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Abstract: 

 

A dominating set S of a graph G is said to be an isolate dominating set of G if the induced 

subgraph            < S > has at least one isolated vertex. A dominating set S of a graph G is 

said to be an unique isolate dominating set (UIDS) of G if < S > has exactly one isolated vertex. 

A  d o m i n a t i n g  s e t  S  o f  a  g r ap h  G  i s  s a i d  t o  b e  an  u n i q u e  i s o l a t e  

d o m i n a t i n g  s e t ( U ID S )  o f  G  i f  <  S  >  h a s  ex ac t l y  o n e  i s o l a t ed  v e r t ex .  If a 

graph G admits UIDS S and x is the isolated vertex in < S >, then S−{x} is a minimum total 

dominating set in G−N[a]. An UIDS S is said to be minimal if no proper subset of S is an UIDS. 

The minimum cardinality of a minimal UIDS of G is called the UID number, denoted by γU 

(G).T h e  m ax i m u m  ca r d i n a l i t y  o f  a  m i n im a l  U ID S  o f  G  i s  c a l l ed  t h e  u p p e r  

U ID  n u m b er ,  d en o t ed  b y
0 ( )U G . 

In this paper we found UIDS in Power of a Cycle Cn
k  , UIDS in some Families of Graphs like 

Sun graph, Comb graph and Helm graph, we give an upper bound for the UID number of Cn
k  

. Also, we identify some sub families of Cn
k admits UIDS. 
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1. Introduction 

 
Beginning with the origin of the Four Color 

Problem in 1852, the field of graph 

colorings has developed into one of the 

most popular areas of graph theory. Each 

chapter in the text contains many exercises 

of varying levels of difficulty. There is also 

an appendix containing the referred 

research articles and books. 

A dominating set in a graph is a vertex 

subset S  such that every vertex not in S 

has a neighbor in S , and the domination 

number of a graph is the size of its smallest 

dominating set. The dominating set 

problem asks to determine the domination 

number of a given graph. Formal study of 

the dominating set problem began in the 

1960’s, the term itself first appearing in the 

1967 book on graph theory by Ore[?]. This 

area of mathematics is rapidly being 

developed by many people in different 

countries. 

Berge and Ore took efforts to make the 

concept of domination mathematically 

which increases interest in the study of 

domination parameters worldwide[7] 

More than one hundred domination 

parameters defined and studied by various 

people in all over the world. Besides being 

of theoretical interest, the dominating set 

problem also finds a natural application in 

numerous facility location problems. In 

such problems, the locations are denoted by 

the vertices of a graph, adjacency means 

some notion of accessibility, and the 

problem is to find a subset of locations 

accessible from all other locations at which 

to install fire stations, bus stops, post 

offices, or other such facilities. 

Various numerical invariants of graphs 

concerning domination were introduced by 

means of dominating functions and their 

variants. 

 

Notations: 

In this section, we give all the notations followed in this dissertation. 

 

G = (V, E)  Graph with vertex set V and edge set E 

V(G) (or) V  Vertex set of G 

E(G) (or) E  Edge set of G 

degG(v) (or) deg(v)  Degree of the vertex v in G 

δ(G)  minimum degree of a vertex in G 

Δ(G)  Maximum degree of a vertex in G 

NG(v) (or) N(v)  Open neighborhood of a vertex v in G 

NG[v] (or) N[v]  Closed neighborhood of a vertex v in G 

𝑁𝐺(𝑆) (or) 𝑁(𝑆)  Open neighborhood of 𝑆 ⊆ 𝑉 in 𝐺 

𝑁𝐺[𝑆] (or) 𝑁[𝑆]  Closed neighborhood of 𝑆 ⊆ 𝑉 in 𝐺 

𝛾(𝐺)  Domination number of 𝐺 

𝛾𝑆(𝐺)  Signed domination number of 𝐺 

〈𝑆〉 Subgraph induced by a set 𝑆 ⊆ 𝑉 

 

𝐺   Complement graph of a graph 𝐺 

𝐺𝑘   𝑘th power of the graph 𝐺 

(𝑍𝑛,⊕𝑛)   finite cyclic group of order 𝑛  

𝐶𝑛   Cycle graph on 𝑛 vertices 

𝐻𝑛   helm graph  

𝑊𝑛   Wheel graph on 𝑛 + 1 vertices  

𝐹𝑛   Fan graph on 𝑛 + 1 vertices 
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𝐵𝑛   Book graph on 2𝑛 + 2 vertices 

𝑇𝑛   Friendship graph on 2𝑛 + 1 vertices 

𝐷n   Prism graph on 2𝑛 vertices 

⌈𝑥⌉   Smallest integer greater than or equal to 𝑥 

⌊𝑥⌋   Largest integer less than or equal to 𝑥.  

 

Basic definitions 

In the first section of this thesis, we collect some basic and important definitions in graph theory 

which are used to the subsequent chapters. For graph theoretic terminology, we follow[8]. 

 

Definition 1.1  A graph 𝐺 is a finite nonempty set of objects called vertices together with a 

set of unordered pairs of vertices of 𝐺 called edges. The vertex set and the edge set of 𝐺 are 

denoted by 𝑉(𝐺) and 𝐸(𝐺) respectively. Each pair (𝑢, 𝑣) of points in 𝐸(𝐺), is called an 

edge of 𝐺. We write 𝑒 = (𝑢, 𝑣) and say that 𝑢 and 𝑣 are adjacent vertices; vertex 𝑢 and 

edge 𝑒 are incident with each other, as are 𝑣 and 𝑒. If two distinct edges 𝑒1 and 𝑒2 are 

incident with a common vertex, then we say that 𝑒1 and 𝑒2 are adjacent edges. If 𝑢 = 𝑣, 

then 𝑒 is said to be a loop. If 𝑒 = 𝑒1 = (𝑢, 𝑣), then 𝑒 and 𝑒1 are said to be parallel edges. A 

graph without loops and parallel edges, is called a simple graph.  

