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Abstract 

Bacterial mineralization has become a popular area of research emerging in the current times. The composition, 

nucleation, morphology and bio minerals are dependent on the metabolic activity of the microorganism. 

Research has harnessed the application of biologically induced mineralization of metals like Mn, Fe and many 

metal oxides such as ferrihydrite, hematite, goethite, phosphates. The current review indicates that carbonates 

are the most common once reported by bacterial biomineralization. This has led to abundant research on 

bacterially induced calcium carbonate precipitation (MICCP). The wide applications of MICCP are quite 

multidisciplinary with its growing relevance in fields like Geotechnology, Civil Engineering, Paleobiology and 

Biotechnology. The current review therefore brings a systematic analysis of various applications of bacterial 

induced mineral precipitation with special emphasis on MICCP.  
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Introduction 

Bio-mineralization is a kind of microorganism 

mediated or regulated mineral precipitation process 

through which specific kind of minerals are formed 

within a given environmental condition. This 

process is facilitated by the synergistic biological 

and chemical modification of the involved 

organisms in such a way that maximum of the bio 

minerals can be precipitate out with direct or 

indirect utilisation of enormous biological agents 

(Phillips et al. 2013). The quantity produced in 

such methodologies is very miniscule and the entire 

process of complete mineral precipitation may take 

a longer time period (Crichton, 2019; Yoshida et 

al., 2010). Till now six major microbial groups 

have been identified to validate and carry out the 

entire process of mineral precipitation and the 

biomineral deposition in form of precipitate 

formation may occur within the concerned 

microbial cell or outside the cell in the surrounding 

environment depending upon the mechanistic 

activity of the concerned microbe (Wen et al., 

2020; Tang et al., 2021). Microbial mediated 

mineralization is one of the effective techniques 

that confiscate various toxic pollutants to form a 

within stabilized solid structural matrix (Tang et 

al., 2021). The mineral precipitation process is 

initiated with a sequential manner for development 

of mineral ions from inorganic pollutants and then 

leading to their compound precipitation step. In 

contrast to inorganically formed minerals, the 

microbially precipitated minerals mostly carry their 

individual structural uniqueness in form of size and 

shape, density, isotopic value, amorphous or 

crystalline appearance and many more (Weiner and 

Dove, 2003). The most widely produced bio 

mineralization categories include silicification, 

carbonate precipitation, iron mineralization and 

calcification (Dupraz et al., 2009) giving rise to 

most of the suitable minerals like nitrates, oxides, 

calcium oxalates, silicates, apatite, halides, gypsum 

and phosphates (Chan et al., 2009). Microorganism 

mediated mineralization is enormous and widely 

utilizes living organisms like Cyanobacteria, 

bacteria, fungi and algae. Its efficacy rate is 

maintained by certain factors viz calcium, 

inorganic carbon, nucleation and pH (Wu et al., 

2021).  

 

Types of microbial precipitation  

Several types of biominerals are being precipitated 

with the regulated or induced mechanism of 

microorganisms. Minerals like calcite precipitation 

(Kang et al. 2014; Achal et al., 2009; Dhami et al. 

2014; Karatas et al., 2008), calcium carbonate 

precipitation (Chekroun et al., 2004; Ganendra et 

al., 2014; Konstantinou et al., 2021), strontium 

precipitation (Singh et al., 2008), iron 

mineralization (Wang et al., 2020), cadmium 

precipitation (Bai et al., 2008), biomineralization of 

antimony (Huang et al., 2022) and Pb (II) 

biomineralization (Jiaqi et al., 2022) are some of 

the widely available precipitation methodologies, 

utilising different types of mineralization 

mechanism for the initiation of the nucleation step.  

 

Microbial precipitation of calcium carbonate  

In most cases ureolytic microbes initiates the 

calcium carbonate precipitation and also act as the 

nucleation sites for MICCP crystal production. The 

mechanism of MICCP the anionic cell surface of 

the microbes facilitates cations for calcium ions 

accumulation on the cell surfaces (Zhu et al., 2015; 

Wen et al., 2020). Enzymatic activity of carbonic 

anhydrase is found to be the highest at lower 

temperature. Bacteria induced biomineralization 

can be facilitated utilising toxic pollutants in any 

kind of extreme conditions including acidophilic, 

alkaliphilic, thermophilic, halophilic and anaerobic 

(Benzerara et al., 2014; Achal et al., 2015). 

