

PEBBLING IN GOLDBERG SNARK GRAPH

Sagaya Suganya A. ${ }^{1}$, Saibulla A ${ }^{2}$

Abstract

A pebbling move on a connected graph $G=(V, E)$ is the removal of two pebbles from one vertex and placing one pebble on one of its adjacent vertex. The pebbling number $f(G)$ is the least number of pebbles required in moving one pebble to an arbitrary vertex by a sequence of pebbling moves. In this paper, we have determined the pebbling number of an $n-$ dimensional Goldberg Snark G_{n} for $\mathrm{n} \geq 3$.

2000 AMS Subject Classification: 05C99, 05C35
Keywords: Pebbling - Cubic Graph - Goldberg Snark
${ }^{1,2}$ Department of Mathematics \& Actuarial Science B. S. Abdur Rahman Crescent Institute of Science \& Technology, Chennai, India

Email: ${ }^{1}$ saibulla.a@ gmail.com
DOI: 10.31838/ecb/2023.12.6.247

1. Introduction

Graph theory is a branch of mathematics that has experienced tremendous growth and impact among researchers due to its applications in Science and Engineering. Many real world networks can be modeled as a graph or a network. Design and use of multistage interconnection networks have recently drawn considerable attention due to the availability of inexpensive, powerful, microprocessors and memory chips. A multistage interconnection network is usually modeled as a graph in which the vertices correspond to processors / nodes and the edges corresponds to connections / communication links. Graph theory has a close association with combinatorics which are needed to count, enumerate or represent possible solution. Combinatorial optimization is concerned with deducing optimal solution in a finite solution space. Although, certain practical problems such as finding shortest or cheapest route trips, internet data packet routing, planning, scheduling and time tabling which appears to be NP- complete but the literature has a vast number of problems which could be solved in polynomial time. To accomplish this, there are certain combinatorial games available such as pebbling, peg solitaire, chip firing and checker jumping.

Graph pebbling is a network optimization model for the transportation of resources that are consumed in the transit. The concept of pebbling has its applications in reduction of memory traffic in computers, register allocation problem and transportation of resources that are consumed in the transit. The pebbling steps analyze the cost in loss of pebbles and it has been the subject of deep and extensive research in the context of proving lower bounds for computation on graphs. In 1956, Erdos initiated the study of zero sum sequences. On the subject of this study, Lemke and Klietman proved
the conjecture of Erdos. It was Lagarias and Saks who suggested graph pebbling as a tool for solving the number theoretical conjecture. Chung [3] was the first to introduce graph pebbling into literature where she obtained the pebbling number of hypercube.

For a connected graph G, a pebbling configuration is the distribution of pebbles on the vertices of G. A pebbling move consists of removing two pebbles from a vertex and placing one pebble on the adjacent vertex. We say, one pebble is moved to any arbitrarily chosen target vertex say v, if one can repeatedly apply pebbling move so that in the resulting distribution v has at least one pebble. The pebbling number $f(G)$ is the minimum number of pebbles that ensures that every vertex of the graph G can be pebbled, regardless of the initial configuration of pebbles. In case, one pebble is placed on all the vertices of the graph G except the target vertex then there is no pebbling move which means that $f(G) \geq n(G)$, where $n(G)$ is the number of vertices of G [3]. For $w, v \in V(G)$, if w is at distance d from v and $2^{d}-1$ pebbles are placed on w, then no pebble is moved to v which leads to the fact that $f(G) \geq 2^{d}$, where d is the diameter of G. Thus, we can say that $f(G)$ $\geq \max \left\{n(G), 2^{d}\right\}$ [3]. A transmitting subgraph of a graph G is a path v_{0}, v_{1}, v_{2}, . \ldots, v_{n} in which one pebble is transmitted from v_{0} to v_{n} with the distribution of at least two pebbles in v_{0} and at least one pebble on each of the other vertices in the path, except possibly v_{n}. With this distribution of pebbles one can transmit a pebble from v_{0} to v_{n} [8].

