are corrected by systems of thresholds and benches. For low or no-hazard zones (non-existent landslides 
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or exceptional occurrences), the risks of instability are low, and their development does not a priori pose any 

constraint. 

The obtained results show that the model chosen in this study performs satisfactorily. However, I don't forget 

that the obtained results in this work can be improved if some data that have a direct relation with the occurrence 

of landslides in the study area are available, such as: rainfall data, geotechnical data and hydrogeological data, 

distributed over the whole study area. On the other hand, if a large-scale lithological map of the study area is 

available, allowing the petrographic definition of intermediate rocks that are not defined in the current geological 

map of Al Hoceima (scale 1/50000). It is recommended to include these data sets into the analysis in order to 

examine all the mechanisms and the factors that influence instability. 
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