 

The most frequently available biominerals contain 

the major ion calcium and it is biologically 

mineralized through precipitation methodology by 

the physiological metabolism of the concerned 

prokaryotic organism. Amongst all available 

calcified minerals, calcium carbonate is one of the 

potent, widely available mineral creditworthy for 

almost 4% w/v of earth’s crusts. The mineralization 

of calcium occur in form of calcium carbonate, 

which is a well applied methodology, known as 

microbial precipitation of calcium carbonate 

(MPCC) and can be seen in soil sediments, water 

bodies both fresh and marine (Sarayu et al., 2014). 

The mechanism of calcium precipitation can be in 

an induced form, known as microbially induced 

calcium carbonate precipitation (MICCP) and 

microbially controlled calcium carbonate 

mineralization (MCCCP). The MCCCP mostly 

occurs due to the interaction of available 

extracellular polysaccharide matrix with the 

calcium ions in absence of active involvement of 

the concerned microbes. In this case the available 

functional groups deprotonate resulting in anionic 

charge in the extracellular polysaccharide matrix in 

the alkaline pH condition. This results in facilitated 

combination of the metal ions with the selected 

individual functional groups like carboxylate, 

amino, sulfates and hydroxyl (Sarayu et al., 2014). 

 

Microbially induced calcium carbonate 

precipitation (MICCP) 

The term microbially induced calcium carbonate 

mineralization is the methodology of biologically 
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calcium carbonate mineral production (Achal et al., 

2015) due to the active interaction of specific 

metabolic intermediates in a specific microbe 

controlled environmental condition. These 

intermediate products are carbonate and calcium 

ions (Salman et al., 2016). Most of the amorphous 

structure of calcium carbonate minerals are the 

form either as monohydrate or dehydrate group 

with porous calcium framework and interlinked 

carbonate ions with water particles (Goodwin et al., 

2010). Microorganisms involved in calcium 

carbonate precipitation in a controlled condition, 

are mostly potent enough to change the entire 

physiological factors of the microenvironment 

completely or partially.  

 

In the case of microbially controlled calcium 

carbonate precipitation, in which the biominerals 

formed contain a very narrow range crystal size 

distribution. However in the case of microbially 

induced calcium carbonate precipitation, the 

development of both crystalline and amorphous 

calcium carbonate precipitates occurs with broader 

particle size; whereas in case of microbially 

controlled calcium carbonate precipitation, the 

development of narrow sized calcium carbonate 

crystal precipitates (Silva-Castro et al., 2015). In 

MICCP, among both crystalline and amorphous 

groups, the amorphous calcium carbonate 

precipitates are quite unstable and can interconvert 

to other stable calcite structure, when made soluble 

in water (Rodriguez-Blanco et al. 2011). Bacteria 

are one of the unique microbes that facilitate 

mineral precipitation as they help in development 

of heterogeneous nucleation sites (Rodriguez-

Navarro et al. 2012).  

 

The microbially induced calcium carbonate 

precipitation (MICCP) has got several applications 

including bioremediation of heavy metals and 

radionucleoids (Kang et al., 2014; Yadav et al., 

2014; Chen et al., 2016), self-healing concrete or 

more widely known as bioconcrete (Achal et al., 

2015; Siddique et al., 2016; Tziviloglou et al., 

2016), carbon dioxide bio-sequestration (Chough et 

al., 2010; Yadav et al., 2014; Okyay and 

Rodrigues, 2015), improvement of soil quality 

(Cheng and Cord-Ruwisch, 2012) and many more.  

The current literature review adapts the systemic 

review method for analyzing the microbially 

induced calcium carbonate precipitation and its 

application by various bacterial agents. Though 

there are many studies available and still research 

is going on regarding several types of mineral 

precipitation; amongst all calcium carbonate 

precipitation has been studied extensively (Fig 1). 

 

 
Fig 1: Recent research on different types of mineral precipitation 

 

Within the last ten years many researchers have 

been working continuously on this aspect to get a 

clear idea regarding the microbially induced 

calcium carbonate precipitation. The bibliometric 

analysis depicts a total publication of papers under 

bacteria induced and/or controlled mineral 

precipitation in the SCOPUS database. The trend of 

research in this domain has extensively increased in 

the last decade (Fig 2). 
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Fig 2: Papers published under “microbially induced calcium carbonate precipitation” (SCOPUS database) 

 

Applications of MICCP 

The microbially induced calcium carbonate 

precipitation (MICCP) has got several applications 

including bioremediation of heavy metals and 

radionucleoids (Kang et al., 2014; Yadav et al., 

2014; Chen et al., 2016), self-healing concrete 

(Siddique et al., 2016; Achal et al., 2015; 

Tziviloglou et al., 2016), carbon dioxide bio-

sequestration (Okyay and Rodrigues, 2015; 

Chough et al., 2010; Yadav et al., 2014), 

improvement of soil quality (Cheng and Cord-

Ruwisch, 2012), many more. Microbially induced 

calcium carbonate precipitation methodology has a 

pivotal feature in different types of functional 

alternations. This review, however, deals with 

some of the evident applications as compiled and 

depicted in Table 1. 

