

QUINAZOLINE DERIVATIVES AS ANALOGUES WITH POTENT ACTIVITY AGAINST BREAST CANCER: AN IN-SILICO APPROACH

Vijayakumar B^{1,2}, J. Banurekha^{1*}, S. Ruby¹, M. Kumar¹, BS. Venkateswarlu¹

Article History: Received: 01.02.2023	Revised: 07.03.2023	Accepted: 10.04.2023

Abstract

The quinazoline nucleus is an interesting molecule in the major class of two nitrogen atoms in the structure of aromatic cyclic compounds. Quinazolines and fused quinazolines have attracted the attention of medicinal chemists because of their potential biological activities. In this study, we address the design, synthesis, and evaluation of anti-breast cancer inhibitory activities of quinazoline derivatives. Breast cancer is the second leading cause of cancer-related deaths in women worldwide. Microbial infections: Emerging infectious diseases are diseases with an infectious cause. Their incidence has increased in the recent past and threatens to increase further in the near future. The potential activities of quinazoline derivatives against protein 3RCD are analysed with Glide software (Schrödinger Suite 2018–1) docking programmes and compared with the standard drug tamoxifen. The results of the in silico studies provide compelling evidence for the reflection of valuable ligands in quinazoline derivatives as potential HER2 inhibitors, and compounds A1b, A1c, A2c, A2d, B1c, B2db, B2c, B3a, B3c, and B3e with significant binding energy may generate significant antibreast activity for further development that may prove their therapeutic potential.

Keyword: HER2, Glide software (Schrödinger Suite 2018–1), Quinazoline, Tamoxifen.

^{1*}Department of Pharmacy, Vinayaka Mission's College of Pharmacy, Vinayaka Mission Research Foundation-Deemed to be University (VMRFDU), Sankari Main Road, Ariyanoor, Salem-663008, Tamil Nadu, India.

²Department of Pharmaceutical Chemistry, Grace College of Pharmacy, Palakkad-678004, Kerala, India.

*Corresponding Author: J. Banurekha

*Department of Pharmacy, Vinayaka Mission's College of Pharmacy, Vinayaka Mission Research Foundation-Deemed to be University (VMRFDU), Sankari Main Road, Ariyanoor, Salem-663008, Tamil Nadu, India. Email: banurekharaj@gmail.com

DOI: 10.48047/ecb/2023.12.4.273

Quinazoline Derivatives As Analogues With Potent Activity Against Breast Cancer: An In-Silico Approach

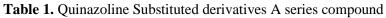
INTRODUCTION

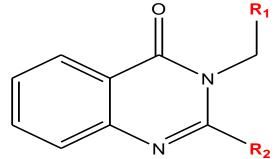
Breast cancer is considered the second cause of cancer-related deaths in women all over the world. Multiple drugs have been approved by the USthe treatment of breast-related FDA for malignancies. The frequent emergence of resistances leads to the urgent need for newer moieties to overcome such problems ^[1-3]. As one of the deadliest cancers, treating breast cancer requires the development of efficacious drugs and improved therapeutic strategies. Although, the expansion of new drugs is exceedingly long-term and costly. Thus, identifying new uses of existing non-oncology or oncology drugs in treating breast cancer is becoming an important step toward developing better treatment strategies and improving overall outcomes ^[4]. Breast cancer is considered to be one of the most widespread cancers that have an impact on women all over the world. It normally begins from milk ducts (ductal cancer) or the lobules that provide them with milk (lobular cancer) and then the tumor can extend to the entire body. It is worth mentioning that breast cancer represents 16% of all women's cancers and 18.2% of cancer deaths worldwide. In spite of all the vast efforts that are being done in this field, cancer is regarded as a leading reason for mortality in the world^[5].

A new paradigm in research is being concerted discovery of novel, towards safe and therapeutically effective agents. Most innovation and development of new scientific insight consists of heterocyclic compounds ^[6]. Quinazoline and its derivatives belongs to fused heterocycles have been obtained from more than 200 natural products. The name quinazoline [7] was first proposed for its compound by scientist Weddige. It was isomeric with the compounds cinnoline and quinoxalin and large derivatives of quinazoline system alternatively known as keto-quinazolines. Other names have occasionally being used 5, 6benzopyrimidine or benzo[a]pyrimidine and phenmiazine^[8].

