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Abstract: 

The large range of applications for autonomous drone navigation, 

including search and rescue, aerial surveillance, and package 

delivery, has made it a prominent research topic in recent years. In 

comparison to flying drones through challenging terrain, 

navigating robots is very simple. DeepReinforcementLearning 

(DRL) has received a lot of interest since it has the experience 

learning ability to perform challenging tasks with little knowledge. 

Navigation is a drone's main fundamental difficulty. Deep 

reinforcement learning (DRL), which enables the drone to learn 

from its experiences and develop its decision-making abilities, has 

emerged as a viable technology for autonomous drone navigation. 

The literature on DRL-based algorithms, architectures, and 

applications for drone navigation is reviewed in this article. 

Additionally, it identifies the gaps in the existing body of research 

and analyses the difficulties with DRL-based techniques. Future 

directions for this field of study are discussed as the review comes 

to a close. Overall, this systematic review indicates potential for 

additional study in this area and offers a thorough grasp of the 

current state-of-the-art in DRL-based techniques for autonomous 

drone navigation. 

Index Terms— DRL, Navigation, Obstacle Avoidance. 

1.Introduction: 

UAVs have revolutionized many fields, including wildlife 

monitoring and conservation. With their capacity to take pictures 

and gather information from far-off and difficult-to-reach places. 

UAVs have developed into a useful tool for academics and 

environmentalists. However, the use of UAVs for autonomous 

navigation and data collection still presents many challenges. The 

primary purpose of navigation in a two- or three-dimensional 

environment is to find an ideal or less ideal path between two points 

while avoiding obstacles. Robust robot navigation systems are 

necessary for automated guided vehicles for the warehouse, delivery 

robots, and indoor service robots in their dynamic surroundings.. 

The commonly used method of drone navigation system is 

vision-based motion method which was focused on combining 

many relevant algorithms one such is SLAM, or simultaneous 

localization and mapping Fig.1 SLAM, is frequently used in this  

 

 

technique. The SLAM has the ability to create a map of an 

unfamiliar landscape, utilise this technique to determine its precise 

location, and then begin moving in that direction using a path 

planning module.                                                       

 

 
Figure 1. Common visual-based drone navigation framework. 

 

The visual-based SLAM, position of the UAV and 

direction of the hovering drone is estimated by taking combined 

input from the onboard cameras, LiDAR, GPS and inertial data, 

after which complex mapping systems will be researched and 

improved for dynamic environments[1]. LSD-SLAM and ORB-

SLAM are the two primary visual SLAM techniques.[2,4]. The two 

main challenges we face using the above algorithms : (1) developing 

a proper and effective image based on the data collected and 

(2).possiblities of wrong results in case of the object in an 

environment moves, changes in the camera parameter, switching 

between illumination. There are researches like the laser SLAM 

algorithm which right away builds a dense laser ranging method, 

such as GMapping[3] or Hector SLAM[5], which are used to develop 

an obstacle map of the environment.The drawbacks of laser SLAM 

includes (1). The time taken for building and updating the map is 

very high and (2). Due of the algorithm’s dependence on accuracy 

of the sensors, there is a need for dense laser sensor. 

Path Planning is another crucial module that may be used 

in the conventional drone navigation framework. The amount of 

environments information gathered from different sources, this 

module can be separated into global map and local map of path 

planning. Global map path planning deals with obtaining a complete 

route details depending on the recognised contexts. Recent studies 

have often employed techniques such the (A*) A-star[6], Artificial 
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bee colony optimisation[7], Optimization of Ant colony, and rapid-

exploration random tree[8]. These techniques mostly rely on static 

maps, making it challenging to use them in a real-world setting. The 

issues caused by the regular changes in the environment and re-

planning the local pathways are addressed by the implementation of 

local map path planning methods like Artificial Potential field 

(APF) and the technique using a dynamic window[9]. The issues 

encountered while putting classic path planning algorithms into 

practice are (1). While displaying a grid-based map, there are 

discrepancies between its accuracy and memory needs. (2). Real-

time replanning of the navigation course in a real-world setting 

necessitates vast quantities of computations, which limits its 

responsiveness to some level. 