There are some known graphs for which the pebbling number is computed such as path P_{n} on n vertices, complete graph K_{n}, hypercube Q_{n} [3], product graph $C_{5} \times C_{5}$ [8], fan graph F_{n} and wheel graph W_{n} [6], complete bipartite graph $K_{s, t}$ [5], graphs with diameter 2 [4], cycle [17], Jahangir
graph $J_{2, m}, m \geq 8$ [16], Flower Snark graph [2], power of paths [1], n - star graph [15], split graph [12]. Computing bounds for pebbling is always an interesting topic of research. Kenter et.al [11] have found the pebbling bounds on product graph pebbling. In recent past years, graph pebbling has evolved as wide topic of research with its new variations. To list a few, Generalized Optimal cover pebbling [10], Monophonic pebbling [13], Non - Split Domination cover pebbling [14] and many more.

The study of snark graphs were initiated in early 1880's from a classical problem in Graph Theory namely the Four-Colour theorem. The equivalence of Four-Colour theorem with the fact that every bridgeless cubic graph is 3 -colourable highlights the importance of the family of snark graphs. The Petersen graph is considered as the smallest snark graph. However, in 1975 Isaacs found an infinite family of snarks namely Flower snark J_{n} [9]. Further in 1981, Goldberg added his contribution to the infinite family of snarks which is named after him as Goldberg snark [7]. The Goldberg snark is also referred as Loupekine in the literature. Driven by its physical importance and motivated by the interesting counter examples on snark graphs available in the literature, we have
obtained the pebbling number of Goldberg snark G_{n} for $n \geq 3$.

2. Goldberg Snark Graph

Goldberg snark graphs are recursive structures generated by the basic block graph B_{n}. The vertex and edge set of B_{n} is defined as $V\left(B_{n}\right)=\left\{a_{n}, b_{n 0}, b_{n 1}, c_{n 0}, c_{n 1}, u_{n}\right.$, $\left.v_{n}, w_{n}\right\}, E\left(B_{n}\right)=\left\{a_{n} v_{n}, v_{n} w_{n}, v_{n} u_{n}, u_{n} b_{n} 0\right.$, $\left.b_{n 0} b_{n 1}, b_{n 1} w_{n}, w_{n} c_{n 0}, u_{n} c_{n 1}, c_{n 0} c_{n 1}\right\}$. The graph in Figure 1 is the basic block graph B_{1}.For every such block graph we add a set of link edges $E_{n j}$ where $E_{n j}=\left\{c_{n 1} c_{j 0}\right.$, $\left.b_{n 1} b_{j 0}, a_{n} a_{j}\right\}, j=n+1$. The graph thus obtained is referred as link graph L_{n} where the vertex and edge set of L_{n} are $V\left(L_{n}\right)=$ $V\left(B_{n}\right) \cup V\left(B_{n+1}\right)$ and $E\left(L_{n}\right)=E\left(B_{\mathrm{n}}\right) \cup$ $E\left(B_{n+1}\right) \cup E\left(B_{n(n+1)}\right)$ respectively. See Figure 2.

For n odd, $n \geq 3$ graph G_{n} is obtained from n copies of B_{1}. The vertex set of G_{n} is $V\left(G_{n}\right)=V\left(B_{1}\right) \cup V\left(B_{2}\right) \cup \ldots \cup V\left(B_{n}\right)$ such that $\left|V\left(G_{n}\right)\right|=8 n$. The three cycles of G_{n} are $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ forms a $n-$ cycle, $\left\{b_{10}, b_{11}, b_{20}, b_{21}, \ldots, b_{n 0}, b_{n 1}\right\}$ and $\left\{c_{10}\right.$, $\left.c_{11}, c_{20}, c_{21}, \ldots, c_{n 0}, c_{n 1}\right\}$ forms a $2 n-$ cycle. The Goldberg snark G_{3} shown in Figure 3 is obtained as the union of basic block graphs B_{1}, B_{2} and B_{3}.