 

Table 1: Data Extraction for the quality papers selected for review under the identified themes 
Sl 

No 

Name of Authors 

with year 

Bacteria involved in 

MICCP 

Mechanism of 

MICCP 

Application of MICCP 

1 Chekroun et al., 2004 Myxococcus xanthus Ammonification remediate heavy metals and radionuclides, crack 

remediation and soil improvement 

2 Ganendra et al., 2014 Methylocystis parvus Denitrification heritage conservation and self-healing concrete, 

sealing surrounding matrix 

3 Cuthbert et al., 2012 Sporosarcina 

pasteurii 

Urea hydrolysis remediate heavy metals, crack remediation and 

soil improvement 

4 Ferrer et al. 1988 Deleya halophila 

 

Denitrification heritage conservation and self-healing concrete 

5 Sarada et al., 2009 Bacillus pasteurii Urea hydrolysis remediation of heavy metals 

6 Pan et al., 2005 Pleurotus ostreatus Ammonification Biosorption of Pb (II), soil improvement and 

self-healing concrete 

7 Puyen et al, 

2012 

Micrococcus luteus 

DE2008 

Conversion of 

organic acid to 

calcium carbonate 

Biosorption of lead and copper, crack 

remediation and soil improvement 

8 Qian et al., 2009 Bacillus pasteurii Urea hydrolysis Biosorption of AS, soil improvement and self-

healing concrete 

9 Rivadeneyra et al., 

1996 

Deleya halophila Denitrification soil improvement and self-healing concrete 

10 Rivadeneyra  et al., 

1998 

Halomonas 

eurihalina 

Denitrification soil improvement and self-healing concrete 

11 Rodriguez-Navarro et 

al., 2003 

Myxococcus xanthus Ammonification concrete crack remediation and soil improvement 

12 Siddique et al., 2008 Bacillus megaterium Urea hydrolysis soil improvement and self-healing concrete 

13 Silver et al., 1975 Bacillus subtilis and 

Escherichia coli 

Urea hydrolysis concrete crack remediation and soil improvement 

14 Fujita et al., 2000 ureolytic subsurface 

bacteria 

Urea hydrolysis soil improvement and self-healing concrete 

15 Gorospe et al., 2013 

 

Sporosarcina 

pasteurii KCTC 

3558 

Urea hydrolysis concrete crack remediation and soil improvement 

16 Eryuruk et al., 2015 Sporosarcina 

pasteurii 

Urea hydrolysis remediate heavy metals and radionuclides 
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17 Al-Thawadi and 

Cord-Ruwisch, 2012 

ureolytic 

bacteria 

Urea hydrolysis remediate heavy metals and radionuclides, 

sealing surrounding matrix 

18 Chunxiang et al., 

2009 

Bacillus pasteurii 

 

Urea hydrolysis Corrosion proof cement, soil improvement and 

self-healing concrete 

19 Ghosh et al., 2019 Sporosarcina 

pasteurii 

Urea hydrolysis soil improvement and self-healing concrete, 

remediate heavy metals and radionuclides 

20 Perito et al., 2014 Bacillus subtilis Urea hydrolysis heritage conservation and self-healing concrete 

21 Jiang et al., 2013 Synechocystis 

sp PCC 6803 

Sulfate reduction 

Photosynthesis 

remediate heavy metals and radionuclides, 

sealing surrounding matrix 

22 Martinez et al., 2016 Synechococcus 

sp 

Sulfate reduction 

Photosynthesis 

remediate heavy metals and radionuclides, 

sealing surrounding matrix 

23 Blondeau et al., 2018 Cyanobacteria 

 

Photosynthesis Improve soil quality and self-healing concrete, 

24 Cam et al., 2018 Cyanobacteria 

 

