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Abstract 

 

A pebbling move on a connected graph G = (V, E) is the removal of two pebbles from one 

vertex and placing one pebble on one of its adjacent vertex. The pebbling number f (G) is the 

least number of pebbles required in moving one pebble to an arbitrary vertex by a sequence 

of pebbling moves. In this paper, we have determined the pebbling number of an n – 

dimensional  Goldberg Snark Gn for n   3. 
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1. Introduction 

 

Graph theory is a branch of mathematics 

that has experienced tremendous growth 

and impact among researchers due to its 

applications in Science and Engineering. 

Many real world networks can be modeled 

as a graph or a network. Design and use of 

multistage interconnection networks have 

recently drawn considerable attention due 

to the availability of inexpensive, 

powerful, microprocessors and memory 

chips. A multistage interconnection 

network is usually modeled as a graph in 

which the vertices correspond to 

processors / nodes and the edges 

corresponds to connections / 

communication links. Graph theory has a 

close association with combinatorics 

which are needed to count, enumerate or 

represent possible solution. Combinatorial 

optimization is concerned with deducing 

optimal solution in a finite solution space. 

Although, certain practical problems such 

as finding shortest or cheapest route trips, 

internet data packet routing, planning, 

scheduling and time tabling which appears 

to be NP- complete but the literature has a 

vast number of problems which could be 

solved in polynomial time. To accomplish 

this, there are certain combinatorial games 

available such as pebbling, peg solitaire, 

chip firing and checker jumping. 

  

Graph pebbling is a network optimization 

model for the transportation of resources 

that are consumed in the transit.  The 

concept of pebbling has its applications in 

reduction of memory traffic in computers, 

register allocation problem and 

transportation of resources that are 

consumed in the transit. The pebbling 

steps analyze the cost in loss of pebbles 

and it has been the subject of deep and 

extensive research in the context of 

proving lower bounds for computation on 

graphs. In 1956, Erdos initiated the study 

of zero sum sequences. On the subject of 

this study, Lemke and Klietman proved 

the conjecture of Erdos. It was Lagarias 

and Saks who suggested graph pebbling as 

a tool for solving the number theoretical 

conjecture. Chung [3] was the first to 

introduce graph pebbling into literature 

where she obtained the pebbling number 

of hypercube. 

 

For a connected graph G, a pebbling 

configuration is the distribution of pebbles 

on the vertices of G. A pebbling move 

consists of removing two pebbles from a 

vertex and placing one pebble on the 

adjacent vertex. We say, one pebble is 

moved to any arbitrarily chosen target 

vertex say v, if one can repeatedly apply 

pebbling move so that in the resulting 

distribution v has at least one pebble. The 

pebbling number f (G) is the minimum 

number of pebbles that ensures that every 

vertex of the graph G can be pebbled, 

regardless of the initial configuration of 

pebbles. In case, one pebble is placed on 

all the vertices of the graph G except the 

target vertex then there is no pebbling 

move which means that f (G)   n (G), 

where n (G) is the number of vertices of G 

[3] . For w, v  V (G), if w is at distance d 

from v and 2d – 1 pebbles are placed on w, 

then no pebble is moved to v which leads 

to the fact that f (G)   2d, where d is the 

diameter of G. Thus, we can say that f (G) 

  max{n (G), 2d } [3]. A transmitting 

subgraph of a graph G is a path v0, v1, v2, . 

. . , vn in which one pebble is transmitted 

from v0 to vn with the distribution of at 

least two pebbles in v0 and at least one 

pebble on each of the other vertices in the 

path, except possibly vn. With this 

distribution of pebbles one can transmit a 

pebble from v0 to vn [8]. 

 

There are some known graphs for which 

the pebbling number is computed such as 

path Pn on n vertices, complete graph Kn, 

hypercube Qn [3], product graph C5   C5 

[8], fan graph Fn and wheel graph Wn [6], 

complete bipartite graph Ks,t [5], graphs 

with diameter 2 [4],  cycle [17],  Jahangir 
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graph J2, m , m   8 [16], Flower Snark 

graph [2] , power of paths [1],  n - star 

graph [15], split graph [12]. Computing 

bounds for pebbling is always an 

interesting topic of research. Kenter et.al 

[11] have found the pebbling bounds on 

product graph pebbling. In recent past 

years, graph pebbling has evolved as wide 

topic of research with its new variations. 

To list a few, Generalized Optimal cover 

pebbling [10], Monophonic pebbling [13], 

Non - Split Domination cover pebbling 

[14] and many more. 