Figure 1: Basic block graph B_{1}

Figure 2: Link Graph L 1

Lemma 2.1: For a basic block graph B_{1}, f $\left(B_{1}\right)=8$.
Proof: Consider the block B_{1} with vertices $a_{1}, b_{10}, b_{11}, u_{1}, v_{1}, w_{1}, c_{10}, c_{11}$. Assume the vertex c_{11} as the target vertex. Consider a distribution of eight pebbles on the vertices of B_{1}. For the distribution, $p\left(a_{1}\right)=$ 3, $p\left(b_{10}\right)=1, p\left(b_{11}\right)=1, p\left(u_{1}\right)=1, p\left(w_{1}\right)$ $=1$ the target is not pebbled. Hence, consider a distribution of eight pebbles. Let $p\left(a_{1}\right)=2$ and assume that there is one pebble on the remaining vertices except the target vertex. The possible pebbling paths for reaching the target with one pebble are $\left\{a_{1}, v_{1}, u_{1}, c_{11}\right\},\left\{a_{1}, v_{1}, w_{1}, c_{10}\right.$, $\left.c_{11}\right\},\left\{a_{1}, v_{1}, u_{1}, b_{10}, b_{11}, w_{1}, c_{10}, c_{11}\right\} \quad\left\{a_{1}\right.$, $\left.v_{1}, w_{1}, b_{11}, b_{10}, u_{1}, c_{11}\right\}$. In case, if there are zero pebbles on all the vertices then place eight pebbles on the vertex initiating the pebbling move in such a way that the target vertex is pebbled.

Notation 2.1: The vertex set of G_{n} is partitioned into four disjoint subsets S_{1}, S_{2}, S_{3} and S_{4} where the vertex set $S_{1}=\left\{a_{1}, a_{2}\right.$, $\left.\ldots, a_{n}\right\}, S_{2}=\left\{b_{10}, b_{11}, b_{20}, b_{21}, \ldots, b_{\mathrm{n} 0}\right.$, $\left.b_{n 1}\right\}, S_{3}=\left\{u_{1}, v_{1}, w_{1}, u_{2}, v_{2}, w_{2}, \ldots, u_{n}, v_{n}\right.$, $\left.w_{n}\right\}$ and $S_{4}=\left\{c_{10}, c_{11}, c_{20}, c_{21}, \ldots, c_{n 0}, c_{n 1}\right\}$.

Let $p_{i}, p\left(x_{i}\right)$ and $p^{(i)}, i=1,2,3,4$ denote the number of pebbles distributed over each vertex of S_{i}, number of pebbles initially placed on a particular vertex x_{i} and the total number of pebbles on the set S_{i} respectively.

Theorem 2.1: For a Goldberg snark graph $G_{3}, f\left(G_{3}\right)=24$.
Proof: The graph G_{3} contains three basic block graphs B_{1}, B_{2} and B_{3}. By Lemma 2.1, $f\left(\boldsymbol{B}_{1}\right)=8$. Fix some vertex say w_{1} as the target vertex. Excluding the trivial possibilities, assume $p\left(v_{1}\right)=0, p\left(b_{11}\right)=0$, $p\left(c_{10}\right)=0, p\left(c_{11}\right)<4, p\left(u_{1}\right)<4, p\left(b_{10}\right)<$ 4 , $p\left(a_{1}\right)<4$. The total number of pebbles considered on B_{1} is at most five. The remaining three pebbles removed from B_{1} will be utilized in later case. If eight pebbles are distributed on each block B_{i}, for $i \in\{2,3\}$ then it is possible to move one pebble to any vertex of B_{i}. For if, p $\left(a_{2}\right)=1$ and $p\left(a_{3}\right)=1$ then the target is pebbled using the three pebbles that was excluded from B_{1} through the transmitting path $\left\{a_{3}, a_{2}, a_{1}, v_{1}, w_{1}\right\}$. In a similar manner, the target is pebbled from any arbitrary vertex of G_{3}. Hence, $f\left(G_{3}\right)=24$.

Figure 3: Goldberg snark graph G_{3}

Theorem 2.1: The pebbling number of Goldberg snark graph G_{n} for $n \geq 5$ is f $\left(G_{n}\right)=8 n+1$.
Proof: We consider four possible cases by fixing the target vertex in the sets S_{1}, S_{2}, S_{3} and S_{4}.