 The classic navigation framework's aforementioned 

components each provide a difficult research problem, and their 

implementation can occasionally result in significant computational 

mistakes. When these flaws are implemented in the real world, they 

perform poorly because they progressively accumulate. 

Deep Learning(DRL) has a potential approach to resolving 

these issues in recent years. DRL is another machine learning 

approach, which basically utilises both DNN with RL algorithms to 

help operators learn effectively in complex environments. 

Several studies have explored the use of DRL for 

autonomous drone navigation, with a particular focus on developing 

algorithms that can handle the complexity of real-world 

environments. For example, Y. Xue et al. (2021) suggested a DRL-

based strategy for drone navigation that uses a recurrent neural 

network (RNN)[9] to process sensor data and generate control 

commands. The approach was tested in both simulated and real-

world environments, demonstrating its effectiveness in obstacle 

avoidance and navigation tasks. 

Similar to this, Amer, K. et al. (2020) created a DRL-based 

solution for drone navigation that makes use of a deep Q-network 

(DQN) to build a convolutional neural network(CNN) and a 

navigation policy[10] to take use of sensor input’s characteristics. 

The technology performed better than conventional techniques 

when evaluated in a simulated setting. 

Likewise KaiZhu and Tao Zhang (2021) did a evaluation 

of mobile navigation using DRL from 2016 to 2020 and presented 

a comprehensive and systematic differences between traditional 

robot navigation framework and DRL operated robot navigation. 

The approach was based on the secondary research which showed 

us the difference of the robot navigation Indoor, multi-robot, social 

etc[11]. 

Although, many research were focused on mobile 

navigation of drones or robots. In order to create decentralised 

regulations for a robot team to safely travel over uncharted 

complicated terrain while preserving connectivity[12], Juntong Lin et 

al. (2019) devised a DRL-based approach to the multi-robot 

navigation problem. 

Then again, consveration of energy while maintaining the 

UAVs a float and also making sure all the onboard sensors are active 

was a challenging task. For example, Chi Harold Liu et al. (2018) 

proposed a DRL- based method for UAV control. The approach 

tested multiple simulations to demonstrate its effectiveness[13] 

Other studies have explored the use of DRL for specific 

drone navigation tasks, such as collision avoidance and target 

tracking. A team of drones may be trained to avoid collisions while 

navigating in a  complex environment using a multi-agent 

reinforcement learning(MARL) framework, as demonstrated by 

Chen et al’s (2020) DRL-based strategy for collision-free 

navigation[14]. The approach was tested in a simulated environment, 

showing improved performance compared to traditional methods. 

Moreover, several studies have explored the use of DRL 

for drone navigation in GPS-denied environments, where traditional 

navigation methods may not be effective. For example, Yalong Pi 

et. al. (2020) developed a DRL-based approach for drone navigation 

in GPS-denied environments that uses a DQN[15] to learn a policy 

for navigation based on visual cues. The approach was tested in a 

simulated environment, showing improved performance compared 

to traditional methods. 

While the use of DRL for autonomous drone navigation 

has shown promising results, several challenges remain. For 

example, the high-dimensional input space of sensor data can make 

it difficult to train DRL algorithms effectively[16]. Additionally, the 

limited battery life of drones can constrain the amount of data that 

can be collected[13] and also making it challenging to train DRL 

algorithms from scratch. 

Overall, the literature suggests that DRL-based approaches 

have the potential to significantly improve the performance of 

autonomous drone navigation. However, further research is needed 

to address the challenges associated with these approaches and to 

develop more effective algorithms for real-world applications. 

