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ABSTRACT   

The study of flow and heat transfer of a magnetohydrodynamic viscous fluid-

saturated porous medium, past a permeable and non-isothermal stretching sheet with internal 

heat generation or absorption and radiation is analyzed. Closed-form solutions to the full 

Darcy-Brinkman equations, without applying boundary layer approximations, are found 

using a similarity transformation. We propose to find closed-form solutions for temperature 

corresponding to the thermal conditions, which are quadratic function of the distance from 

the origin. The temperature functions for heating conditions are given in terms of Kummer’s 

functions. Asymptotic expressions of the temperature functions are also presented valid for 

both large and small modified Prandtl numbers. The effect of viscosity ratio, suction 

parameter, porous parameter is studied. 

 

Keywords: Magnetohydrodynamic viscous fluid, saturated porous medium, stretching sheet, 

Kummer’s functions, Asymptotic expressions  

2010 Mathematics Subject Classification: 37E35, 76W05, 80A20 

*Department of Mathematics, Maharani’s Science College for women,Palace Road, Bangalore – 560 001.  

E-mail:  drarv@rediffmail.com  

 

DOI: 10.53555/ecb/2020.9.4.01 

 

ISSN 2063-5346 



Heat Transfer Of A Magnetohydrodynamic Fluid-Saturated Porous Medium Over A 

Isothermal Permeable Non- Stretching Sheet 

 
 

Section A-Research paper 

 

 

126 
Eur. Chem. Bull. 2020, 09(Regular Issue  04), 125 - 133                         
 

INTRODUCTION: 

  An interesting fluid mechanics 

application is found in polymer extrusion 

processes where the object on passing 

between two closely placed solid blocks is 

stretched into a liquid region. The 

stretching imparts a unidirectional 

orientation to the extrudate, thereby 

improving mechanical properties. The 

liquid is basically meant to cool the 

stretching sheet whose property as a final 

product depends greatly on the rate at 

which it is cooled. It is important to 

consider two important aspects in this 

physically interesting problem: proper 

choice of cooling liquid and regulation of 

the flow of the cooling liquid, due to the 

stretching sheet, to achieve a desired rate 

of cooling appropriate for successfully 

arriving at a sought final product. Flow 

and heat transfer from a linearly stretching 

sheet gained more importance due to 

practical applications in industrial 

processes. In most of the investigations 

involving heat transfer, we observe that 

either the constant prescribed surface 

temperature (PST) or constant prescribed 

wall heat flux (PHF) boundary condition is 

assumed. It is a well-known fact that 

constant PST and PHF assumed by many 

are difficult to realize. Also if the final 

product that is obtained after cooling needs 

to be non-uniform in terms of properties, 

variable PHF is the appropriate 

temperature boundary condition. 

Heat generation or absorption may become 

important in weak-electrically conducting 

polymeric liquids due to the non-

isothermal situation they are in and also 

due to the presence of cation/anion salts 

dissolved in them. An example of such a 

liquid is polythene oxide. 

The transfer of heat, mass and momentum 

in the laminar boundary layer flow on a 

heated stretching sheet are considered 

important from both theoretical and 

practical point of view. Such situations 

may arise often in polymer processing 

industry, liquid thin film  development and 

other related surface flows. Sakiadis [6] 

studied first the boundary layer flow over a 

continuous solid surface moving in its own 

plane with a constant speed. It is generally 

assumed that the sheet is inextensible. But 

many cases arises in polymer industry in 

which it is necessary to deal with a 

stretching sheet as noted by Crane [2]. 

Gupta and Gupta[3] presented the heat and 

mass transfer over a stretching sheet with 

blowing or suction. 

Kumari, M and Takhar, HS and Nath, G 

[4] studied about the flow and heat transfer 

over a stretching sheet with a magnetic 

field in an electrically conducting fluid 

using numerical methods. Subhas and 

Veena [8] studied  heat transfer 

characteristics in the laminar boundary 

layer flow of a visco-elastic fluid over a 

linearly stretching continuous surface with 

variable wall temperature subjected to 

suction or blowing and obtained solution 

in terms of kummer’s function. 