Case 1: Let $a_{1} \in S_{1}$ be the target vertex. Suppose $p\left(a_{2}\right)=2$ or $p\left(a_{n}\right)=2$ then the proof is trivial. Hence, assume that $p\left(a_{2}\right)$ $=1$ and
$p\left(a_{n}\right)=1$.
Case 1.1: $p_{1}>1$
In this case we place at least two pebbles on the vertices of S_{1} in such a way that there exist a vertex say a_{i} for which $p\left(a_{i}\right)$ $\geq 2,2 \leq i \leq n-3$ will initiate the pebbling move. The transmitting path in this case would be $\left\{a_{i}, a_{i-1}, \ldots, a_{2}, a_{1}\right\}$. On placing two pebbles on the $n-3$ vertices of S_{1} and one pebble on a_{2} and a_{n} the total number of pebbles required to pebble the target vertex is $p^{(1)} \geq 2(n-3)+1+1=$ $2 n-4$.

Case 1.2: $p_{1} \leq 1$

Here, we consider the case where the vertices of S_{1} are either distributed with one pebble or no pebble. Now S_{1} has inadequate pebbles to initiate the pebbling move. In order to pebble the target vertex pebbles are extracted from either S_{2} or S_{3}
or S_{4}. The vertex $a_{i} \in S_{1}$ is adjacent to the vertex $v_{i} \in S_{3}$. Initially assume $p\left(v_{1}\right)<2$ otherwise the solution is trivial.

Case 1.2.1: $p_{3} \geq 2$
In this case, we consider $p\left(u_{i}\right)=2, p\left(v_{i}\right)=$ $2, p\left(w_{i}\right)=2$ for $i \in\{2,3, \ldots, n\}$. The vertex v_{i} is adjacent to the vertices u_{i} and w_{i}. After a pebbling move which is initially considered in the set S_{3} the vertex v_{i} receives at least two pebbles. That is one pebble from the vertex u_{i} and the other pebble from the vertex w_{i}. Hence, after a pebbling move $p\left(v_{i}\right)=4$. Since a_{i} is adjacent to v_{i} after a pebbling move every vertex a_{i} will have at least two pebbles and as a consequence the target is pebbled through the transmitting path $\left\{v_{i}, a_{i}, a_{i+1}\right.$, $\left.a_{i+2}, \ldots, a_{n}, a_{1}\right\}$ or $\left\{v_{i}, a_{i}, a_{i-1}, a_{i-2}, \ldots, a_{2}\right.$, $\left.a_{1}\right\}$.
There is one pebble on $(n-1)$ vertices of S_{1} and minimum two pebbles on $3(n-1)$ vertices of S_{3}. Thus, the number of pebbles required in this case is $p^{(1)}+p^{(3)} \geq 2$ (3 (n $-1))+n-1=7 n-7$.
Case 1.2.2: $p_{3} \leq 1$
By Lemma 2.1 the pebbling number of each block of G_{n} is eight. On assuming that there are no pebbles on the vertices of S_{3} we need to have eight pebbles distributed on the vertices of S_{2} and S_{4}. If p $\left(b_{i 0}\right)=2, p\left(b_{i 1}\right)=2, p\left(c_{i 0}\right)=2, p\left(c_{i 1}\right)=2$ then after a pebbling move there will be
two pebbles on the vertices u_{i} and w_{i}. Now these vertices in turn contribute two pebbles to the vertex v_{i} so that one pebble is moved to a_{i}. It is to note that, there is no vertex to trigger the pebbling move in the vertex set of S_{1} as $p\left(a_{i}\right)=1$. Hence, for a distribution of eight pebbles on each B_{i} are not sufficient. Therefore, we require one more pebble to initiate the pebbling move. Thus the total number of pebbles required is $p^{(1)}+p^{(2)}+p^{(3)}+p^{(4)} \geq 8 n+1$.

Case 2: $b_{1 i} \in S_{2}$ either $i=0$ or 1 as the target vertex.
Fix b_{10} as the target and the proof is similar if any vertex of S_{2} is chosen as the target vertex. Without loss of generality, assume that $p\left(u_{1}\right)=0, p\left(b_{11}\right)=0$ and p $\left(b_{n 1}\right)=0$.