 

Definition 1.2  A graph is a  power of cycle denoted by 𝐶𝑛
𝑘, if 𝑉(𝐶𝑛

𝑘) = {1,2, … , 𝑛 −
1, 𝑛(= 0)}, and 𝐸(𝐶𝑛

𝑘) = 𝐸1 ∪ 𝐸2 … ∪ 𝐸𝑘, where 𝐸𝑖 = {(𝑣𝑗 , 𝑣(𝑗 + 𝑖)𝑚𝑜𝑑 𝑛): 0 ≤ 𝑗 ≤ 𝑛 −

1}. Note that 𝐶𝑛
𝑘 is 2𝑘-regular and that 𝑘 ≥ 1. an edge 𝑒 ∈ 𝐸𝑖 is said to have reach 𝑖; if 𝑖 is 

even (odd), then 𝑒 is an even (odd) edge. We take (𝑣0, … , 𝑣𝑛−1) to be a cyclic order on the 

vertex set of 𝐺, and always perform modular operations on edge and vertex indexes.  

 

Definition 1.3  For a positive integer 𝑛, the graph P𝑛 + 𝐾1 is called as fan graph and 

denoted by 𝐹𝑛. Note that the fan graph 𝐹𝑛 has 𝑛 + 1 vertices and 2𝑛 − 1 edges.  

 

Definition 1.4  The friendship graph 𝑇𝑛 is obtained by merging exactly one vertex from 

each of the 𝑛 number of 𝐾3’s. Note that the friendship graph 𝑇𝑛 has 2𝑛 + 1 vertices and 

3𝑛 edges.  

Definition 1.5 A sun graph is a graph obtained by joining an pendent edge to each vertex of a 

cycle 𝐶𝑛 and denoted by 𝑆𝑢𝑛(𝑛).  

 

Definition 1.6  A Helm is a graph obtained by joining an pendent edge to each vertex of a 

wheel 𝑊𝑛 except the center and denoted by 𝐻𝑛. Note that the Helm graph 𝐻𝑛 has 2𝑛 + 1 

vertices and 3𝑛 edges.  

 

Definition 1.7  [8] Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) and 𝐻 = (𝑉𝐻, 𝐸𝐻) be two graphs such that |𝑉𝐺| =
|𝑉𝐻|. If there exists a bijection 𝑓: 𝑉𝐺 → 𝑉𝐻 such that (𝑥, 𝑦) ∈ 𝐸𝐺  if and only if 

(𝑓(𝑥), 𝑓(𝑦)) ∈ 𝐸𝐻, then 𝑓 is called a graph isomorphism.  

 

Definition 1.8 The square 𝐺2 of a graph 𝐺 is defined on the vertex set of 𝐺 in such a way 

that distinct vertices with distance at most 2 in 𝐺 are joined by an edge.  

 

Definition 1.9  A path of length 𝑛 in a graph 𝐺 is a sequence (𝑢0, 𝑢1, … , 𝑢𝑛) of distinct 

vertices, such that for 1 ≤ 𝑖 ≤ 𝑛 − 1, the vertices 𝑢𝑖 and 𝑢𝑖+1 are adjacent.  

A cycle of length 𝑛  in a graph 𝐺 , denoted by 𝐶𝑛 , is a sequence (𝑢0, 𝑢1, … , 𝑢𝑛−1, 𝑢0) of 



Section A-Research paper Unique Isolate Domination in Power of 

Cycle and In Some Families of Graphs 

 
 

Eur. Chem. Bull. 2023, 12 (S3), 3888 – 3897                                                       3891  

distinct vertices, such that for 1 ≤ 𝑖 ≤ 𝑛 − 2, the vertices 𝑢𝑖  and 𝑢𝑖+1 are adjacent, 𝑢𝑛−1 

and 𝑢0 are adjacent.  

The length of a shortest cycle (it exist) in a graph 𝐺 is called the girth of 𝐺 and is denoted by 

𝑔(𝐺). 

A cycle 𝐶𝑛 of length 𝑛 is called even or odd according as 𝑛 is even or odd.  

 

Definition 1.10  Let 𝐷 be a simple finite digraph with vertex set 𝑉(𝐷) = 𝑉 and arc set 

𝐸(𝐷) = 𝐸. For any vertex 𝑣 ∈ 𝑉, the in-neighbor of 𝑣, denoted by 𝑁−[𝑣] = 𝑁𝐷
−[𝑣], is given 

by 𝑁𝐷
−[𝑣] = {𝑢 ∈ 𝑉: (𝑢, 𝑣) ∈ 𝐸}. The out-neighbor of 𝑣, denoted by 𝑁+[𝑣] = 𝑁𝐷

+[𝑣], is 

given by 𝑁𝐷
+[𝑣] = {𝑢 ∈ 𝑉: (𝑢, 𝑣) ∈ 𝐸}.  

 

Definition 1.11  A non-empty subset 𝐴 of a group 𝛤, is called a  generating set of 𝛤 if 

every element of 𝛤 can be expressed as a product of the elements in 𝐴, denoted by 𝛤 =<
𝐴 >.  

