

SYNTHESIS AND STRUCTURAL STUDIES OF 2-THIOPHENE-4-AMINOPHENYL BENZIMIDAZOLE

Chandrakala. M^{1*}, Hemanth Kumar. C.M², M. N.Manjunatha³

Abstract

Synthesis of 2-Thiophene-4-aminophenyl benzimidazole, from 4-aminophenyl benzimidazole and 2thiophenaldehyde under green synthetic approach. The obtained product was analyzed by IR, Electronic and ¹H-NMR spectroscopic methods to evaluate the structure of the compound.

Key words: 4-aminophenyl Benzimidazole, 2-Thiophenaldehyde, 2-Thiophene-4-aminophenyl Benzimidazole

^{1*}Post Graduate Department of Chemistry, Visveswarapura College of Science, K.R Road, Bengaluru-560004, Karnataka, India⁻

²Chemistry Research Center, Bangalore Institute of Technology, K.R Road, Bengaluru-560004, Karnataka, India.

³Department of Chemistry, M. S. Ramaiah Institute of Technology, M. S. Ramaiah Nagar, Bengaluru-560054, Karnataka, India.

*Corresponding Author: Dr. Chandrakala. M

Email Address : mchandrakala.kum@gmail.com, Tel.: +91 9538213845

DOI: - 10.53555/ecb/2024.13.02.06

1. Introduction

Benzimidazolemoiety is a well-known molecule found in natural products such as vitamin- B_{12} . Benzimidazole derivatives are extensively studied due to their antidiabetic, antiviral, antioxidant, antihypertensive, antihelminthic, antimicrobial, anti-inflammatory, antitumor and antifungal activities¹. Schiff bases derived from benzimidazoles are also known to exhibit similaractivities²⁻⁵. Present study is focused on synthesis of new schiff base 2-Thiophene-4aminophenyl benzimidazole (Figure -1), and evaluation of its structure via different spectroscopic techniques¹⁷⁻²¹.

Structure - 1: 2-Thiophene-4-aminophenyl benzimidazole.

2. Experimental

All chemicals used for the synthesis were of LR grade, the solvents were distilled prior to their use. Instrumentation:

The IR spectrum of the compound was recorded on a Shimadzu IR Affinity spectro meter in the range $4000 - 400 \text{ cm}^{-1}$ in KBr pellet method. The electronic spectrum was recorded in DMSO in the range 200-1100 nm on Elico- UV-visible spectrophotometer. The ¹H-NMR spectrum was recorded on a Bruker 400 MHz NMR spectrometer in DMSO-d₆(using TMS as a internal reference).

2.1. Preparation of heterocycle

2.1.1. Preparation of 4-aminophenyl benzimidazole(4-APbzlH).

The ligand 4-APbzlH was prepared according to the reported literature method⁶.

2.1.2. Preparation of 2-Thiophene-4aminophenyl benzimidazole

The heterocycle (Schiff Base),2-Thiophene-4aminophenyl benzimidazole was obtained as a Solid by refluxing a mixture of4-APbzlH((5.0 g)) and 2-Thiophenaldehyde((3.05ml))in ethanol forabout 6hrs followed by evaporation of the solvent to a small volume,the solid was washed with ether and recrystallized from ethanol and dried in vacuum. Yield = 5.95 g.

Scheme -1: Preparation of 2-Thiophene-4-aminophenyl benzimidazole

3. Results and Discussion: 3.1. IR Spectrum

The physical properties and analytical data of the prepared compounds are shown in **Table-1**. IR spectrum of 4-APbzlH shown in **Table-2**, the bands at 3439,3362cm⁻¹ are assigned to γ_{NH2} and γ_{NH7} respectively⁷. The bands at 1620,1600cm⁻¹ are assigned to $\gamma_{C=C}$ and $\gamma_{C=N}$. The appearance of a peak at 1514 cm⁻¹ is due to the bending mode of NH2⁸.