Case 2.1: $p_{2} \geq 2$

The vertices of S_{2} forms a $2 n$ - cycle and if minimum two pebbles are placed on the vertices of S_{2} then the transmitting path to pebble the target vertex b_{10} is $\left\{b_{i 0}, b_{i 1}\right.$, $\left.b_{(i+1) 0}, b_{(i+1) 1}, \ldots, b_{n 0}, b_{n 1}, b_{10}\right\}$. Excluding the vertices with zero pebbles in S_{2} place two pebbles on the $(2 n-3)$ vertices of S_{2}. In this case, the number of pebbles required is $p^{(2)} \geq 2(2 n-3)=4 n-6$.

Case 2.2: $p_{2} \leq 1$

Pebbling move within the set S_{2} is not possible as p_{2} has either one or zero pebble. Due to insufficient pebbles, extract pebbles from S_{3} and S_{4} which is discussed in the following subcases.

Case 2.2.1: Extraction of pebbles from S_{3}. If $p_{3} \geq 4$ then at least two pebbles are moved to the vertices of S_{2} such that $p_{2} \geq$ 2 and the target can be pebbled as in Case 2.1.

In case, $p_{3}<4$ then we have to extract pebbles from S_{4}. Here we need $p^{(2)}+p^{(3)}$ $\geq 4(3(n-1))+2 n-1=14 n-13$ pebbles for pebbling the target vertex.

Case 2.2.2: Extraction of pebbles from S_{4}.

With $p_{4} \geq 4$, after a pebbling move at least two pebbles are placed on the vertices u_{i} and w_{i}. Thereafter, at least one pebble is moved to the vertices of S_{2}. Further, to facilitate the pebbling move in the set S_{2} place one pebble on any vertex of S_{2} so that the target is pebbled as in Case 2.1. It is to note that $p_{4}<4$ is not possible by Lemma 2.1. Hence, the number of pebbles required is $p^{(2)}+p^{(4)} \geq$ $8 n+1$.

Case 3: Let u_{1} or v_{1} or w_{1} be the target vertex.
Without loss of generality fix $w_{1} \in S_{3}$ as the target. The proof is similar if any vertex u_{1} or v_{1} is chosen as the target vertex. Initially assume $p\left(u_{1}\right)<4$ and p $\left(v_{1}\right)=0$ otherwise the solution is trivial.

Case 3.1: $p_{3} \geq 4$
The vertices of S_{3} are adjacent to the vertices of S_{1}, S_{2} and S_{4}. With $p_{3} \geq 4$ it is evident that two pebbles can be moved to every vertex either in S_{1} or S_{2} or S_{4}. The target is thus pebbled through the transmitting paths $\left\{v_{i}, a_{i}, a_{i+1}, a_{i+2}, \ldots, a_{n}\right.$, $\left.a_{1}, v_{1}, w_{1}\right\}$ or $\left\{w_{i}, b_{i 1}, b_{i 0}, b_{(i-1) 1}, b_{(i-1) 0}, \ldots\right.$, $\left.b_{(i-2) 1}, b_{(i-2) 0}, \ldots, b_{11}, w_{1}\right\}$ or $\left\{c_{i 0}, c_{i 1}\right.$, $c_{(i+1) 0}, c_{(i+1) 1}, c_{(i+2) 0}, c_{(i+2) 1}, \ldots, c_{n 0}, c_{n 1}, c_{10}$, $\left.w_{1}\right\}$. In this case, we require $p^{(3)} \geq 4$ (3 (n $-1))=12 n-12$ pebbles to move a pebble to the target vertex.

Case 3.2: $p_{3}<4$

By Lemma 2.1, it is obvious that there should exists at least eight pebbles on each block B_{i}. Excluding the pebbles considered on S_{3}, the number of pebbles on each B_{i} should be at least five. But with five pebbles only one pebble is placed on the vertex a_{i}. Hence with $p_{1}=1$, the target vertex cannot be pebbled. We need an additional pebble to initiate the pebbling move such that the target is pebbled. In this case we require $p^{(1)}+p^{(2)}+p^{(3)}+p^{(4)}$ $\geq 8 n+1$ pebbles.