Siddheshwar and Mahabaleshwar [7] 

studied the MHD flow and also heat 

transfer in a viscoelastic liquid over a 

stretching sheet in the presence of 

radiation. The stretching of the sheet is 

assumed to be proportional to the distance 

from the slit.  Vajravelu and Nayefh [11] 

presented the flow and heat transfer by 

introducing temperature dependent heat 

source or sink. They considered heat 

transfer in a saturated porous medium over 

a continuous impermeable stretching 

surface with power law surface 

temperature (PST) and power law surface 

heat flux (PHF) including the effects of 

fractional heat and internal heat generation 

or absorption. Many authors including   

Ranjagopal et al., [5] Anjalidevi S.P. and 

Thiyarajan M [1], Sujit Kumar Khan et. 

al., [9] have analyzed the problem on 

boundary layer flow due to the stretching 

sheet/continuous moving sheet for 

different flow models and boundary 

conditions. Swain et al[10] studied the  

steady two dimensional stagnation point 
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flow of an incompressible conducting 

viscous fluid with variable properties over 

a stretching surface embedded in a 

saturated porous medium using shooting 

method 

In all the stretching sheet problems (both 

hydro-dynamic and hydromagnetic) 

mentioned earlier, radiation effect has not 

been considered. We know that the 

radiation effect is important under many 

non-isothermal situations. If the entire 

system involving the polymer extrusion 

process is placed in a thermally controlled 

environment, then radiation could become 

important. In this paper, we consider the 

effect of radiation, magnetic field and 

temperature dependent heat source over a 

stretching sheet, with variable PST/PHF. 

 
2.    MATHEMATICAL      

     FORMULATION 

 

2.1 Flow analysis 
A two-dimensional flow of 

incompressible viscous fluid saturated in a 

porous medium part a permissible 

stretching sheet 0y   in the presence of a 

magnetic field B


 is considered. The fluid 

is occupied above the sheet 0y  . The axis 

is chosen perpendicular to the stretching 

sheet. The flow is generated by the 

application of two equal and opposite 

forces along the stretching sheet, keeping 

the origin fixed. The continuity and 

momentum   equations for a steady, two 

dimensional fluid saturated porous 

medium in the presence of a weak 

magnetic field of strength 0B  are 

0
u u

x y

 
 

 
                             (1)  

u u p
u v

f x y x


   
    

   
       

2 2
ˆ

2 2
1

u u
u

kx y


 
  
  
   

                         (2) 

v v p
u v

f x y y


   
    

   
                        

                 
2 2

ˆ
2 2

1

v v
v

kx y


 
  
  
   

        (3) 

where u, v and p are the velocity 

component in the x-direction , velocity 

component in the y-direction, and 

pressure. The physical quantities
f

 , , ̂ ,

 and  
1

k   are the density of the fluid , 

porosity, effective viscosity , permeability 

and  magnetic field respectively and they 

are all assumed to be constants. 

We assume that the flow is 

subjected to suction on the sheet with 

constant transverse velocity 0v  and the 

sheet is stretching with a constant rate 

0c  . 

The relevant boundary conditions are  

u u cxw  , 
0

v v  , p pw  at 0y  ,                                         

(4) 

0u  as  y                         (5) 

Where uw  and pw  are the longitudinal 

velocity component and the pressure 

specified at the sheet respectively. 

We introduce a similarity transform for 

velocity component and pressure as, 

 u cx f   ,   

1
2

c
v f y

f





 
  
 
 

 , 

 
1

2

c
p p gw





              (6) 

with   

1
2c

f
y






 
 
 
 

.   

Using equation (6) into equation (2) and 

equation (3), we get  

2f ff f K f       ,                          (7) 

1

2
ff g f Kf                            (8) 

and  
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Rf )0( , (0) 1f   , 0)0( g ,  

( ) 0f                       (9) 

where 



     is the viscosity ratio, 

1

K
k c

f

 


   is the porous parameter,

0
1
2

v
R

c

f







 
 
 
 

   is the suction parameter. 