Quinazoline and/or quinazolinone constitute fused heterocycles of notably large interest. The stability of ring system has concentrated medicinal chemists to synthesize new potential medicinal agents by introducing more than one bioactive moiety in single scaffold. This framework has been attracted significant attentiveness due to their diverse pharmacological activities like antimicrobial, antimalarial, anti-inflammatory, antihypertensive, anticonvulsant, anti-diabetic, anticancer, anti-HIV, cholinesterase inhibition, dihydrofolate reductase inhibition and Tyrosine kinase inhibitory activity^[9]. We developed quinazoline analogues for enoyl reductase inhibition by molecular docking studies using Glide software (Schrödinger Suite 2018–1). The results showed that the newly developed heterocyclic substituted quinazoline analogues exhibited good inhibition of human epidermal growth factor receptor 2^[10].

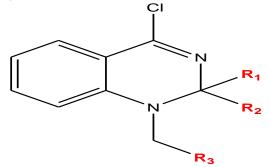
MATERIALS AND METHODS Ligands Preparation


The sixty structures of the novel quinazoline derivatives used in this work were analyzed (Tables 1 and 2). The two-dimensional (2D) chemical structures of the ligands were sketched using ChemDraw Ultra 2008, and the energy minimizations of the primed ligands were performed using Chem3D Ultra and saved in pdb format ^[11].


Target Preparation and Validation of Docking Method

The 3D structure of human epidermal growth factor 2 (PDB ID: 3RCD) was obtained from the Protein Data Bank. The docking work began with the definition of a binding site, generally a restricted region of the protein. The size and location of this binding site was visualized in Discovery Studio. The target proteins were further authenticated using Glide software (Schrödinger Suite 2018–1) by determining the RMSD value.

Molecular Docking Studies


Based on the literature, EGFR are selected as targets for breast cancer. The X-ray crystal structure of EGFR and co-crystallized ligand (PDB ID: 3RCD), are availed from Protein Data Bank. All the ligands (A&B series) were docked into the synergist pocket of HER2 protein (PDB ID: 3RCD). The best-docked ligands were chosen based on the total glide score. The best gathering among the ligand docking module. Extra precision XP visualizer of flow module was utilized to analyze the results. The upgrading parameters and the diminishing motion were cited concurrently to achieve better outcome in the glide-ligand docking. ^[12-14].

S. No	Compound Code	R ₁	R ₂
1	Ala	Morpholine	Pyridine
2	Alb	N-ethyl benzenamine	Pyridine
3	Alc	Diphenylamine	Pyridine
4	Ald	Piperidine	Pyridine
5	Ale	Pyyrolidine	Pyridine
6	Alf	Piperazine	Pyridine
7	Alg	Diethylamine	Pyridine
8	Alh	N-methyl piperazine	Pyridine
9	Ali	1-(4-Chlorobenzhydryl)piperazine	Pyridine
10	A1j	Azetidine	Pyridine
11	A2a	Morpholine	Phenyl
12	A2b	N-ethyl benzenamine	Phenyl
13	A2c	Diphenylamine	Phenyl
14	A2d	Piperidine	Phenyl
15	A2e	Pyyrolidine	Phenyl
16	A2f	Piperazine	Phenyl
17	A2g	Diethylamine	Phenyl
18	A2h	N-methyl piperazine Phenyl	
19	A2i	1-(4-Chlorobenzhydryl)piperazine Phenyl	
20	A2j	Azetidine Pheny	
21	A3a	Morpholine Chlo	
22	A3b	N-ethyl benzenamine Chloro	
23	A3c	Diphenylamine Chloro	
24	A3d	Piperidine Chloro	
25	A3e	Pyyrolidine Chloro	
26	A3f	Piperazine Chloro	
27	A3g	Diethylamine Chloro	
28	A3h	N-methyl piperazine Chloro	
29	A3i	1-(4-Chlorobenzhydryl)piperazine Chloro	
30	A3j	Azetidine Chloro	