 

The study of snark graphs were initiated in 

early 1880's from a classical problem in 

Graph Theory namely the Four-Colour 

theorem. The equivalence of Four-Colour 

theorem with the fact that every bridgeless 

cubic graph is 3-colourable highlights the 

importance of the family of snark graphs. 

The Petersen graph is considered as the 

smallest snark graph. However, in 1975 

Isaacs found an infinite family of snarks 

namely Flower snark Jn [9]. Further in 

1981, Goldberg added his contribution to 

the infinite family of snarks which is 

named after him as Goldberg snark [7]. 

The Goldberg snark is also referred as 

Loupekine in the literature. Driven by its 

physical importance and motivated by the 

interesting counter examples on snark 

graphs available in the literature, we have 

obtained the pebbling number of Goldberg 

snark Gn for n  3. 

 

2. Goldberg Snark Graph 

 

Goldberg snark graphs are recursive 

structures generated by the basic block 

graph Bn. The vertex and edge set of Bn is 

defined as V(Bn) = {an, bn0, bn1, cn0, cn1, un, 

vn, wn}, E(Bn) = {anvn, vnwn, vnun, un bn0, 

bn0 bn1, bn1 wn, wn cn0, un cn1, cn0 cn1}. The 

graph in Figure 1 is the basic block graph 

B1.For every such block graph we add a 

set of link edges Enj where Enj = {cn1cj0, 

bn1 bj0, an aj}, j = n+1. The graph thus 

obtained is referred as link graph Ln where 

the vertex and edge set of Ln are V(Ln) = 

V(Bn )  V(Bn+1) and E(Ln) = E(Bn) 
E(Bn+1)   E(Bn(n+1) ) respectively. See 

Figure 2. 

 

For n odd, n   3 graph Gn is obtained 

from n copies of B1. The vertex set of Gn 

is V(Gn) = V(B1)   V(B2)   ...   V(Bn) 

such that |V(Gn)| = 8n. The three cycles of 

Gn are {a1, a2, . . . , an } forms a n – cycle, 

{b10, b11, b20, b21, . . . , bn0, bn1 } and {c10, 

c11, c20, c21, . . . , cn0, cn1}  forms a 2n – 

cycle. The Goldberg snark G3 shown in 

Figure 3 is obtained as the union of basic 

block graphs B1, B2 and B3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Basic block graph B1 

 

 

 

 



Section A-Research paper Pebbling in Goldberg Snark Graph 

 

Eur. Chem. Bull. 2023, 12 (6), 2752 – 2759                                                                                       2755  

 

 

 Figure 2: Link Graph L1 

 

Lemma 2.1: For a basic block graph B1, f 

(B1) = 8. 

Proof: Consider the block B1 with vertices 

a1, b10, b11, u1, v1, w1, c10, c11. Assume the 

vertex c11 as the target vertex. Consider a 

distribution of eight pebbles on the 

vertices of B1. For the distribution, p (a1) = 

3, p (b10) = 1, p (b11) = 1, p(u1) = 1, p (w1) 

= 1 the target is not pebbled. Hence, 

consider a distribution of eight pebbles. 

Let p (a1) = 2 and assume that there is one 

pebble on the remaining vertices except 

the target vertex. The possible pebbling 

paths for reaching the target with one 

pebble are {a1, v1, u1, c11}, {a1, v1, w1, c10, 

c11}, {a1, v1, u1, b10, b11, w1, c10, c11}   {a1, 

v1, w1, b11, b10, u1, c11}. In case, if there are 

zero pebbles on all the vertices then place 

eight pebbles on the vertex initiating the 

pebbling move in such a way that the 

target vertex is pebbled. 

 

Notation 2.1: The vertex set of Gn is 

partitioned into four disjoint subsets S1, S2, 

S3 and S4 where the vertex set S1 = {a1, a2, 

... , an }, S2 = {b10, b11, b20, b21, ... , bn0, 

bn1}, S3 = {u1, v1, w1, u2, v2, w2, ... , un, vn, 

wn} and S4 = {c10, c11, c20, c21, ... , cn0, cn1}. 

Let pi, p (xi) and p(i), i = 1, 2, 3, 4 denote 

the number of pebbles distributed over 

each vertex of Si, number of pebbles 

initially placed on a particular vertex xi 

and the total number of pebbles on the set 

Si respectively. 

 

Theorem 2.1: For a Goldberg snark graph 

G3, f (G3) = 24. 