The solution of equation (7) subject to 

equation (9) can be obtained as, 

 ( )
m

f A Be





  ,             (10a) 

where  
2 4

2

A A k
m

  



,

   

 

21 2 4

2 1

k R R K
A

K

     



, 

 

2

2 4

B

R R K

 


    

          (10b-d) 

)(g  can be obtained by integrating 

equation (8) and using equation (9)  as 

2 2( ) 2 2 2
0

g f f K fd R


      

                             (11) 

The solution for velocity component and 

pressure are given by, 
m

u Bme cx


                             (12) 

 

1
2

2

c m
v A Be

wf

 

 

 
 

  
 
 
 

          (13) 

 
21

2

m
P c A Bew


 

 
   


             

   2 2

m
Bem

Bme K H A
m





 

     
 

                  

22 2
R

R K
m


    


                           (14) 

The dimensionless skin friction at the 

sheet can be calculated form, 

 
1
2Re 0

2
wC fxf
uwf






             (15)                                                   

where   20f Bm   is the dimensionless 

velocity gradient,  

Re
u xwf

x




  is the local Reynolds 

number. 

 

Case (i) :Very Large Suction R>>1 
We expand equation (10.b) to equation 

(10.d) into a two-term approximations 

where  1R  , respectively as follows, 

             ~A R
R


  ,                   (16)

   
 2 1

~
3

K
B

R R

 
  ,            (17) 

 
 1

~
KR

m
R





                       (18) 

  

and  find 

 
   
12 30

KR
f Bm O R

R

      


 

                  (19) 

 

Case(ii): Very large injection , *RR   

and 
* 1R   

In this case, 

*~
*1

K
A R

K R


 


,                   (20)    

       
 24 1

~
*3

K
B

R

 
,                           (21)

   
2 3

1 11 2~ 2
* *3 *5

K KK
m

R R R

 
  

                             (22) 

And the dimensionless velocity gradient is 

given by, 

 
     

2
1 2 1 50

* *3

K K
f O R

R R

       

               (23) 
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2.2 Heat transfer analysis 

The steady 2-D energy equation for 

a porous medium with internal heat  

generation on or absorption in the presence 

of radiation is governed as 

 
2 2

2 2

T T T T
C u v k u vp mf x y x y

 
     
           

    

 
* 3 2 216

2 2*3

T T TmQ T Tm
x ykm

            

 

(24) 

where T is the temperature of the mixture 

and  
T   is the temperature far from the 

sheet. The physical quantities pC , mk , mQ , 

*

m  and *

mk  are the specific heat at 

constant pressure, thermal conductivity, 

volumetric rate of internal heat generation 

or absorption, the Stephan–Boltzmann 

constant and the mean absorption 

coefficient, respectively and they are all 

assumed to be constants for simplicity. 

The subscripts m and f denote the 

properties belonging to the mixture. 

Two thermal boundary conditions 

are considered, for example, the prescribed 

surface temperature condition (PST) and 

prescribed surface heat flux condition 

(PHF).The boundary conditions are  

( )T T T Dx PSTw                        (25) 

( )
T

q k Ex PHFmW y


  


              (26) 

T T    as  y                             (27) 

where  Tw    is the wall temperature, Wq  is 

the wall heat flux and D and E are 

proportional constants. 

 

Case(i) The  Prescribed Surface 

Temperature (PST) case  

In PST case we introduce a transformation 

for the temperature 

2( )

2( , ) ( ) ( )
1 2

T T
T Dx Ex T

T Tw

x T x x T

  

     

      
 

     

 

  (28)                             

      

where η is defined in Equation (6). 

Substituting Equations (6), (10) and (24) 

into Equations (20), (21) and (23) yields   

(1 ) 0
1 1 1

m
e

Nr P A P
m


  

 
       

 
 

                             (29) 

   0 1, 0
1 1
                               (30)  

where   

* 316

*3

TmNr
k km m

   is the radiation parameter, 

cp
P

km




  is the Prandtl number and

( )

Qm

cp f


 

  is the internal heat 

parameter.     