Autonomous drone navigation has emerged as a popular 

research area with applications in various fields such as 

surveillance, search and rescue[17], and delivery services with 

collison avoidance[18]. Traditional methods for drone navigation 

require accurate sensors and complex algorithms that can handle the 

complexity of real-world environments. However, deep 

reinforcement learning (DRL) has shown promising results for 

autonomous drone navigation. DRL enables the drone to learn from 

its experiences and improve its decision-making skills, which can 

help it navigate through complex environments more efficiently. 

The State-of-the-art in DRL-based techniques for autonomous 

drone navigation is reviewed systematically in this work. 
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2.Deep reinforcement learning context 

2.1.Preliminary 

 RL is a type of ML where an agent in an environment is 

simulated in such a way that it tries to make its own decisions that 

maximizes results. The actions performed by an agent in the 

simulated environment is monitored through actions and feedback 

as reward. It is the education that is intended to be taught to students, 

teaching the government to take action and the promotion of ideas 

necessary to get the best out of it. Agent-to-agent interaction 

process. 

 

 
Figure 2. Flow-structure of this paper. 

 One type of ML called RL involves agents interacting 

within the simulated/real world to identify the best outcome to 

perform a particular task. Markov decision processes (MDP) can be 

used to quantitatively identify the mutual exchange between an 

agent and its simulated/real world. 

MDPs model the environment as states, with the actions of 

agents for the transition of states. The agent always monitors the 

present state of the simulated/real-world, chooses the necessary 

action and receives a reward based upon the success of the action 

and the result of the change in the simulated/real-world state. The 

agent's goal is to analyze the rules that bind the current situation to 

action to maximize the opportunity. 

The projected cumulative reward throughout the complete 

series of time steps serves as a proxy for the policy's effectiveness, 

which can be either stochastic or deterministic. By applying a 

discount factor to future benefits, one may calculate the predicted 

cumulative reward. 

The agent generally employs an iterative method to 

develop an optimum policy, updating its strategy in response to 

incentives received and newly observed conditions. Value-based 

and policy-based algorithms[39,40] are the two primary categories of 

reinforcement learning algorithms. 

The value function, which stands for the anticipated 

cumulative reward under a specific policy, is learned by value-based 

algorithms. The projected cumulative benefit of adopting a certain 

action in a specific state and subsequently continuing to follow the 

existing policy is represented by the Q-function, a particular kind of 

value function. 

Without initially calculating the value function, policy-

based algorithms simply learn the policy. To update the policy 

parameters, these algorithms frequently employ gradient descent 

techniques. 

Let's define a Markov decision process (MDP) as a bundle 

(S, A, P, R, γ), where: 

 

S is the possible process in the environment, 

A is the process that does what the agent can do. do Take 

is the probability of transition to state P(s's, a) ', i.e. the 

agent must act in state s 

R(s, a, s') is the instant reward the agent receives when 

moving from state s' to state s', and γ is the discount rate that 

determines the future price of the soul of the product. γ is a value 

between 0 and 1; where 0 means only instant rewards are considered 

and 1 means all future rewards are considered significant. 

At each step t, the agent monitors the current state s_t, 

chooses an action and receives a reward r_t. The agent's goal is to 

learn the law of π(as) that defines each case for the action that yields 

the greatest profit over time. 

This is usually expressed as the reduced return value G_t: 

 

 

Gt = rt + 1 + γ rt + 2 + γ2 rt + 3 + ... = 

(1) 

 

The optimal rule π * is the rule that maximizes profit from 

each situation: 

 

π*(a|s) = argmax 

(2) 

 

It is the responsibility of reinforcement learning algorithms 

to update the policy by responding to the rewards received and new 

situations found. Q-learning is a popular method that shows the Q-

value function Q(s,a), which in some cases shows the expected 

profit from the best performance after taking a trade: 

 

Q(s,a) = E[Gt | st=s, at=a, π*]     (3) 

The Q value function is modified using the Bellman 

equation, which establishes the relationship between the Q values 

of the subsequent pair of states and the state pair.: 
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Q(s,a) = E[r + γmaxa' Q(s',a') | s,a]    (4) 

 

The broker updates its estimate of the Q-value function for 

each variable (s, a, r, s') using the update rule: 

 

Q(s,a) ← Q(s,a) + α(r + γmaxa' Q(s',a') - Q(s,a))  (5) 

 

Where α is the learning rate, which determines the rate at 

which the Q-values are updated. 