Assumption: Let 𝐴 be a generating set of a group 𝛤 with 𝑒 as the identity element of 𝛤. We 

assume the following two conditions:  

𝐶1: The identity element 𝑒 ∉ 𝐴.  

𝐶2: If 𝑎 ∈ 𝐴, then 𝑎−1 ∈ 𝐴  

      

2. Unique isolated domination 

The origin of domination starts from the game of chess, where the aim of the game is to 

dominate all the squares of a chessboard by certain chess pieces. In 1862, de Jaenisch [Dl] 

studied the problem of finding the least number of queens used to cover the chessboard in such 

a way that every square is either reachable by a queen in a single move. The answer he find is 

5 and a possible positions of these five queens of a 8 × 8  chessboard are 

(1,1), (3,3), (5,5, ), (6,6, ) and (7,7). Take all squares of the chessboard as vertices. Join two 

vertices if and only if a queen can move from one square to another. Then the chessboard 

problem is changed here as finding the minimum dominating set. A dominating set 𝑆 of a 

graph 𝐺 is said to be an isolate dominating set of 𝐺 if the induced subgraph < 𝑆 > has at 

least one isolated vertex 𝑠𝑎ℎ𝑢𝑙. 
A dominating set 𝑆 of a graph 𝐺 is said to be an unique isolate dominating set(UIDS) of 𝐺 if 

< 𝑆 > has exactly one isolated vertex. An UIDS 𝑆 is said to be minimal if no proper subset 

of 𝑆 is an UIDS. The minimum cardinality of a minimal UIDS of 𝐺 is called the UID number, 

denoted by 𝛾0
𝑈(𝐺).  

Note that, if a graph 𝐺 admits UIDS 𝑆 and 𝑥 is the isolated vertex in < 𝑆 >, then 𝑆 − {𝑥} 

is a minimum total dominating set in 𝐺 − 𝑁[𝑎]. This chapter includes some properties of UIDS 

and the UID number of paths, complete 𝑘-partite graphs and disconnected graphs. Further, the 

role played by UIDS in the domination chain has been discussed in detail. 

In this Chapter, we consider only finite non-trivial undirected graphs with no loops and no 

multiple edges. For graph theoretic terminology, we refer to 𝑐ℎ𝑎𝑟. Here we list out some of 

the basic definitions which are needed for this chapter.  

Let 𝐺 = (𝑉, 𝐸) be a simple connected graph. For 𝑣 ∈ 𝑉, the open neighborhood 𝑁(𝑣) is the 

set of all vertices which are adjacent to 𝑣. The closed neighborhood of 𝑣 is 𝑁[𝑣] = 𝑁(𝑣) ∪
{𝑣}. The degree of a vertex 𝑣 is defined by 𝑑𝑒𝑔(𝑣) = |𝑁(𝑣)|. The minimum and maximum 

degree of 𝐺 is defined by 𝛿(𝐺) = 𝑚𝑖𝑛
𝑣∈𝑉

{𝑑𝑒𝑔(𝑣)} and 𝛥(𝐺) = 𝑚𝑎𝑥
𝑣∈𝑉

{𝑑𝑒𝑔(𝑣)} respectively.  

A set 𝑆 ⊆ 𝑉  is called a dominating set if every vertex in 𝑉  is either an element of 𝑆 or 

adjacent to an element of 𝑆. A dominating set 𝑆 is minimal if no proper subset of 𝑆 is a 

dominating set. The minimum and maximum cardinality of a minimal dominating set of 𝐺 are 
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called the domination number 𝛾(𝐺) and the upper domination number 𝛤(𝐺) respectively. 

In 2016, Hameed and Balamurugan 𝑠𝑎ℎ𝑢𝑙 introduced the concept of isolate domination in 

graphs. Further, in [5], they characterized unicycle graphs on which the order equals the sum 

of the isolate domination number and its maximum degree. A dominating set 𝑆 of a graph 𝐺 

is said to be an isolate dominating set if < 𝑆 > has at least one isolated vertex 𝑠𝑎ℎ𝑢𝑙. An 

isolate dominating set 𝑆 is said to be minimal if no proper subset of 𝑆 is an isolate dominating 

set. The minimum and maximum cardinality of a minimal isolate dominating set of 𝐺 are 

called the isolate domination number 𝛾0(𝐺) and the upper isolate domination number 𝛤0(𝐺) 

respectively. An isolate dominating set of cardinality 𝛾0 is called a 𝛾0-set.  

By using the above concept of isolate domination, we define a new concept called "Unique 

Isolate Domination(UID)". A dominating set 𝑆 of 𝐺 is said to be an UIDS of 𝐺 if < 𝑆 > has 

exactly one isolated vertex. An UIDS 𝑆 is said to be minimal if no proper subset of 𝑆 is an 

UIDS. The minimum and maximum cardinality of a minimal UIDS of 𝐺 are called the UID 

number 𝛾0
𝑈(𝐺) and the upper UID number 𝛤0

𝑈(𝐺) respectively. An UIDS of cardinality 𝛾0
𝑈 

is called a 𝛾0
𝑈-set. Note that the cycle 𝐶4 does not admit UIDS but it admits isolate dominating 

sets. So many differences between these two domination parameters that we have discussed in 

the next section. This chapter includes some basic properties of UIDS and the role played by 

UIDS in the domination chain has been discussed.  

Since every pendent vertex or the vertex adjacent to it is in every dominating set, {𝑏, 𝑑, 𝑖, 𝑔} is 

a minimum dominating set and 𝛾(𝐺) = 4. 