Proof: The graph G3 contains three basic 

block graphs B1, B2 and B3. By Lemma 

2.1,  f (B1) = 8. Fix some vertex say w1 as 

the target vertex. Excluding the trivial 

possibilities, assume p (v1) = 0, p (b11) = 0, 

p (c10) = 0, p (c11) < 4, p (u1) < 4, p (b10) < 

4, p (a1) < 4. The total number of pebbles 

considered on B1 is at most five. The 

remaining three pebbles removed from B1 

will be utilized in later case. If eight 

pebbles are distributed on each block Bi, 

for i  {2, 3} then it is possible to move 

one pebble to any vertex of Bi. For if, p 

(a2) = 1 and p (a3) = 1 then the target is 

pebbled using the three pebbles that was 

excluded from B1 through the transmitting 

path {a3, a2, a1, v1, w1}. In a similar 

manner, the target is pebbled from any 

arbitrary vertex of G3. Hence, f (G3) = 24. 
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Figure 3: Goldberg snark graph G3 

 

Theorem 2.1: The pebbling number of 

Goldberg snark graph Gn for n   5 is f 

(Gn) = 8n + 1. 

Proof:  We consider four possible cases 

by fixing the target vertex in the sets S1, 

S2, S3 and S4. 

 

Case 1: Let a1  S1 be the target vertex. 

Suppose p (a2) = 2 or p (an) = 2 then the 

proof is trivial. Hence, assume that p (a2) 

= 1 and 

 p (an) = 1. 

 

Case 1.1: p1 > 1 

In this case we place at least two pebbles 

on the vertices of S1 in such a way that 

there exist a vertex say ai for which p(ai) 

  2, 2   i   n – 3 will initiate the 

pebbling move. The transmitting path in 

this case would be {ai, ai-1, ... , a2, a1}. On 

placing two pebbles on the n – 3 vertices 

of S1 and one pebble on a2 and an the total 

number of pebbles required to pebble the 

target vertex is p(1)   2(n – 3) + 1 + 1 = 

2n – 4. 

 

Case 1.2: p1   1 

Here, we consider the case where the 

vertices of S1 are either distributed with 

one pebble or no pebble. Now S1 has 

inadequate pebbles to initiate the pebbling 

move. In order to pebble the target vertex 

pebbles are extracted from either S2 or S3 

or S4. The vertex ai  S1 is adjacent to the 

vertex vi  S3. Initially assume p (v1) < 2 

otherwise the solution is trivial. 

 

Case 1.2.1: p3    2 

In this case, we consider p (ui) = 2, p (vi) = 

2, p (wi) = 2 for i {2, 3, ... , n}. The 

vertex vi is adjacent to the vertices ui and 

wi. After a pebbling move which is 

initially considered in the set S3 the vertex 

vi receives at least two pebbles. That is one 

pebble from the vertex ui and the other 

pebble from the vertex wi. Hence, after a 

pebbling move p (vi) = 4. Since ai is 

adjacent to vi after a pebbling move every 

vertex ai will have at least two pebbles and 

as a consequence the target is pebbled 

through the transmitting path {vi, ai, ai+1, 

ai+2, ... , an, a1} or{vi, ai, ai-1, ai-2, ... , a2, 

a1}. 

There is one pebble on (n – 1) vertices of 

S1 and minimum two pebbles on 3 (n – 1) 

vertices of S3. Thus, the number of pebbles 

required in this case is p(1) + p(3)   2 (3 (n 

– 1)) + n – 1 = 7n – 7.  

Case 1.2.2: p3    1 

By Lemma 2.1 the pebbling number of 

each block of Gn is eight. On assuming 

that there are no pebbles on the vertices of 

S3 we need to have eight pebbles 

distributed on the vertices of S2 and S4. If p 

(bi0) = 2, p (bi1) = 2, p (ci0) = 2, p (ci1) = 2 

then after a pebbling move there will be 
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two pebbles on the vertices ui and wi. Now 

these vertices in turn contribute two 

pebbles to the vertex vi so that one pebble 

is moved to ai. It is to note that, there is no 

vertex to trigger the pebbling move in the 

vertex set of S1 as p (ai) = 1. Hence, for a 

distribution of eight pebbles on each Bi are 

not sufficient. Therefore, we require one 

more pebble to initiate the pebbling move. 

Thus the total number of pebbles required 

is p(1) + p(2) + p(3) + p(4)   8n + 1. 

 

Case 2: b1i   S2 either i = 0 or 1 as the 

target vertex. 

Fix b10 as the target and the proof is 

similar if any vertex of S2 is chosen as the 

target vertex. Without loss of generality, 

assume that p (u1) = 0, p (b11) = 0 and p 

(bn1) = 0. 