Since real-time programming needs extensive real-time 

input and large memory utilisation, both of which are impracticable, 

academics have proposed and developed Monte Carlo and 

temporal-Difference(TD) learning as two alternative learning 

methodologies. 

However, the classical RL method has serious problems in 

high speed situations because the need for computation increases 

the number of inputs. Therefore, deep learning ideas are put into 

practice. 

Deep learning combines additional learning with deep 

neural networks and uses techniques such as graphs or raw data to 

learn new skills. To train neural networks to accurately anticipate 

the Q value function or rule, gradient descent is utilised, which 

lowers the prediction error. With a neural network, the agent decides 

what to do based on the current situation and adjusts the weights of 

the network according to the rewards received during training and 

new situations encountered. 

Cost-based and policy-based approaches lead to two 

categories of DRLs. 

Value-based deep reinforcement learning(DRL), a type of 

DRL algorithm, learns to provide a value to each state or state-

function pair in a environment. The objective of cost-based 

economics is to identify the optimum strategy that maximises the 

projected return over time DRL[19]. 

In cost-based DRL, the broker learns an approximation of 

the cost function, expressed as Q-value (state-value) or V-value 

(state-value price). The Q-value of a state-action pair is the expected 

reward for initiating a state, performing an action, and then 

following a certain rule. 

The V-value of a situation is the desired reward that will 

be obtained from a condition and then complete a rule. 

In value-based DRL, the learning process must be iterated 

over the Q or V values using the Bellman equation, which is an 

iterative equation that connects the values of a state (or state-

function pair) with values. her. neighbors (or pairs of states) and 

expected rewards from making a trade. 

Mathematically, the Bellman equation for Q-values can be 

written as: 

 

Q(s,a) = E[R(s,a)] + γ*max(Q(s',a'))   (6) 

 

When Q(s,a) is the Q value of the state-function pair (s,a), 

the expected reward from the state function R(s,a) and s' is the next 

state to be determined. A discount for the next Main reward, 

max(Q(s',a')) is the maximum Q of all potential actions in region s'. 

 

The Bellman equation for V-values can be written as: 

 

V(s) = E[R(s)] + γ*max(V(s'))   (7) 

 

where V(s) denotes the V-value of state s, R(s) is the 

anticipated reward for beginning in state s, and max(V(s')) denotes 

the highest possible V-value for all conceivable states in the next 

time step. 

The Q-values or V-values are estimated by neural 

networks in value-based DRL algorithms like Deep Q-Networks 

(DQNs). The estimated Q-value (or V-value) for each action is 

produced by the neural network from the state (or state-action pair) 

input. (or state). To lessen the discrepancy between the goal Q value 

(or V value) and the estimated Q value (or V value), a type of 

stochastic gradient descent is employed to modify the neural 

network's parameters produced using Bellman equation. 

To achieve the best predicted results in real time, deep 

learning (DRL) algorithms based on training policy directly 

improve the operational policy associated with the do. Policy-based 

DRL algorithms, as opposed to value-based DRL, learn to directly 

approximate the best policy without explicitly estimating the value 

function[20]. Value-based DRL determines how to value each state 

or state-action pair. 

In a policy-based DRL system, the policy function might 

be represented by a neural network. The probability distribution 

across potential actions is output after accepting the situation as 

input. The goal of the policy-based DRL is to optimise the neural 

network's parameters over time to maximise the predicted 

cumulative reward. Gradient ascent on the predicted reward is often 

used to iteratively update the policy parameters in order to do this. 