But {𝑏, 𝑑, 𝑖, 𝑔} is not a UID set since < {𝑏, 𝑑, 𝑖, 𝑔} > has no isolated vertices. Let 𝐷 be a 

minimum UID set of 𝐺  and 𝑥 be the isolated vertex of 𝐷. Suppose 𝑥 = 𝑎. Consider the 

induced subgraph 𝐺 − 𝑁[𝑎] =< {𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗} >. It has the minimum total dominating 

set with four elements, namely {𝑔, ℎ, 𝑖, 𝑑}. Thus 𝛾0
𝑈(𝐺) = 5. Similarly when 𝑥 = 𝑒 or 𝑥 = 𝑗 

or 𝑥 = 𝑓, we can prove 𝛾0
𝑈(𝐺) = 5. 

Suppose 𝑥 = 𝑔. Then we can not take the vertex 𝑏 in 𝑆. Thus to dominate the vertex 𝑎, we 

must have 𝑎 in 𝑆 and in this case we get two isolated vertices in 𝑆, namely 𝑎 and 𝑔, a 

contradiction. Similarly we can get contradictions, when 𝑥 = 𝑏 or 𝑥 = 𝑖 or 𝑥 = 𝑑. 

 

2.1 UIDS in Power of a Cycle 

 A graph is a power of cycle, denoted 𝐶𝑛
𝑘 , if 𝑉(𝐶𝑛

𝑘) = {0(𝑛),1,2, … , 𝑛 − 1} and 𝐸(𝐶𝑛
𝑘) =

𝐸1 ∪ 𝐸2 ∪ … ∪ 𝐸𝑘 , where 𝐸𝑖 = {(𝑗, (𝑗 + 𝑖)(𝑚𝑜𝑑 𝑛)): 0 ≤ 𝑗 ≤ 𝑛 − 1}  and 1 ≤ 𝑘 ≤ ⌊
𝑛−1

2
⌋ 

[?]. Note that 𝐶𝑛
𝑘 is a 2𝑘-regular graph. We take (0,1, … , 𝑛 − 1) to be a cyclic order on the 

vertex set of 𝐺, and always perform modular operations on edge and vertex indexes. In this 

section, we give an upper bound for the UID number of 𝐶𝑛
𝑘 . Also, we identify some sub 

families of 𝐶𝑛
𝑘 admits UIDS. In such case, we obtain the 𝛾0

𝑈(𝐺)𝑆. In this section the operation 

+ is taken as addition modulo 𝑛. 

 

Lemma 2.1  Let 𝑛, 𝑘 be positive integers such that 𝑛 − (2𝑘 + 1) is a multiple of 3𝑘 + 1. 

Then the graph 𝐺 = 𝐶𝑛
𝑘 admits UIDS and 𝛾0

𝑈(𝐺) = 2𝑚 + 1, where 𝑚 =
𝑛−(2𝑘+1)

3𝑘+1
.  

  

Proof. Let 𝐺 = 𝐶𝑛
𝑘  and 𝑛, 𝑘  be positive integers such that 𝑛 − (2𝑘 + 1) is a multiple of 

2𝑘 + 1. Note that every vertex of 𝐺 is of degree 2𝑘. Also any two adjacent vertices of 𝐺 can 

dominate a maximum of 3𝑘 + 1  vertices(any vertex 𝑣  and 𝑣 + 𝑘  can dominate 3k + 1 

vertices).− − −>(1) 

From the definition of given circulant graph, it follows that two vertices 𝑣 and 𝑣 + 𝑖 are 

adjacent if and only if 1 ≤ 𝑖 ≤ 𝑘.− − −>(2) 
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Consider the set 𝑆 = {𝑘 + 1, (3𝑘 + 2), (4𝑘 + 2), (3𝑘 + 2) + (3𝑘 + 1), (4𝑘 + 2) + (3𝑘 +
1), (3𝑘 + 2) + 2(3𝑘 + 1), (4𝑘 + 2) + 2(3𝑘 + 1), … , (3𝑘 + 2) + (𝑚 − 1)(3𝑘 + 1), (4𝑘 +
2) + (𝑚 − 1)(3𝑘 + 1)}. From (1) and (2), 𝑆 is dominating set with 2𝑚 + 1 vertices. Also 

the vertices 1,2, … , 𝑘, 𝑘 + 2, 𝑘 + 3, … ,2𝑘 + 1 are not in 𝑆 and so 𝑘 + 1 is isolated in < 𝑆 >. 

Thus 𝑆 is a UIDS and hence 𝛾0
𝑈(𝐺) ≤ 1 + 2𝑚.  

On the other hand, let 𝐷 be a minimum UIDS of 𝐺 and 𝑥 be the isolated vertex in < 𝐷 >. 

Note that 𝐺 is a regular graph of degree 2𝑘 and so including 𝑥, the vertex 𝑥 will dominate 

2𝑘 + 1 vertices. Also every other vertex of 𝐷 is adjacent with another vertex of 𝐷 and hence 

by (2), to dominate the remaining 𝑛 − (2k + 1) = 𝑚(3𝑘 + 1) vertices of 𝐺, 𝐷 must include 

at least 2𝑚 more vertices. Thus |𝐷| ≥ 2𝑚 + 1 and so 𝛾0
𝑈(𝐺) ≥ 1 + 2𝑚.  

 

Note that, when 𝑘 = 1, the circulant graph 𝐶𝑛
𝑘 is a cycle 𝐶𝑛.  

Corollary 2 𝛾0
𝑈(𝐶𝑛) = 2𝑚 + 1 if 𝑛 = 4𝑚 + 3 for some integer 𝑚 ≥ 0.  