Photosynthesis remediate heavy metals and radionuclides, 

heritage conservation and self-healing concrete 

25 Benzerara et al., 2014 Cyanobacteria Photosynthesis remediate heavy metals and radionuclides 

26 Gray, 2006 Achromatium Sulfate reduction 

Photosynthesis 

self-healing concrete, Improve soil quality 

27 Kremer et al., 2008 Cyanobacteria Photosynthesis self-healing concrete, Improve soil quality, 

heritage conservation and self-healing concrete, 

28 Marvasi et al., 2010 Bacillus subtilis 

etfA mutant 

Urea hydrolysis Regulate biofilm formation, self-healing 

concrete, Improve soil quality 

29 Benini et al., 2013 Sporosarcina 

pasteurii urease 

Urea hydrolysis remediate heavy metals and radionuclides, 

heritage conservation and self-healing concrete 

30 Zhao et al., 2019 Bacillus 

licheniformis SRB2 

Urea hydrolysis remediation of heavy metals 

31 Achal and Pan, 2014 Bacillus sp. CR2 Urea hydrolysis Bio-sequestration of carbon dioxide 

32 Adzami et al., 2018 Bacillus 

sphaericus 

Urea hydrolysis soil improvement and self-healing concrete 

33 Achal et al., 2012 Halomonas sp. Denitrification Bioremediation of strontium contaminated 

aquifer 

34 Braissant et al., 2007 sulfate reducing 

bacteria 

Sulfate reduction 

Photosynthesis 

remediation of heavy metals 

35 Dhami et al., 2013 Bacillus megaterium Urea hydrolysis As biogenic surface treatment agent for green 

building 

36 Dick et al., 2006 Bacillus sp. Urea hydrolysis Layer formation on degraded limestone 

37 Helmi et al., 2016 Bacillus 

licheniformis 

Urea hydrolysis Bio-sequestration of carbon dioxide, concrete 

restoration 

38 Lian et al., 2006 Bacillus megaterium Urea hydrolysis soil improvement and remediate heavy metals 

and radionuclides 

39 Martin et al., 2012 Sporosarcina 

pasteurii 

Urea hydrolysis remediation of heavy metals 

40 Ramanan et al., 2009 Citrobacter 

freundii 

Ammonification Bio-sequestration of carbon dioxide 

41 Seifan et sl., 2016 Bacillus Urea hydrolysis remediation of heavy metals 

42 Sensoy et al., 2017 Sporocarcina 

pasteurii ATCC 

6453 and Bacillus 

aerius U2 

Urea hydrolysis Layer formation on degraded limestone, Bio-

sequestration of carbon dioxide 

43 Srivastava et al., 

2014 

palaeoproterozoic 

metasediments 

Ammonification Bio-sequestration of carbon dioxide 

44 Zhang et al., 2011 Bacillus 

mucilaginosus 

Urea hydrolysis Bio-sequestration of carbon dioxide, concrete 

restoration 

45 Zhu et al., 2015 Synechococcus 

PCC8806 

Sulfate reduction 

Photosynthesis 

concrete restoration 

46 Xu et al., 2019 Cyanobacteria Photosynthesis Bio-sequestration of carbon dioxide 

47 Couradeau et al., 

2012 

microbialite 

Cyanobacteria 

Photosynthesis Bio-sequestration of carbon dioxide 

48 Silva-Castro et al., 

2015 

Bacillus sp. and 

Virgibacillus sp. 

Urea hydrolysis Bio-sequestration of carbon dioxide 

49 Konstantinou et al., 

2021 

Sporosarcina 

pasteurii 

Urea hydrolysis Formation of biocemented artificial sandstone 

50 Barabesi et al., 2007 Bacillus subtilis Urea hydrolysis Bio-sequestration of carbon dioxide 

 

Conclusion & Future Prospects  

Although MICCP has got several wide applications 

and enormously used in various sectors, it still gets 

some of the major lacunas that can never go 

unnoticed. The main difficulty is the microbial 

micro environment. The way the in vitro conditions 
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are regulated for a mineral precipitation process, 

cannot be done in an on-field condition. Several 

strategies are now available and are used in large 

scale to overcome the limitation involved in 

MICCP methodologies. 

 

Depending upon the type of microbial mediated 

mineral precipitation and the deposition pattern, 

several applications like bioremediation of heavy 

metals, organic components binding and sealing the 

surrounding matrix are possible. The gathered 

information regarding microbial mediated calcium 

carbonate bio-mineralization has facilitated the 

advanced applications of these naturally 

synthesized minerals for use as biomaterial within 

medicament industries along with wide application 

as bio-sequestration of carbon dioxide, heavy 

metals & radionuclide bioremediation and many 

more. 
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