Table 2. Quinazoline Substituted derivatives B series compound

S. No	Compound Code	R 1	R ₂	R ₂	
31	B1a	methyl	methyl	Morpholine	
32	B1b	methyl	methyl	N-ethyl benzenamine	
33	B1c	methyl	methyl	Diphenylamine	
34	B1d	methyl	methyl	Piperidine	
35	Ble	methyl	methyl	Pyyrolidine	
36	B1f	methyl	methyl	Piperazine	
37	B1g	methyl	methyl	Diethylamine	
38	B1h	methyl	methyl	N-methyl piperazine	
39	B1i	methyl	methyl	1-(4-Chlorobenzhydryl)piperazine	
40	B1j	methyl	methyl	Azetidine	
41	B2a	hydroxyphenyl	methyl	Morpholine	
42	B2b	hydroxyphenyl	methyl	N-ethyl benzenamine	
43	B2c	hydroxyphenyl	methyl	Diphenylamine	
44	B2d	hydroxyphenyl	methyl	Piperidine	
45	B2e	hydroxyphenyl	methyl	Pyyrolidine	
46	B2f	hydroxyphenyl	methyl	Piperazine	
47	B2g	hydroxyphenyl	methyl	Diethylamine	
48	B2h	hydroxyphenyl	methyl	N-methyl piperazine	
49	B2i	hydroxyphenyl	methyl	1-(4-Chlorobenzhydryl)piperazine	
50	B2j	hydroxyphenyl	methyl	Azetidine	
51	B3a	Chlorophenyl	methyl	Morpholine	
52	B3b	Chlorophenyl	methyl	N-ethyl benzenamine	
53	B3c	Chlorophenyl	methyl	Diphenylamine	
54	B3d	Chlorophenyl	methyl	Piperidine	
55	B3e	Chlorophenyl	methyl	Pyyrolidine	
56	B3f	Chlorophenyl	methyl	Piperazine	
57	B3g	Chlorophenyl	methyl	Diethylamine	
58	B3h	Chlorophenyl	methyl	N-methyl piperazine	
59	B3i	Chlorophenyl	methyl	1-(4-Chlorobenzhydryl)piperazine	
60	B3j	Chlorophenyl	methyl	Azetidine	
61	Bedaquiline				

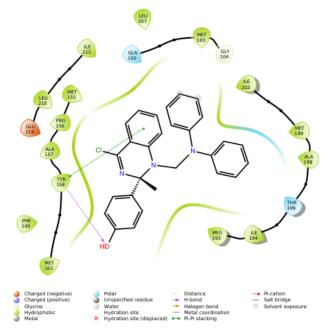
RESULTS AND DISCUSSION

Molecular docking studies of the Quinazolines at protein active sites were performed using the advanced molecular docking program Glide software (Schrödinger Suite 2018–1)to determine binding affinities. The compounds were docked to human epidermal growth factor 2 (3RCD) to determine their EGFR activity. The binding energy of the compounds (A and B series) is shown in Table 3. The binding energy of compounds A1b, A1c, A2c, A2d, B1c, B2b, B2c, B3a, B3c and B3e is higher than that of the standard agent Tamoxifen, showed good affinity for the receptor The best affinity modes of the docked compounds (A1b, A1c, A2c, A2d, B1c, B2b, B2c, B3a, B3c and B3e) with human epidermal growth factor 2 receptor with good binding affinity are shown in Figure (1&2). The quinazoline compounds (A&B series) had binding affinities ranging since -3.12547 to -5.79437 kcal/mol (Table 3), with the best result obtained with compounds A1b, A1c, A2c, A2d, B1c, B2b, B2c, B3a, B3c and B3e (Table 3). ^[15-16].