  

Proof. Put 𝑘 = 1 in Lemma 2.6, we get 𝑛 − 3 is a multiple of 4. Then the graph 𝐶𝑛 admits 

UIDS and 𝛾0
𝑈(𝐶𝑛) = 2𝑚 + 1, where 𝑚 =

𝑛−3

4
. Thus 𝑛 = 3𝑚 + 3 and and 𝛾0

𝑈(𝐺) = 2𝑚 +

1. 

Note that this result is already proved in Lemma 2.3(1).  

 

Lemma 2.2  Let 𝑛, 𝑘 be positive integers such that 𝑛 = (2𝑘 + 1) + 𝑚(3𝑘 + 1) + 𝑖 for 

some 1 ≤ 𝑖 ≤ 𝑘. Then the graph 𝐺 = 𝐶𝑛
𝑘 admits UIDS and 𝛾0

𝑈(𝐺) = 2𝑚 + 2, where 𝑚 =
𝑛−(2𝑘+1)

3𝑘+1
.  

  

Proof. Let 𝐺 = 𝐶𝑛
𝑘  and 𝑛, 𝑘 be positive integers such that 𝑛 − (2𝑘 + 1) = 𝑚(3𝑘 + 1) + 𝑖 

for some 1 ≤ 𝑖 ≤ 𝑘 . The set 𝑆 = {𝑘 + 1, (3𝑘 + 2), (4𝑘 + 2), (3𝑘 + 2) + (3𝑘 + 1), (4𝑘 +
2) + (3𝑘 + 1), (3𝑘 + 2) + 2(3𝑘 + 1), (4𝑘 + 2) + 2(3𝑘 + 1), … , (3𝑘 + 2) + (𝑚 − 1)(3𝑘 +
1), (4𝑘 + 2) + (𝑚 − 1)(3𝑘 + 1), (4𝑘 + 2) + (𝑚 − 1)(3𝑘 + 1) + 𝑘}. is a dominatin set with 

2𝑚 + 2 vertices. Also the vertices 1,2, … , 𝑘, 𝑘 + 2, 𝑘 + 3, … ,2𝑘 + 1 are not in 𝑆 and so 𝑘 +
1 is isolated in < 𝑆 >. Thus 𝑆 is a UIDS and hence 𝛾0

𝑈(𝐺) ≤ 2 + 2𝑚.  

On the ther hand, let 𝐷 be a minimum UIDS of 𝐺 and 𝑥 be the isolated vertex in < 𝐷 >. 

Then 𝑥 will dominate 2𝑘 + 1 vertices. Also every other vertex of 𝐷 is adjacent with another 

vertex of 𝐷  and hence by (2), to dominate 𝑚(3𝑘 + 1)  vertices among the remaining 

undominated vertices of 𝐺 , 𝐷  must include at least 2𝑚  more vertices. To dominate the 

remaining 𝑖 vertices 𝐷 must include at least one vertex so 𝛾0
𝑈(𝐺) ≥ 1 + 2𝑚 + 1 = 2𝑚 + 2.  

 

Corollary 3 𝛾0
𝑈(𝐶𝑛) = 2(𝑚 + 1) if 𝑛 = 4(𝑚 + 1) for some integer 𝑚 ≥ 1.  

  

Proof. Take 𝑘 = 1 in Lemma 2.7, then we get 𝑛 = (3) + 𝑚(4) + 1, the graph 𝐶𝑛  admits 

UIDS and 𝛾0
𝑈(𝐺) = 2𝑚 + 2 , where 𝑚 =

𝑛−3

4
. Thus 𝑛 = 4(𝑚 + 1)  and and 𝛾0

𝑈(𝐺) =

2(𝑚 + 1). 

Note that this result is already proved in 2.3(4).  

 

Lemma 2.3  Let 𝑛, 𝑘 be positive integers such that 𝑛 = (2𝑘 + 1) + 𝑚(3𝑘 + 1) + 𝑖 for 

some 𝑘 + 1 ≤ 𝑖 ≤ 3𝑘. Then the graph 𝐺 = 𝐶𝑛
𝑘 admits UIDS and 𝛾0

𝑈(𝐺) ≤ 2𝑚 + 3, where 

𝑚 =
𝑛−(2𝑘+1)

3𝑘+1
.  
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Proof. Let 𝐺 = 𝐶𝑛
𝑘  and 𝑛, 𝑘 be positive integers such that 𝑛 − (2𝑘 + 1) = 𝑚(3𝑘 + 1) + 𝑖 

for some 𝑘 + 1 ≤ 𝑖 ≤ 3𝑘.  

case 1: If 𝑘 + 1 ≤ 𝑖 ≤ 2𝑘 . The set 𝑆 = {𝑘 + 1, (3𝑘 + 2), (4𝑘 + 2), (3𝑘 + 2) + (3𝑘 +
1), (4𝑘 + 2) + (3𝑘 + 1), (3𝑘 + 2) + 2(3𝑘 + 1), (4𝑘 + 2) + 2(3𝑘 + 1), … , (3𝑘 + 2) +
(𝑚 − 1)(3𝑘 + 1), (4𝑘 + 2) + (𝑚 − 1)(3𝑘 + 1), (3𝑘 + 2) + 𝑚(3𝑘 + 1), 𝑛(= 0)}  is a 

domination set with 2𝑚 + 3 vertices. Also the vertices 1,2, … , 𝑘, 𝑘 + 2, 𝑘 + 3, … ,2𝑘 + 1 are 

not in 𝑆 and so 𝑘 + 1 is isolated in < 𝑆 >. Thus 𝑆 is a UIDS and hence 𝛾0
𝑈(𝐺) ≤ 2𝑚 + 3.  

