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Abstract  

Type 1 Diabetes mellitus (T1D) is a widespread disease characterized by a persistent 

condition of hyperglycemia. Continuous Glucose Monitoring (CGM) devices allow people 

with T1D to keep track of their glycemic level for 24 hours a day. Artificial intelligence 

models can aid people with T1D adjusting and optimizing their insulin therapy by providing a 

prediction of the future glycemic level based on CGM data; nonetheless, most of them are 

large models that run on the cloud, whereas few studies have focused on the application on an 

edge device. Applying a data-driven model that must be continuously updated on an edge-

computing system requires a compromise between the predictive model performance and the 

limited computational capability of the edge device. In this study, we investigate different 

training approaches of a well-established Long Short-Term Memory neural network for blood 

glucose level forecasting in people with T1D based on CGM and insulin data. The best 

performance is achieved when the model is pre-trained on a large amount of data from 10 

virtual patients, and fine-tuned on patient-specific data updating only the parameters of the 

output layer, while keeping the parameters of the hidden layers unchanged. The numeric 

results are comparable to those achieved by larger models in the literature. The presented 

model is characterized by an average training and DRQ time of 67.6 seconds on an edge 

device that is largely acceptable in practical cases. 

Index Terms - Time series forecasting, Neural Networks, Edge Computing, Diabetes. 
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1. Introduction 

Type 1 Diabetes mellitus (T1D) is a chronic autoimmune disorder characterized by the 

body’s inability to produce insulin, resulting in elevated blood glucose levels [1]. Ac- curate 

forecasting of blood glucose levels plays a vital role in the effective management of T1D, as 

it allows patients to proactively adjust their insulin dosage, dietary intake, and physical 

activity, to maintain optimal glycemic control. Continuous Glucose Monitoring (CGM) 

systems have revolutionized diabetes care by providing real-time and historical blood glucose 

data. However, extracting meaningful insights from this data and generating accurate 

predictions remains a challenging task [2]. 

Traditional approaches for blood glucose level fore- casting primarily rely on statistical 

modeling techniques [3]. While these methods have shown some success, they often fail to 

capture the complex and dynamic nature of glucose metabolism, leading to limited accuracy 

and reliability in prediction [4]. As machine learning techniques continue to advance, there is 

a growing interest in exploring their potential to improve glucose level forecasting. Models 

for regression including Forests of Trees [5] and kernel machines[6] have achieved promising 

results in forecasting future CGM levels. However, the research is moving towards the 

utilization of deep learning models, including auto-regressive [7], Long Short-Term Memory 

(LSTM) [8], and Convolutional [9] neural networks. These models are able to learn the 

complex time dependence between the input and the output of the time series, and are thus 

particularly suited for such a task. 

The advent of edge computing brings promising opportunities for enhancing the performance 

and efficiency of machine learning algorithms in the context of diabetes management [10]. 

Edge devices, such as small computing devices or wearable sensors, have the ability to 

process data locally, reducing latency and dependency on cloud- based infrastructure. 

Moreover, they do not rely on a continuous cloud connection for working, reducing the 

number of possible malfunctioning by processing data as close as possible to where they are 

collected [11]. This capability opens up new avenues for investigating different learning 

methodologies directly on the edge device, where the data is collected and analyzed in real-

time. As mentioned, recent studies in time series tasks related to T1D employ deep learning 

algorithms, such as recurrent neural networks (RNNs) relationships in data makes them well-

suited for modeling blood glucose dynamics. The predictive ability of such models depends 

on the depth of the neural network and the amount of data available for training. However, 

deploying these complex models on resource-constrained edge devices poses several 

challenges, including limited computational power, memory constraints, and energy 

efficiency considerations [13]; moreover, the accurate blood glucose level prediction with a 

precision-medicine approach may require dozens of recorded CGM days from a specific 

patient [14], which are usually not available in clinical practice. 