Using, 
(1 )

m
PBe

m Nr









,  Equations (25) and 

(26) are transformed  to, 

* *
0

1 1 1

p A p

m


   




    

 
 

         (31) 

  
*

1
p B

m

 
  
 
 

,      (0) 0          (32) 

where the primes  stand for differentiation 

with respect to ξ  and *

1

P
P

Nr



 is the 

modified Prandtl number. 

After further transformation, the solution 

of Equation (31) subject to Equation (32) 

can be solved, in terms of Kummer’s 

function  as, 

 1,2 1,
( )

1 * *
1, 2 1,

p q
M p q qm

P B P B
M p q q

m


 


   

  
  
   
 
 

                  (33)                

where 

*

2

P A
p

m
 ,   

* 2 *4

2

P A P
q

m


 ,         (34) 

and 
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( )
( , , ) 1

( ) !1

na znM a b z
b nn n


  


               (35) 

is the Kummer’s function, 

( )
( ) ( 1)( 2)....( 1)

( )

a n
a a a a a nn

a

 
     


 

Where, )(a  is the Gamma function.  

The solution of equation (33) in terms of   

is                   

( , )x            

*
1,2 1,

( )
*

1,2 1,

m
P Be

M p q q
mp qm

x e
P B

M p q q
m





  
    

     
 

  
     

  

                              (36)                                                                                                                                                                                

The local heat flux at the sheet can be 

expressed as  

(0)
1

c
T f

q k k Dxw m m
y







   


       

(37) 

 
1*(0)

1 2 1

p q
m p q P B

q


  
      

 

              

     

*
1,2 1,

*
1,2 1,

m
P Be

M p q q
m

P B
M p q q

m

  
   

  


  
     

  

      

(38) 

 

Case(ii) The Prescribed Surface Heat  

Flux (PHF) Case 
In the PHF case, the dimensionless 

temperature is assumed to be of the form, 

        ( )
1

Ex
T T h

k cm f





              (39) 

and the corresponding energy equation and 

boundary conditions become 

 1 0
1

m
e

Nr h P A h P h
m




 
      

 
           

                   (40)                        

and 

     (0) 1
1

h        , ( ) 0
1

h                  (41)                     

The solution of equation is obtained as  

( )
( )

1 1
m p q

h c e



 

    

   
*

1,2 1,

m
P Be

M p q q
m

 
   
 
 

       (42)                                   

Where  

*
( ) 1,2 1,

1

P B
c m p q M p q q

m

  
       

   

  

1
*1* ,2 2,

2 1

p q P B
P B M p q q

q m



   
         

    

(43) 

By equating the coefficients we get 

 1
1 2 2

m
e

Nr h p A h p h
m




 
      

 
                  

     

2
1

, 2
1

2
1

, 2
1

Q m
M e

L P
m pcp

km Q
M

L P
m p





 
 

 
 

 
 
 
 

          (44) 

1(0) 0h  , 1( ) 0h   , whose solution is 

given by 

(2( ) 1) (2 1)

( 1) (3 1)

* *
( 1)

p q q

p q q p p q

P A P
p q p q

m m

 


 
     

       
 

  
        
  

                                                       (45) 

3. Asymptotic Analysis 

In this section we derive the 

asymptotic expressions of the temperature 

functions  ),(  x  and ),( xh valid for 

both large and small the modified Prandtl 

numbers. 
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3.1 The Prescribed Surface 

Temperature (PST) Case: 

The Kummer’s function can be 

approximated to the first order as 

   , , 1
0

a
M a b z c z


                   (46)     

with 

 , , 1M a b z  as 0z                 (47)                                                        

and         

   , ,
0

a
M a b z c z


  as z         (48)                                   

Where 0c  is a constant to be determined 

by matching equation 
1

( )

0 ( )

ab
c

b a


 

  
  

                               (49)                                                          

Now, 

*
1,2 1, ~

m
P Be

M p q q
m

 
   
 
 

 

         

 1
*

11

p q
m

C P Be

m

  
 

 
 
 