case 2: If 2𝑘 ≤ 𝑖 ≤ 3𝑘 . In this case ,the set 𝑆 = {𝑘 + 1, (3𝑘 + 2), (4𝑘 + 2), (3𝑘 + 2) +
(3𝑘 + 1), (4𝑘 + 2) + (3𝑘 + 1), (3𝑘 + 2) + 2(3𝑘 + 1), (4𝑘 + 2) + 2(3𝑘 + 1), … , (3𝑘 +
2) + (𝑚 − 1)(3𝑘 + 1), (4𝑘 + 2) + (𝑚 − 1)(3𝑘 + 1), (3𝑘 + 2) + 𝑚(3𝑘 + 1), (4𝑘 + 2) +
𝑚(3𝑘 + 1)} is a dominating set with 2𝑚 + 3 vertices. Also the vertices 1,2, … , 𝑘, 𝑘 + 2, 𝑘 +
3, … ,2𝑘 + 1 are not in 𝑆 and so 𝑘 + 1 is isolated in < 𝑆 >. Thus 𝑆 is a UIDS and hence 

𝛾0
𝑈(𝐺) ≤ 2𝑚 + 3.  

 

Corollary 4 (1). 𝛾0
𝑈(𝐶𝑛) = 2𝑚 + 1 if 𝑛 = 4𝑚 + 1 for some integer 𝑚 ≥ 0.  

(2). 𝛾0
𝑈(𝐶𝑛) = 2𝑚 + 1 if 𝑛 = 4𝑚 + 2 for some integer 𝑚 ≥ 0.  

  

Proof. Let 𝑘 = 1 in Lemma 2.8, then we get 𝑛 = 3 + 𝑚(4) + 𝑖  for some 2 ≤ 𝑖 ≤ 3, the 

graph 𝐶𝑛 admits UIDS and 𝛾0
𝑈(𝐺) ≤ 2𝑚 + 3, where 𝑚 =

𝑛−3

4
.  

Case i: If 𝑖 = 2.  

Then 𝑛 = 4(𝑚 + 1) + 1 and 𝛾0
𝑈(𝐺) ≤ 2𝑚 + 3. Replace 𝑚 by 𝑚 − 1, we get 𝑛 = 4𝑚 + 1 

and 𝛾0
𝑈(𝐺) ≤ 2𝑚 + 1. The part 𝛾0

𝑈(𝐺) ≥ 2𝑚 + 1 is proved in 2.3(4). 

Case i: If 𝑖 = 3.  

Then 𝑛 = 4(𝑚 + 1) + 2 and 𝛾0
𝑈(𝐺) ≤ 2𝑚 + 3. Replace 𝑚 by 𝑚 − 1, we get 𝑛 = 4𝑚 + 2 

and 𝛾0
𝑈(𝐺) ≤ 2𝑚 + 1. The part 𝛾0

𝑈(𝐺) ≥ 2𝑚 + 1 is proved in 2.3(4).  

 

We conclude this section with an open problem: Let 𝑛, 𝑘 be positive integers such that 𝑛 =
(2𝑘 + 1) + m(3𝑘 + 1) + 𝑖 for some 𝑘 + 1 ≤ 𝑖 ≤ 3𝑘. Then the graph 𝐺 = 𝐶𝑛

𝑘 admits UIDS 

and 𝛾0
𝑈(𝐺) = 2𝑚 + 3, where 𝑚 =

𝑛−(2𝑘+1)

3𝑘+1
. 

 

2.2  UNIQUE ISOLATE DOMINATION IN SOME FAMILES OF GRAPHS 

  

Lemma 2.4  Let 𝑛 ≥ 3 be an integer. Then the sun graph 𝑆𝑢𝑛(𝑛) admits UIDS with 

𝛾0
𝑈(𝑆𝑢𝑛(𝑛)) = 𝑛.  

 

 

Proof. Let 𝑛 ≥ 3  be an integer. Let the vertex set of the Sun graph be 𝑉(𝑆𝑢𝑛(𝑛)) =
{𝑥𝑖, 𝑦𝑖: 1 ≤ 𝑖 ≤ 𝑛}  and the edge set as 𝐸(𝑆𝑢𝑛(𝑛)) = {𝑥𝑛𝑦𝑛, 𝑥𝑛𝑥1} ∪ {𝑥𝑖𝑥𝑖+1, 𝑥𝑖𝑦𝑖: 1 ≤ 𝑖 ≤
𝑛 − 1}.  

Note that for each 𝑖 = 1,2, … , 𝑛, 𝑦𝑖 is a pendent vertex and so either 𝑥𝑖 or 𝑦𝑖 must be in every 

dominating set. This gives that 𝛾(𝑆𝑢𝑛(𝑛)) ≥ 𝑛. 

Also the set {𝑦1, 𝑥2, 𝑥3, … , 𝑥𝑛} is UIDS with 𝑛 elements and 𝑦1 is isolated in the induced 

subgraph < {𝑦1, 𝑥2, 𝑥3, … , 𝑥𝑛} >. This gives that 𝛾0
𝑈(𝑆𝑢𝑛(𝑛)) ≤ 𝑛.  

Thus by Theorem 2.2, we have 𝑛 ≤ 𝛾(𝐺) ≤ 𝛾0
𝑈(𝐺) ≤ 𝑛 and so the sun graph 𝑆𝑢𝑛(𝑛) admits 

UIDS with 𝛾0
𝑈(𝑆𝑢𝑛(𝑛)) = 𝑛.  