For the reasons above, in this paper we aim to expand our previous study [14] investigating 

different learning methodologies specifically tailored for edge devices in the context of blood 

glucose level forecasting using CGM sensor data in patients with T1D, and validating the 

results on data from real patients and in a realistic data-gathering scenario. We evaluate 

different training approaches of a well-established model for blood glucose levels forecasting 
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to address the aforementioned challenges. Our objective is to develop accurate and efficient 

forecasting models that can be deployed directly on edge devices, empowering individuals 

with T1D to make informed decisions regarding their daily management and treatment 

strategies. Finally, we investigate the amount of time required to train or update these models 

directly on the edge devices with the latest available data. Since the data taken as input by the 

model concern only information recorded and gathered by the CGM sensor and the insulin 

pump, the system is completely automated and does not require patient intervention to 

provide data manually. The advancement of personalized T1D care introduced by this study 

could enable the development of real-time, low-power, and reliable blood glucose forecasting 

systems that seamlessly integrate with patients’ everyday lives, ultimately improving their 

quality of life and reducing the risk of complications associated with poor glycemic control. 

2. Materials And Methods 

To validate this study, we exploited data from either virtual and real patients. Data from 

virtual patients were used to train a preliminary configuration of the predictor, whereas real 

data were used to fine-tune the model and to evaluate the performance. 

A. Virtual dataset 

The UVA/Padova T1DM simulator [15] is used to generate data of 10 adult subjects with 

T1D. For each, 30 days of data are generated with 1-minute sampling. During each day, 

patients can randomly have from a minimum of 3 to a maximum of 5 meals, each having a 

reference carbohydrate intake taken from the Dietary Reference Intakes for Carbohydrate 

[16]. Breakfast, lunch, and dinner are always present and set at reference times 8:00, 13:00, 

and 20:00, with reference carbohydrate intake of 45, 70, and 80 grams, respectively. One or 

two snacks at 11:00 and/or 17:00 are randomly included with reference carbohydrate intake 

of 20 grams. To make data more realistic, the time of each meal is varied from the reference 

time by a random amount taken from a uniform discrete distribution in the interval [-60, +60] 

minutes, whereas the amount of carbohydrates for each meal is obtained by varying the 

reference by a casual value extracted from a uniform discrete distribution in the interval [-20, 

+20] grams. Hypoglycemic and hyperglycemic events are intentionally generated to match 

the glycemic excursions observed in real data; this is achieved by modifying the optimal 

insulin bolus automatically computed by the simulator itself in occurrence of each meal, in 

order to simulate human error on carbohydrate counting [17]. The corrective value is 

randomly taken in the discrete interval [-3, +3] units of insulin. 

B. Real dataset 

The Unit of Endocrinology and Diabetology of Campus Bio-Medico University Hospital 

provided data of 12 people with T1D who used the Medtronic Enlite CGM sensor coupled 

with an insulin pump, whose data were exploited in our previous study [18]. Data are 

gathered with a 5-minute sampling. The dataset includes 7 females and 5 males, aged 

between 24 and 69 (average 40 ± 15) diagnosed with T1D from 1 to 40 years ago (average 

16.2 ± 12.9). Each patient was monitored for a period of time ranging from 5 to 25 days 

(average 10.6 ± 5.2), for a total of 127 days of monitoring; the longest monitoring period 

without data interruption for any patient is 5 days. 

C. Data Preprocessing 
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In order to ensure consistency between the datasets considered in this study, data generated 

with the UVA/Padova simulator are modified according to the features of the real data. 

Straightforwardly, they were up-sampled taking one value every 5 minutes and no further 

feature was considered beside CGM and insulin; this means that the model does not exploit 

any feature that must be manually provided by patients such as carbohydrate intake, resulting 

completely automated. The insulin feature was represented through the Insulin-On-Board 

(IOB), a combination of basal and bolus insulin which represents an estimation of the amount 

of insulin that is active in the subject’s body after a determined time from the injection. The 

active insulin time is equal to 3 hours and its action is linear [19] and computed for each 

timestamp t as: 

 ∑  ( ) (   )   
    (1) 

where  (   ) represents the value of total insulin injected at minute (   ),  ( )  

(     )     is the coefficient corresponding to the time-discrete insulin decay curve 

according to a 1-minute timestamp of insulin delivery, and k = 0, 1, 2, ..., 179 are the total 

timestamps for the 3 hours of active insulin. 