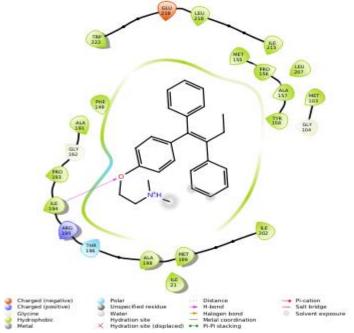
Table 3. Docking studies for A&B Series comp	pounds with HER2 (3RCD)
--	-------------------------

r					
S.No	Compound Code	Binding energy kcal/mol	S.No	Compound Code	Binding energy kcal/mol
1	Ala	-3.74217	31	B1a	-3.15244
2	A1b	-4.87532	32	B1b	-3.14368
3	A1c	-4.62908	33	B1c	-5.41882
4	A1d	-3.44264	34	B1d	-3.94211
5	Ale	-3.14237	35	Ble	-3.63571
6	A1f	-4.34346	36	B1f	-4.02758
7	A1g	-3.52478	37	B1g	-3.45217
8	A1h	-4.46013	38	B1h	-3.42587
9	Ali	-4.35112	39	B1i	-3.12547
10	A1j	-3.56987	40	B1j	-3.44264
11	A2a	-4.19125	41	B2a	-3.12547

Eur. Chem. Bull. 2023, 12(Regular Issue 4), 3900 - 3906


Quinazoline Derivatives As Analogues With Potent Activity Against Breast Cancer: An In-Silico Approach

12	A2b	-4.44212	42	B2b	-5.79437
13	A2c	-5.31621	43	B2c	-5.15329
14	A2d	-4.70326	44	B2d	-3.68741
15	A2e	-3.99850	45	B2e	-3.68724
16	A2f	-3.76761	46	B2f	-4.25185
17	A2g	-4.16479	47	B2g	-4.14125
18	A2h	-3.68740	48	B2h	-3.31254
19	A2i	-4.29391	49	B2i	-4.01254
20	A2j	-4.21229	50	B2j	-4.12540
21	A3a	-4.37041	51	B3a	-5.03166
22	A3b	-4.12563	52	B3b	-4.26587
23	A3c	-3.67142	53	B3c	-5.26876
24	A3d	-4.16111	54	B3d	-4.25871
25	A3e	-3.82701	55	B3e	-5.33112
26	A3f	-4.41980	56	B3f	-4.65421
27	A3g	-4.18157	57	B3g	-3.25478
28	A3h	-4.03600	58	B3h	-3.25471
29	A3i	-3.36379	59	B3i	-4.05784
30	A3j	-3.38676	60	B3j	-3.69871
61	S1	-4.57942			


 Table 4. Best Quinazoline derivative against receptor (human epidermal growth factor 2

Compound Code	Binding energy
Alb	-4.87532
Alc	-4.62908
A2c	-5.31621
A2d	-4.70326
B1c	-5.41882
B2b	-5.79437
B2c	-5.15329
B3a	-5.03166
B3c	-5.26876
B3e	-5.33112
Standard Tamoxifien	-4.57942

Figure 1. Best affinity mode of best docked compounds(B2c) with HER2 (3RCD)

Figure 2. Best affinity mode of best docked compounds (Standard) with HER2 (3RCD)

CONCLUSION

Various biological properties are attributed to quinazolines. A structure-based pharmacophore model was constructed and authenticated to obtain dynamic enoyl reductase inhibitors as of our selfgenerated folder of heterocyclic substituted quinazoline derivatives. Docking study exposed that quinazoline derivatives illustrated better alignment at the active site as they interacted with all major amino acid residues. Thus, the in silico method used in the present study helped in the identification of lead molecules and may also explain their beneficial effect for further studies to produce more important antimalarial and anticancer drugs. Significant results were achieved and some of these compounds, such as A1b, A1c, A2c, A2d, B1c, B2db, B2c, B3a, B3c and B3e, showed attractive binding energies and category of interactions compared to Tamoxifen, which was used as the reference drug.