          (50) 

and  

 1
**

11,2 1, ~ 1

p q
C P BP B

M p q q
m m

 
  
     

   
   

                  (51)                  

where  
1

1(2 1)

1 ( 1)

p qq
C

p q


   

  
   

               (52)         

The temperature function   ,x   can be 

approximated as, 

 ,x     

 

1
*

1
1

*
1

1

p q
m

P Be
C

m p q mx e
P B

C
m





    
 

     
  

   
 

             (53) 

 

 

 

3.2 The Prescribed Surface Heat Flux 

(PHF) Case: 

In PHF case, the temperature 

function  ,xH  valid for both large and 

small modified Prandtl number is given 

by, 

   
3

m p q
h C e




 
     

            

 1
*

11

p q
m

C P Be

m

  
 

 
 
 

        (54) 

Where  
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11
3
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C P B
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 
 
 
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  
    
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 


 
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*
1* 21

2 1

p q
C P Bp q
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q m

   
            

           

(55) 

    

1
(2 2)

2 ( 2)

p qq
C

q p
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  

   
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 
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m p q
C e

H x x





 
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


 

 1
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1
1

p q
m

P Be
C

m


    

 
 
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 (57)                                                                  

              

4. RESULTS AND DISCUSSION 

In this paper, we consider the effect 

of radiation, magnetic field and 

temperature dependent heat source over a 

stretching sheet, with variable PST/PHF 

using Kummer’s functions.  

From the table the dimensionless 

temperature gradient at the wall  1 0   

increases  with K,  and Nr but decreases 

with  , R and Pr which implies that the 

thermal boundary layer  thickness will 
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increase with  , R  but will decrease with 

K,  and Nr. As Pr increases  1 0 

decreases. Wall temperature  0h  behaves 

similar to  1 0  . Asymptotic expressions 

of temperature functions valid for large 

and small modified Prandtl numbers are 

presented. 

 

 

 

 

 

   K R   Pr Nr  1 0    0h  

1 0 

1 

2 

5 

0.1 -0.2 1 0 -1.1652 

-1.0882 

-1.0363 

-0.9417 

0.8582 

0.9189 

0.9650 

1.0620 

0.5 

1 

2 

5 

1 0.1 -0.2 1 0 -0.9905 

-1.0882 

-1.1703 

-1.2490 

1.0096 

0.9189 

0.8545 

0.8006 

1 1 0 

0.1 

0.5 

1.0 

-0.2 1 0 -1.0351 

-1.0882 

-1.3252 

-1.6690 

0.9661 

0.9189 

0.7541 

0.5991 

1 1 0.1 -0.2 

0 

0.2 

1  

0 

-1.0882 

-0.9489 

-0.8523 

0.9189 

1.0538 

1.1733 

1 1 0.1 -0.2 0.5 

1 

2 

5 

0 -0.6900 

-1.0882 

-1.6885 

-2.9569 

1.4492 

0.9189 

0.5922 

0.3382 

1 1 0.1 -0.2 1 0 

1 

2 

5 

-1.0882 

-0.6900 

-0.5256 

-0.3291 

0.9189 

1.4492 

1.9022 

3.0380 
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5. CONCLUSIONS 

Here we have studied the flow and heat 

transfer of a magnetohydrodynamic viscous 

fluid-saturated porous medium, past a 

permeable and non-isothermal stretching 

sheet with internal heat generation or 

absorption and radiation. Closed-form 

solutions to the full Darcy-Brinkman 

equations, without applying to boundary layer 

approximations, are found using a similarity 

transformation. The temperature functions for 

two heating conditions are given in terms of 

Kummer’s functions. Asymptotic expressions 

of the temperature functions are also 

presented valid for both large and small 

modified Prandtl numbers. 

The exact solutions to the flow and heat 

transfer problems for a viscous fluid saturated 

porous medium over a permeable non-

isothermal stretching sheet in the presence of 

magnetic field without using boundary layer 

theory are presented here. We find that the 

temperature function decreases with 

increasing viscosity ratio, porous parameter 

and suction parameter keeping all other 

parameters fixed.  
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