Separately for each patient in the virtual or the real dataset, a Z-score standardization is 

applied to the features to obtain a normal distribution of the values with zero mean and unit 

standard deviation. Finally, the dataset is split into windows consisting of 30 minutes of data 

(input of the model) and one sample as label (output of the model). A prediction horizon (PH) 

is fixed to determine how forward in time the prediction is performed. Thus, at each 

timestamp t, the estimated future 

CGM value    ̂ is a function of CGM and IOB values 

from the previous 30 minutes: 

   ̂(    )   (   [        ]    [        ]) (2) 

where the PH is set to 30 minutes which is the most widely adopted value in the literature, as 

it would allow sufficient time to prevent an adverse event [20]. 

D. Neural network architecture 

An LSTM architecture is selected as forecasting model, i.e., a specific RNN variant that is 

very suitable to handle long-term dependencies [21]. An LSTM is an RNN where any cell at 

a considered timestamp t contains an internal memory vector, or state vector, ct that defines 

its state as described in the following. The units of the network are composed of an input cell, 

an output cell and a forget gate. Considering the matrices W input weights, R recurrent 

weights and b bias for each gate, the state of the cell at timestamp t defined as 

ct = ft ⊙ ct−1 + it ⊙ gt (3)  

whereas the hidden state is defined by 

ht = ot ⊙ σ(ct) (4) 

where the terms, for a given input x(t), are referred to the equations governing the gates. In 

detail, for the input gate: 

it = σ(Winx(t) + Riht−1 + bi) (5)  

for the forget gate: 

ft = σ(Wf x(t) + Rf ht−1 + bf ) (6)  
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for the cell candidate: 

gt = σ(Wgx(t) + Rght−1 + bg) (7)  

and, finally, for the output gate: 

ot = σ(Wox(t) + Roht−1 + bo) (8) 

where σ is the sigmoid activation function. 

The optimal hyperparameters of the network were identified in our previous work through the 

medium of a grid search [14], resulting in a 3-layered network composed, in sequence, of an 

LSTM layer with 16 cells, a dense layer with 10 neurons, and a single output neuron for 

regression. A learning rate of 0.01, Adam as optimizer, and Rectified Linear Unit (ReLU) 

activation function for the dense and output layers also resulted from the optimization. It is 

worth noting that the proposed model has a relatively limited number of layers and 

parameters and is thus particularly light weighted and suited for running on the edge. 

E. Experimental Setup 

The main contribution of this paper consists in the investigation of different learning 

strategies of a model for glucose levels forecasting on an edge device. Indeed, previous 

studies showed that following a precision-medicine approach, i.e., the utilization of a patient-

specific model that is trained exclusively on data from the same patient that will be used for 

testing, usually achieves the best performance [22, 23]. Nonetheless, such an approach often 

results in suboptimal training of a deep learning model due to the limited amount of subject-

specific data that are available in practical applications. For this reason, other approaches 

enlarge the training dataset including data from several patients to improve training 

performance. Following these considerations, the LSTM neural network model described in 

the previous section has been evaluated according to the following approaches: 

 Transfer Learning (TL): data from all the virtual patients are put together to compose a 

whole dataset for the training of the neural network; then, the trained model is used in a 

test-only setup on data of the real patients. 

 Fine Tuning (FT): the model is initialized using the weights obtained with the TL 

approach; then, for each testing patient, the first available data are used to retrain the 

model following a precision medicine approach. 

 Fine Tuning with frozen layer 1 (FL1): same as the FT approach, but the weights of the 

first layer (LSTM layer) are not set to trainable, so they remain those resulted from the 

training on the virtual subjects. 