ACKNOWLEDGEMENT

Grace College of Pharmacy, Palakkad, Kerala, and Vinayaka Mission's College of Pharmacy, Vinayaka Mission Research Foundation-Deemed to be University (VMRFDU), Salem, Tamilnadu, for given that the essential support to carry out this research work.

Conflicts of Interest:

The authors declare no conflict of interest.

REFERENCES

 Abd El Hamid M, Mihovilovic M, El-Nassan H. Synthesis of novel pyrazolo [3, 4-d]
 Eur. Chem. Bull. 2023, 12(Regular Issue 4), 3900 - 3906 pyrimidine derivatives as potential anti-breast cancer agents. European journal of medicinal chemistry. 2012; 57: 323-8.

- Ravi S, Bandana C, Uma S, Mohd. I, Shreekant D, Shailendra Kumar Dhar Dwivedi, Hemant Kumar Bid, Rituraj K, Geetika K, Vishal C, Anila DW, Hajela K. Synthesis and biological evaluation of 3,4,6-triaryl-2-pyranones as a potential new class of anti-breast cancer agents. Bioorganic & Medicinal Chemistry.2009; 177: 3847-3856.
- Ahmed E, Sarhan A, El-Naggar D, Khattab R, El-Naggar M, El-Messery S, Hassan G, Mounier MM, Mahmoud K, Ali NI, Mahrous KF. Towards breast cancer targeting: Synthesis of tetrahydroindolocarbazoles, antibreast cancer evaluation, uPA inhibition, molecular genetics and molecular modelling studies. Bioorganic chemistry. 2019; 93:103332.
- 4. Pareek S, Huang Y, Nath A, Huang R. The success story of drug repurposing in breast cancer. In Drug Repurposing in Cancer Therapy. Academic Press. 2020; 173-190.
- 5. Dawood D, Nossier E, Ali M, Mahmoud A. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorganic chemistry. 2020; 101: 103-916.
- Klinge CM. Estrogen receptor interaction with co-activators and co-repressors. Steroids. 2000; 65(5): 227-251.
- Nadji M, Gomez-Fernandez C, Ganjei-Azar P, Morales AR. Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast

cancers. Am J Clin Pathol. 2005; 123(1): 21-27.

- Said TK, Conneely OM, Medina D, O'Malley BW, Lydon JP. Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cell, in vivo. Endocrinology. 1997; 138(9): 3933-3939.
- 9. Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014; 25(3): 282-303.
- 10. Vijayakumar B, J. Banurekha, M. Kumar, BS Venkateswarlu. Quinazoline Derivatives As Enoyl Reductase Inhibitor Targeting Tuberculosis An In-Silico Approach. Latin American Journal of Pharmacy. 2023; 42(1): 162-170.
- 11.Shetha A, Wijdan IA. Synthesis and characterization of new quinazoline-4(3H)-one Schiff bases. J. Chem and Pharm Res. 2013; 5(7): 42–45.
- 12. Vagdevi HM, Lokesh MR, Gowdar S. Synthesis and antioxidant activity of 3substituted Schiff bases of quinazoline-2,4diones. Int J ChemTech Res. 2012; 4(4): 1527– 1533.
- 13.Krishnan SK, Ganguly S, Veerasamy R, Jan B. Synthesis, antiviral and cytotoxic investigation of 2-phenyl-3-substituted quinazolin-4(3H)ones. Eur. Rev for Med and Pharm. Sci. 2011; 15(6): 673–681.
- 14.Gani MA, Nurhan AD, Budiatin AS, Siswodihardjo S, Khotib J. Predicting the molecular mechanism of glucosamine in accelerating bone defect repair by stimulating osteogenic proteins. J Basic Clin Physiol Pharmacol 2021; 32: 373-7.
- 15.Liu Q, Kulak MV, Borcherding N, et al. A novel HER2 gene body enhancer contributes to HER2 expression. Oncogene. 2018; 37(5): 687-694.
- 16.Goel S, Wang Q, Watt AC, et al. Overcoming Therapeutic Resistance in HER2-Positive Breast Cancers with CDK4/6 Inhibitors. Cancer Cell. 2016; 29(3): 255-269.