The IR spectrum (Fig-1) of 2-Thiophene-4aminophenyl benzimidazole showed a band in the range 3400-2600 cm⁻¹ assigned to $\gamma_{NH\& CH}$. Two more bands observed at 1600 and 1618cm⁻¹ are assigned to the $\gamma_{N=CH}$ of methyl group and $\gamma_{C=C}$ of the C₆H₄ rings respectively. A peak at 1591 cm⁻¹ is assigned to the $\gamma_{N=C}$ of the imidazole ring⁹ and a band at 709cm⁻¹ is attributed to γ_{C-S} of the thiophene moiety¹⁰.

Fig-1: IR spectrum of 2-Thiophene-4-aminophenyl benzimidazole

Table-1: Physical and analytical data of 4-aminophenyl-benzimidazole and 2-Thiophene
4aminophenylbenzimidazole.

Compound	Yield(%)/M.P(⁰ C)	% C	% H	%N
4-aminophenyl	90 />250	73.65	5.15	20.12
benzimidazole		(74.64)	(5.26)	(20.09)
2-Thiophene-		70.65	4.13	13.05
4aminophenyl	82 / 218	(71.28)	(4.29)	(13.86)
benzimidazole				

*Calculated values are in Parenthesis

Table-2: IR spectral data of 4-aminophenyl-benzimidazole and 2-Thiophene-4-aminophenyl Benzimidazole

Compound	$\gamma NH2$	γNH	$\gamma N = C$	$\gamma N = CH$	$\gamma C = C$	$\gamma NH2$	$\gamma C-S$
	(cm ⁻)	(cm ⁻)	(cm ⁻)	(cm)	(cm ⁻)	Bending	(cm)
4-aminophenyl benzimidazole	3439	3362	1600		1620	1541	1
2-Thiophene- 4aminophenyl benzimidazole		γNH , CH 3400- 2600	1591	1600	1618		709

3.2. Electronic Spectrum

The electronic spectrum(Fig-2) of 2-Thiophene-4aminophenyl benzimidazole (**Table -3**) recorded in DMSO exhibits broad bands at 283, 316-379 nm .These bands are assigned to $n \rightarrow \pi^* \& \pi \rightarrow \pi^*$ transitions¹¹.

Fig-2: Electronic spectrum of 2-Thiophene-4-aminophenyl benzimidazole

 Table-3: Electronic spectral data of 4-aminophenyl-benzimidazole and 2-Thiophene-4- aminophenyl benzimidazole.

Compound	λ,nm (cm-1)	Transition
4-aminophenyl	280 (35,715)	n→π* &
benzimidazole	301 (33,222)	$\pi \rightarrow \pi^*$
	380 (26,315)	
	412 (24,271)	
2-Thiophene-	283(35,335)	n →π* &
4aminophenyl	316(31,645)	$\pi \rightarrow \pi^*$
benzimidazole	379(26,385)	

3.3. Mass Spectrum

Mass spectrum(Fig-3) of4-APbzlH and 2-Thiophene-4-aminophenyl benzimidazole showed molecular ion peaks at m/z 210, 304 corresponding to M+1 species respectively¹².

3.4. ¹H-NMR Spectrum

The proton NMR spectrum of 2-Thiophene-4aminophenyl benzimidazole (Figs:4-7) described in **Table-4** displayed signals at δ ,12.88 and 8.88ppm and these are assigned to the protons of NH and N=CH respectively. Two triplets, two doublets observed at δ 7.86, 7.73 ppm are assigned to 2" and 4" respectively. Two triplets at δ 8.20ppm is assigned to protons 3' and 5'. Two doublets observed at δ 7.65, 7.52 ppm are assigned to 7 and 4 respectively. A multiplet observed at δ 7.20, 7.25 ppm are assigned to 5,6 and 3" respectively. A triplet observed at δ 7.43 is assigned to 2' and 6'¹³⁻¹⁶.