 

Lemma 2.5 Let 𝑛 ≥ 2 be an integer. Then the comb graph 𝐺 = 𝑃𝑛 ⊙ 𝐾1 admits UIDS with 
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𝛾0
𝑈(𝐺) = 𝑛.  

  

Proof. Let 𝑛 ≥ 2 be an integer. Let the vertex set of 𝐺 be 𝑉(𝐺) = {𝑎𝑖, 𝑏𝑖: 1 ≤ 𝑖 ≤ 𝑛} and 

𝐸(𝐺) = {𝑎𝑖𝑎𝑖+1: 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑎𝑖𝑏𝑖: 1 ≤ 𝑖 ≤ 𝑛}. 

Note that for each 𝑖 = 1,2, … , 𝑛, 𝑏𝑖 is a pendent vertex and so either 𝑏𝑖 or 𝑎𝑖 must be in every 

dominating set. This gives that 𝛾(𝐺) ≥ 𝑛. 

Also the set {𝑏1, 𝑎2, 𝑎3, … , 𝑎𝑛} is UIDS with 𝑛 elements and 𝑏1 is isolated in the induced 

subgraph < {𝑏1, 𝑎2, 𝑎3, … , 𝑎𝑛} >. This gives that 𝛾0
𝑈(𝐺) ≤ 𝑛.  

Thus by Theorem 2.2, we have 𝑛 ≤ 𝛾(𝐺) ≤ 𝛾0
𝑈(𝐺) ≤ 𝑛 and so the graph 𝐺 admits UIDS 

with 𝛾0
𝑈(𝐺) = 𝑛.  

 

In the previous result it is proved that the comb graphs admit UIDS. But the generalized comb 

graph not admit UIDS and it is proved in the following result. 

 

Theorem 2.6 Let 𝑛, 𝑚 ≥ 2 be an integer. Then the generalized comb graph 𝐺 = 𝑃𝑛 ⊙ 𝐾𝑚 

does not admit UIDS.  

 

Proof. Let 𝑛 ≥ 2 be an integer. Let the vertex set of 𝐺 be 𝑉(𝐺) = {𝑎𝑖: 1 ≤ 𝑖 ≤ 𝑛}. Note that 

each vertex 𝑎𝑖 is adjacent with 𝑚 pendent vertices, namely 𝑎𝑖
𝑗
 for 1 ≤ 𝑗 ≤ 𝑚.  

If exists, let 𝐷 be an UIDS of 𝐺 and 𝑢 be the isolated vertex of < 𝐷 >.  

Case 1: Suppose 𝑢 = 𝑎𝑖 for some integer 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 − 1.  

Then the vertex 𝑎𝑖+1 should not be in 𝐷. In this case, to dominate the vertex 𝑎𝑖+1
1 , 𝐷 must 

include 𝑎𝑖+1
1 . Here we get a contradiction that < 𝐷 > have two isolates namely 𝑎𝑖+1

1  and 𝑎𝑖.  

Case 2: Suppose 𝑢 = 𝑎𝑛.  

Then the vertex 𝑎𝑛−1 should not be in 𝐷. In this case, to dominate the vertex 𝑎𝑛−1
1 , 𝐷 must 

include 𝑎𝑛−1
1 . Here we get a contradiction that < 𝐷 > have two isolates namely 𝑎𝑛  and 

𝑎n−1
1 .  

Case 3: Suppose 𝑢 = 𝑎𝑖
𝑗
 for some 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚 − 1.  

Then the vertex 𝑎𝑖 should not be in 𝐷. In this case, to dominate the vertex 𝑎𝑖
𝑗+1

, 𝐷 must 

include 𝑎𝑖
𝑗+1

. Here we get a contradiction that < 𝐷 > have two isolates namely 𝑎𝑖
𝑗
 and 𝑎𝑖

𝑗+1
.  

Case 4: Suppose 𝑢 = 𝑎𝑖
𝑚 for some 1 ≤ 𝑖 ≤ 𝑛.  

Then the vertex 𝑎𝑖 should not be in 𝐷. In this case, to dominate the vertex 𝑎𝑖
𝑚−1, 𝐷 must 

include 𝑎𝑖
𝑚−1. Here we get a contradiction that < 𝐷 > have two isolates namely 𝑎𝑖

𝑚  and 

𝑎𝑖
𝑚−1.  

Thus there exists no isolated vertex in < 𝐷 >, a contradiction and so the generalized comb 

graph does not admit UIDS.  

 

The Book graph 𝐵𝑚,𝑛 = ⟨𝐾1,𝑚: 𝐾1,𝑛⟩ is obtained by joining the center vertex of 𝐾1,𝑚 with one 

end of a path 𝑃: 𝑎, 𝑏, 𝑐, say 𝑎; and 𝐾1,𝑛 with another end 𝑐. 

 

Theorem 2.7  Let 𝑚, 𝑛 ≥ 2 be integers. The Book graph 𝐵𝑚, 𝑛 = ⟨𝐾1,𝑚: 𝐾1,𝑛⟩ admits 

UIDS and 𝛾0
𝑈(𝐵𝑚,𝑛) = 3.  

 

Proof. Suppose there exists a UIDS, say 𝐷 and 𝑢 be the isolated vertex in < 𝐷 >. Let 𝑎 and 

𝑐 be the centers of 𝐾1,𝑚 and 𝐾1,𝑛 respectively. Let 𝑏 be the vertex adjacent to both 𝑎 and 𝑐.  