 

Case 2.1: p2   2  

The vertices of S2 forms a 2n – cycle and 

if minimum two pebbles are placed on the 

vertices of S2 then the transmitting path to 

pebble the target vertex b10 is {bi0, bi1, 

b(i+1)0, b(i+1)1, ... , bn0, bn1, b10}. Excluding 

the vertices with zero pebbles in S2 place 

two pebbles on the (2n – 3) vertices of S2. 

In this case, the number of pebbles 

required is p(2)    2 (2n – 3) = 4n – 6. 

 

Case 2.2: p2   1 

Pebbling move within the set S2 is not 

possible as p2 has either one or zero 

pebble. Due to insufficient pebbles, extract 

pebbles from S3 and S4 which is discussed 

in the following subcases. 

 

Case 2.2.1: Extraction of pebbles from S3. 

If p3   4 then at least two pebbles are 

moved to the vertices of S2 such that p2   

2 and the target can be pebbled as in Case 

2.1.  

In case, p3 < 4 then we have to extract 

pebbles from S4. Here we need p(2) + p(3) 

  4 (3 (n – 1 )) + 2n – 1 = 14n –13  

pebbles for pebbling the target vertex. 

 

Case 2.2.2: Extraction of pebbles from S4. 

With p4   4, after a pebbling move at 

least two pebbles are placed on the 

vertices ui and wi. Thereafter, at least one 

pebble is moved to the vertices of S2. 

Further, to facilitate the pebbling move in 

the set S2 place one pebble on any vertex 

of S2 so that the target is pebbled as in 

Case 2.1. It is to note that p4 < 4 is not 

possible by Lemma 2.1. Hence, the 

number of pebbles required is p(2) + p(4)   

8n + 1. 

 

Case 3: Let u1 or v1 or w1 be the target 

vertex.  

Without loss of generality fix w1   S3 as 

the target. The proof is similar if any 

vertex u1 or v1 is chosen as the target 

vertex. Initially assume p (u1) < 4 and p 

(v1) = 0 otherwise the solution is trivial. 

 

Case 3.1: p3   4 

The vertices of S3 are adjacent to the 

vertices of S1, S2 and S4. With p3   4 it is 

evident that two pebbles can be moved to 

every vertex either in S1 or S2 or S4. The 

target is thus pebbled through the 

transmitting paths {vi, ai, ai+1, ai+2, ..., an, 

a1, v1, w1} or {wi, bi1, bi0, b(i – 1)1, b(i – 1)0, ... 

, b(i - 2 )1, b(i-2)0,  . . ., b11, w1} or {ci0, ci1, 

c(i+1)0, c(i+1)1, c(i+2)0, c(i+2)1, . . ., cn0, cn1, c10, 

w1}. In this case, we require p(3)   4 (3 (n 

– 1)) = 12n  – 12 pebbles to move a pebble 

to the target vertex. 

 

Case 3.2: p3 < 4 

By Lemma 2.1, it is obvious that there 

should exists at least eight pebbles on each 

block Bi. Excluding the pebbles 

considered on S3, the number of pebbles 

on each Bi should be at least five. But with 

five pebbles only one pebble is placed on 

the vertex ai. Hence with p1 = 1, the target 

vertex cannot be pebbled. We need an 

additional pebble to initiate the pebbling 

move such that the target is pebbled. In 

this case we require p(1) + p(2) + p(3) + p(4) 

  8n + 1 pebbles. 

 

Case 4: Let c10 or c11  S4 be the target 

vertex. 
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As the vertices of S2 and S4 forms a 2n – 

cycle and it is adjacent to the vertices of S3 

the methodology for proving is same as in 

the Case 2. 

All the possibilities of pebbling the target 

vertex in the sets S1, S2, S3 and S4 are 

discussed above. Hence, we conclude that 

the least possibility of pebbling the target 

vertex from the four cases. As f (Gn) 

cannot be less than 8n, the least possibility 

of {2n – 4, 7n – 7, 8n + 1, 4n – 6 , 14n – 

13, 12n – 12} is 8n + 1. Hence, we 

conclude that f (Gn) = 8n + 1. 

 

3. Conclusion 

 

The family of snarks falls under bridgeless 

cubic graphs. Motivated by its topological 

structure, in this paper we have 

determined the pebbling number of 

Goldberg snark Gn. The problem is open 

to find the pebbling number for other 

graphs in the snark family and find a 

bound for the pebbling number of cubic 

graphs. 
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