 Fine Tuning with frozen layer 2 (FL2): the weights of the second layer (dense layer) are 

not set to trainable. 

 Fine Tuning with frozen layers 1 and 2 (FL12): the weights of both the LSTM and the 

dense layer are not set to trainable, thus the only training concerns the parameters of the 

output neuron; this is the configuration with the least number of trainable parameters. 

 Precision Medicine (PM) only: the model is trained from scratch on patient-specific 

data, without pre- training on the virtual dataset. This approach requires all the 

parameters to be trained from a random initialization and has the most onerous training. 

Since all real patients have at least 5 monitored days, data of each subject were split into a 

discovery set (days 1 to 4 included) and a test set (days 5 to last recorded day). In this way, 
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the test set is fixed, allowing a fair comparison between tests with a different number of 

training days. It is worth noting that the amount of training days was increased backwards, 

i.e., day 4 was used for training when using 1 day of training, days 3 and 4 when training for 

2 days, and so on, so that the discovery set for each test is composed of the days immediately 

preceding the test set. 

The discovery set of each patient was subsequently split into a training and a validation set 

with a fixed 70/30% ratio in each experiment. To avoid overfitting, early-stopping was 

utilized to stop the training if the performance on the validation set did not improve for more 

than 6 consecutive epochs. All the training approaches were implemented in Python using the 

open-source libraries of TensorFlow and Keras; The optimization stage was performed 

utilizing the Google Colaboratory environment; the best-performing model was eventually 

run on the edge device in order to evaluate the training, quantization, and inference times. 

F. Edge System 

The edge system utilized in this study is the Raspberry Pi 4. It includes a quad core Cortex-

A72 1.5GHz processor with 8GB of RAM; additional information can be found in the 

datasheet [24]. The steps followed for implementing and testing the model on edge 

architecture are as follows: 

 The pre-trained model (as described in section E as TL), saved in the h5 format, is 

loaded on the device. 

 Fine-tuning is performed on the device to adapt the general model to a specific patient 

data. 

 The trained model is then converted in the TensorFlow Lite format using concrete 

functions to allow a faster prediction [25]. This type of model quantization is called 

Dynamic Range Quantization (DRQ) and it provides reduced memory usage and faster 

computation without significantly affecting the model performance. 

 Finally, to extract inference metrics, tests are con- ducted using the model in its 

TensorFlow Lite for mat. 

3. Results And Discussion 

The results are evaluated following the most widely utilized metrics for blood glucose levels 

forecasting, namely Root Mean Squared Error (RMSE), Mean Absolute Relative Difference 

(MARD), and Sum of Squares of Glucose Prediction Error (SSGPE), which is a metric 

specifically suited for evaluating glucose forecasting errors [26]. These metrics are based on 

the vector of errors between the predicted and real CGM values, defined as: 

     ̂      (9) 

that allows the calculation of the metrics as: 

      √
∑  ( )  
   

 
  (10) 

      √
∑   ( )   
   

   ( )
  (11) 

           √
∑  ( )  
   

∑    ( )  
   

  (13) 
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where t is a generic timestamp and T is the total number of predicted timestamps. The RMSE 

provides a measure of the magnitude of the mean error, whereas MARD and SSGPE provide 

a percentage error that is independent of the magnitude of the observed quantity. 

The average results for each training approach, for the different metrics, and for a number of 

training days varying from 1 to 4 are reported in Table I, and are graphically represented in 

Fig. 1. The results are in line with those reported in the literature, and considered acceptable 

to potentially avoid or mitigate an adverse glycemic event [2, 27]. However, it is worth 

stressing that the goal of this study is not to optimize the selected predictive model on the 

data, but rather to determine the optimal strategy for practical implementation on an edge 

device. 

Table I: Average numeric results in terms of RMSE, MARD, and SSGPE for the different 

training approaches considered, for a number of training days varying from 1 to 4. The best 

results for each metric and for different training days are highlighted. 