Case 4: Let c_{10} or $c_{11} \in S_{4}$ be the target vertex.

As the vertices of S_{2} and S_{4} forms a $2 n-$ cycle and it is adjacent to the vertices of S_{3} the methodology for proving is same as in the Case 2.
All the possibilities of pebbling the target vertex in the sets S_{1}, S_{2}, S_{3} and S_{4} are discussed above. Hence, we conclude that the least possibility of pebbling the target vertex from the four cases. As $f\left(G_{n}\right)$ cannot be less than $8 n$, the least possibility of $\{2 n-4,7 n-7,8 n+1,4 n-6,14 n-$ $13,12 n-12\}$ is $8 n+1$. Hence, we conclude that $f\left(G_{n}\right)=8 n+1$.

3. Conclusion

The family of snarks falls under bridgeless cubic graphs. Motivated by its topological structure, in this paper we have determined the pebbling number of Goldberg snark G_{n}. The problem is open to find the pebbling number for other graphs in the snark family and find a bound for the pebbling number of cubic graphs.

4. References

[1] L. Alcón and G. Hurlbert, Pebbling in powers of paths, Discrete Mathematics, 346(5), p. 113315 (2023).
[2] M. Chris Monica and A. Sagaya Suganya, Pebbling in Flower Snark, Global Journal of Pure and Applied Mathematics 13, 1835 1843 (2017).
[3] F.R.K. Chung, Pebbling in hypercube, SIAM J. Discrete Mathematics, 2(4), 467-472 (1989).
[4] T.A. Clarke, R.A. Hochberg and G.N. Hulbert, Pebbling in diameter two graphs and product of paths, J. Graph Theory, 25, 119 - 128 (1997).
[5] R. Feng and J.Y. Kim, Graham's pebbling conjecture on product of complete bipartite graphs, Sci. China Ser. A, 44, 817 - 822
(2001).
[6] R. Feng and J.Y. Kim, Pebbling numbers of some graphs, Sci. China Ser. A, 45, 470-478 (2002).
[7] M. K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory Ser. B, 31 (3), 282 - 291 (1981).
[8] D.S. Herscovici, A.W. Higgins, The pebbling number of $\mathrm{C}_{5} \times \mathrm{C}_{5}$, Discrete Math., 189, 123 - 135 (1998).
[9] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, American Mathematical Monthly, 82(3), 221 - 239 (1975).
[10] M. Joice Punitha, A. Sagaya Suganya, Computational Game Theory Model for Adhoc Network, Solid State Technology, Vol. 63 (6), pp. 1816-1829 (2020).
[11] F. Kenter, D. Skipper and D. Wilson, Computing bounds on product graph pebbling numbers, Theoretical Computer Science, 803, 160 - 177, (2020).
[12] Liliana Alcon, Marisa Gutierrez, Glenn Hurlbert, Pebbling in Split Graphs, SIAM Journal of Discrete Mathematics, 28 (3), $1449-1466$ (2014).
[13] A. Lourdusamy, I. Dhivviyanandam and S. Kither Iammal, Monophonic pebbling number and t -pebbling number of some graphs, AKCE International Journal of Graphs and Combinatorics, 19(2), 108 - 111, (2022).
[14] A. Lourdusamy, I. Dhivviyanandam and Lian Mathew, Nonsplit Domination Cover Pebbling Number for Some Class of Middle Graphs, arXiv:2305.04463v1[math.CO], 8 May 2023.
[15] A. Lourdusamy, A. Punitha

Tharani, The pebbling number of 4-star Graph, J. Sciencia Acta Xaveriana, 2(2), 29-59 (2011).
[16] A. Lourdusamy, S. Samuel Jeyaseelan and T. Mathivanan, On

Pebbling Jahangir Graph, Gen.
Math. Notes, 5(2), 42 - 49 (2011).
[17] L. Pachter, H.S. Snevily and B. Voxman, On pebbling graphs, Congr. Numer., 107, $65-80$ (1995).