Let {𝑎1, 𝑎2, … 𝑎𝑚} be the set of pendent vertices adjacent to 𝑎 and {𝑐1, 𝑐2, … 𝑐𝑛} be the set of 
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pendent vertices adjacent to 𝑐. Note that 𝑁(𝑏) = {𝑎, 𝑐}.  

Case 1: Suppose 𝑢 = 𝑎1.  

In this case 𝑎 ∉ 𝐷. Since 𝑚 ≥ 2, there exists a pendent vertex 𝑎2 such that 𝑎𝑎2 ∈ 𝐸(𝐵𝑚,𝑛). 

To dominate the vertex 𝑎2, 𝐷 must include the vertex 𝑎2 and here we get a contradiction that 

< 𝐷 > has two isolated vertices, namely 𝑎1 and 𝑎2. Thus 𝑢 ≠ 𝑎1.  

Similarly we can prove that 𝑢 ≠ 𝑎𝑖 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑚 and 𝑢 ≠ 𝑐𝑖 for all 𝑖 with 1 ≤
𝑖 ≤ 𝑛.  

Case 2: Suppose 𝑢 = 𝑏.  

In this case 𝑎 ∉ 𝐷. Thus, to dominate the vertex 𝑎1, 𝐷 must include the vertex 𝑎1 and here 

we et a contradiction that < 𝐷 > has two isolated vertices, namely 𝑎1 and 𝑏. Thus 𝑢 ≠ 𝑏.  

From the above two cases, we can conclude that 𝑢 must be equal to either 𝑎 or 𝑐.  

Case 3: Suppose 𝑢 = 𝑎. In this case 𝑏 ∉ 𝐷. Thus, to dominate the vertex 𝑐1, 𝐷 must include 

the vertex 𝑐 or 𝑐𝑖 for some 1 ≤ 𝑖 ≤ 𝑛. 

Sub case 3.1: Suppose 𝑐 ∈ 𝐷.  

In this case 𝑐 is not isolated in < 𝐷 > and so 𝐷 must include a vertex 𝑐𝑖 for some 1 ≤ 𝑖 ≤
𝑛. Thus 𝛾0

𝑈(𝐵𝑚,𝑛) ≥ 3.  

Sub case 3.2: Suppose 𝑐𝑖 ∈ 𝐷 for some 1 ≤ 𝑖 ≤ 𝑛.  

In this case 𝑐𝑖  is not isolated in < 𝐷 >  and so 𝐷  must include the vertex 𝑐 . Thus 

𝛾0
𝑈(𝐵𝑚,𝑛) ≥ 3 . Note that the set {𝑎, 𝑐, 𝑐1}  is a UIDS and 𝑎  is isolated in < 𝐷 > . Thus 

𝛾0
𝑈(𝐵𝑚,𝑛) ≤ 3 and so 𝛾0

𝑈(𝐵𝑚,𝑛) = 3. 

As proved in Case 3, we can prove that 𝛾0
𝑈(𝐵𝑚,𝑛) = 3 when 𝑢 = 𝑐.  

 

Theorem 2.8 For 𝑛 ≥ 2, the Helm graph 𝐻𝑛 admits UIDS and 𝛾0
𝑈(𝐻𝑛) = 𝑛.  

 

Proof. Let the vertex set of the Helm graph 𝐻𝑛  be 𝑉(𝐻𝑛) =  {𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛}  ∪ 

{𝑣1
′ , 𝑣2

′ , … , 𝑣𝑛
′ } such that the subgraph induced by {𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛} is a wheel with 𝑣0 as the 

center and the edges {𝑣𝑖𝑣𝑖
′: 1 ≤ 𝑖 ≤ 𝑛} are pendent edges in 𝐻𝑛. Let 𝐷 be an UIDS of 𝐻𝑛 

and 𝑢 be the isolated vertex in < 𝐷 >. 

Case 1: Suppose 𝑢 = 𝑣0. Then 𝑣1 ∉ 𝐷 and so to dominate the vertex 𝑣1
′ , 𝐷 must include 𝑣1

′ . 

Here we get a contradiction that < 𝐷 > has two isolated vertices, namely 𝑣1
′  and 𝑣0. Thus 

𝑢 ≠ 𝑣0.  

Case 2: Suppose 𝑢 = 𝑣𝑖 for some 1 ≤ 𝑖 ≤ 𝑛, with out loss of generality, let us assume 𝑢 =
𝑣1 . Then 𝑣2 ∉ 𝐷  and so to dominate the vertex 𝑣2

′ , 𝐷  must include 𝑣2
′ . Here we get a 

contradiction that < 𝐷 > has two isolated vertices, namely 𝑣1 and 𝑣2
′ . Thus 𝑢 ≠ 𝑣0.  

From the above two cases, we can conclude that 𝑢 must be equal to 𝑢 = 𝑣𝑖
′ for some 1 ≤ 𝑖 ≤

𝑛, with out loss of generality, let us assume 𝑢 = 𝑣1.  

For each integer 𝑖 with 2 ≤ 𝑖 ≤ 𝑛, the vertex 𝑣𝑖
′ is pendent and so either 𝑣𝑖

′ or 𝑣𝑖 must be in 

𝐷. Thus 𝛾0
𝑈(𝐻𝑛) ≥ 𝑛.  

Also the set {𝑣1
′ , 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛} is an UIDS with 𝑛 elements and 𝑣1

′  is the isolated vertex 

in < 𝐷 >. Thus 𝛾0
𝑈(𝐻𝑛) ≤ 𝑛 and so Thus 𝛾0

𝑈(𝐻𝑛) = 𝑛.  
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