Fig-4: ¹H-NMR spectrum of 2-Thiophene-4-aminophenyl benzimidazole

Table-4: ¹H-NMR spectraldata of 4-aminophenyl-benzimidazole and 2-Thiophene-4- aminophenyl benzimidazole

benzimidazore.												
Compound	Benzimidazole ring			Aminophenyl ring			Thiophene ring					
	NH	H_4	H_7	H5,6	H2',6'	H3'5'	NH ₂	N=CH	H1"	H2"	H3"	H4"
4aminopheny l benzimidazole	12.40 s	7.48 (7.90)	7.46s (7.90)	7.11 m	6.70 d (8.60)	7.84 d (8.60)	5.60 s					
2-Thiophene- 4aminophenyl benzimidazole	12.88 s	7.52 (8.16)	7.65 (7.20)	7.20 m	7.43 (8.64)	8.20 (8.40)		8.88s		7.86 (5.04)	7.2 5 m	7.73 (3.80)

*Spectra have been recorded in DMSO-d6, δ in ppm & coupling in Hz are given in parenthesis

4.Conclusion

IR, Electronic and ¹H-NMR spectral studies of 2-Thiophene-4-aminophenyl benzimidazole, it is evident that,**Structure-1**has been proposed for the compound.

Acknowledgements

I would like to thank RVS for their encouragement and constant support.

References:

- 1. Jarrahpour A A, Motamedifar M, Pakshir K, Hadi N and Zarei M, Molecule, 9, 2004, 815.
- 2. Phatak P, jolly V S, Sharma K P, Orent J Chem, 16, 2000, 493.
- M Stavros, V. Athansios, D. Konstantinos, P. Moschos, S.T. Asterror and S V Laonnis J, Inorg, Bio-Chem, 1988, 34, 265.
- 4. G. V. Reddy, N R Rao and M C Ganorkar, indian Chem., 1987, 264, 789.
- 5. P. Souza, J.A, G-Vazquez, J R Masaguar and A Arguer, Trans, met. Chem. 1986,11,229.
- 6. Rekha S and Nagasundara K R , Asian J Chem, 15, 2003, 987.
- 7. P. Tamayo, M M Antonia, J R Masaguaer and M Christina, Transition Met. Chem., 14,283,1989.
- 8. Infrared and raman spectra of inorganic and coordination compounds, Nakamoto part-B, 5th Edition
- 9. G.G.Mohamed and Z H Abd EI-wahab, J Therm, Anal, Calorin, 2003, 73, 347.
- Spectrometric identification of organic compounds by Robert M Silverstein and Francis X Webster, 6th Edition
- 11. Inorganic Electronic spectroscopy by A.B.P.Lever
- 12. Mass spectrometry of organic compounds, H. Budzkiewicz, Djerassi C. and D. H. Williams, Holden-Day New York, 1975.
- 13. H D Yin, Q B Wang and S C Xue, J. Organomet. Chem.,2005, 690, 435.
- 14. V. Gayathri, E G Leelamani, N M N Gowda, G K N Reddy, Polyhedron, 1999, 18, 235.
- 15. A G J Ligtenbarg, R.Hage, A. Metsma and B L Feringa, J. Chem. Soc., Perkin Trans., 1999, 2, 807.

- 16. M Chandrakala, B S Sheshadri, N M Nanjegowda, K G S Murthy and K R Nagasundara, Journal of Chem. Research, 2010, 10, 576.
- 17. M Chandrakala, N M Nanjegowda, K G S Murthy and K R Nagasundara, Magn. Reson.Chem, 2012, 50, 335.
- 18. M.Chandrakala, Asian Journal of Chemistry, Vol.31, No.2, 2019, 287.
- 19. M. Chandrakala, Asian Journal of Chemistry, Vol.31, No.1, 2019, 73.
- 20. Chandrakala. M, Hemanth Kumar. C. M, M. N.Manjunatha, Journal for basic sciences, Vol. 23 Issue 3, 2023.
- 21. Chandrakala. M, M. N. Manjunatha, Hemanth Kumar. C. M, Eur. Chem. Bull. 2024, Issue 1, 218.