Metric 
Training 

days 

Training approach 

PM      FT       FL1 FL2   FL12       TL 

 1 21.2 22.2 21.2 21.2 21.0 24.7 

RMSE 2 19.1 21.2 19.2 19.1 19.4 - 

[mg/dL] 3 

4 

20.5 

20.4 

22.0 

20.9 

20.6 

20.4 

20.5 

20.2 

20.4 

20.2 

- 

- 

 1 22.2 23.2 23.7 21.7 23.2 17.4 

MARD 2 9.3 10.1 9.3 9.4 9.5 - 

[%] 3 

4 

10.2 

10.8 

10.9 

11.0 

10.2 

10.9 

10.3 

10.7 

10.4 

10.8 

- 

- 

 1 12.6 13.1 12.6 12.6 12.5 14.7 

SSGPE 2 10.8 11.9 10.8 10.8 10.9 - 

[%] 3 

4 

12.1 

12.4 

13.0 

12.8 

12.1 

12.5 

12.1 

12.4 

12.0 

12.4 

- 

- 

It is worth noting that all the training approaches achieve similar performance, and there is 

not a specific approach that performs clearly better than the others. However, it is interesting 

to point out that the FT approach (i.e., re-training the whole model after having set the initial 

weight values) does not achieve the best results in any test, and is constantly outperformed by 

the fine-tuning approaches that consider one or more non-trainable layers. As one could 

expect, the TL approach achieves competitive results only when the others are trained for 1 

day, as it is quickly outperformed by patient- suited models. Interestingly, the best results are 

achieved for a training time of 2 days; this could be due to the inclusion of very noisy data 

when increasing the discovery sets to 3 or 4 days. 

Although by a small margin, the best approaches result to be the PM, achieving the best 

results in 5 tests, and the FL12, achieving the best results in 6 tests; however, the latter has 
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the least amount of parameters to train, so it can be considered the most suited approach for 

training on an edge device. 

 
Figure 1: Results of the different configurations ranging from 1 to 4 days of training data. 

Straightforwardly, we implemented this model on the edge device described in Sec. F in 

order to evaluate the real-life feasibility in terms of training, DRQ, and inference time. Table 

II reports the average (with standard deviation), maximum, and minimum times required for 

the tasks above. The edge implementation concerns only the models trained using 4 days of 

data, in order to evaluate the worst-case scenario in terms of time required, corresponding to 

the maximum size of the discovery set. The maximum inference time observed in any test is 

1 millisecond and is thus negligible in this analysis. The average total times required for 

training on the edge and DRQ sum to 67.6 seconds, with a maximum time of 134.1 seconds. 

This is a suitable time for running on an edge device: considering the typical 5-minute 

sampling time of the CGM devices, corresponding to a prediction every 5 minutes, a model 

update on the edge device would be feasible in practice without affecting or limiting the 

predictions. This is also achieved due to the very limited number of trainable parameters of 
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the FL12 approach. Moreover, such a small execution time is unlikely to considerably affect 

the battery charge of the edge device. This is important because a long training time could 

result in a complete battery discharge, resulting in the risk of leaving the patient without a 

decision support system. 

Table II: Execution times on the edge device. 

Time [s] Training DRQ Inference 

Average 51.2 ± 16.3 16.4 ± 8.9 (6 ± 3) × 10
−4

 

Minimum 19.1 12.0 3 × 10
−4

 

Maximum 93.7 40.4 1 × 10
−3

 

4. Conclusions 

In this study, we investigated different training approaches of a well-established LSTM 

neural network for blood glucose level forecasting in people with T1D based on CGM and 

insulin data, without requiring the patient to provide manual information. The best 

performance is achieved by the model pre-trained on a large amount of data from virtual 

patients, and fine-tuned while updating only the parameters of the output layer, while keeping 

the parameters of the hidden layers frozen. This results in a small training time on an edge 

device that is largely acceptable in clinical practice. Future developments of this study could 

include the enrollment of a larger number of real patients, and the implementation of tests on 

different edge devices with smaller computational capacity. 
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