Mathematically, the objective of policy-based DRL can be 

written as: 

 

θ* = argmax θ E[R|πθ(s,a)]   (8) 

 

where R is the competitive reward, θ is the parameter of 

the neural network rule, and πθ(s,a) is the probability of action given 

the state s and the unconstrained rule θ. The objective function is 

usually optimized using gradient rise methods such as stochastic 

gradient rise to change the parameters. 
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are policy-based DRL algorithms that can be divided into 

two groups, Privacy Policy and Competitor Policy. Rule systems 

like REINFORCE use rewards from running instances of existing 

rules to update constraints to learn new rules. Deterministic policies 

such as Deep Deterministic Policy Gradints (DDPG) estimate the 

cost of a function to learn a policy and then use it to update the 

policy without restriction. 

While the rule is optimized to generate a probability 

distribution between actions, rule-based DRL algorithms have the 

advantage of maintaining a fixed working space and stochastic 

space. They may be less useful for standards than cost-based 

systems because of the need to sample from existing policies. 

2.2.DRL methods based on Value-Based 

2.2.1.DQN: 

 To discover the best policy for a task, Thanh This Nguyen 

et al.(2020) developed in their review paper a deep learning method 

that blends Q-learning with deep neural networks[21]. 

Deep Q-Network (DQN) is a popular method for solving 

reinforcement learning (RL) problems using deep learning. The Q 

function calculates the future reward for each action for each 

environment predicted by DQN using a neural network. Learning 

the best way to maximize profits over time is the goal of DQN [22]. 

Iterative learning is a method used by the DQN algorithm 

to train neural networks. In the replay buffer, the controller saves 

the changes (s, a, r, s'); where s represents current state, a represents 

completion, r represents gifts received, and s' represents future state 

throughout the game. 

Bellman’s equation, a Q-learning algorithm version is used 

to train the neural network, which is updated by sampling a limited 

number of variables from the repeated parameters. According to the 

Bellman equation, a state-action pair’s Q-value should be equal to 

the product of the immediate reward and the highest discounted Q-

value, and the neural network is trained to reduce the discrepancy 

between them. 

Mathematically, the update rule for the neural network in 

DQN is: 

 

θ ← θ - α ∇Q(s,a;θ)(Q(s,a;θ) - (r + γ maxa' Q(s',a';θ-)))  (9) 

 

where θ is a weight set for the neural network, α is the 

learning rate, γ is the discount rate, Q(s, a; θ) is the estimated Q 

value for state s and action a, Q(s', a) '; θ^- ) is the target Q value for 

the next state s' and each possible a', and r is the immediate reward. 

The main advantage of the DQN over traditional RL algorithms is 

that it can use deep neural networks to process states, thereby 

preserving complex patterns and relationships in the data. 

2.2.2.Double Deep Q- Network: 

A variant of DQN using two deep neural networks has 

been discussed to reduce overestimation of action[23]. The main idea 

of the 

DDQN is to use two sets of Q networks, one for selecting 

actions (policy network) and one for evaluating actions (target 

network).Similar to the original DQN algorithm, the rule mesh is 

adjusted by minimizing the disparity between the anticipated and 

objective Q values. However, in DDQN the target Q-value is 

calculated using the target network instead of the network policy. 

The target mesh is periodically updated with the weights in the 

policy mesh, but these weights are kept constant during the 

calculation of the target Q-value. 

This helps to avoid overestimating the Q value by reducing 

the noise in the policy network at the target Q value. 

Mathematically, the update rule for the policy network in 

DDQN is: 

 

L(θ) = E[(r + γ Q(s', argmaxa' Q'(s',a'; θ'); θ-) - Q(s,a; θ))2] (10) 

 

where r is the reward, γ is the discount factor, Q' is the 

target Q-network, and Q is the policy Q-network. The argmax_a' 

operation is taken with respect to the policy network, but the Q-

value for the selected action is evaluated using the target network. 

The main advantage of DDQN over the original DQN 

algorithm is that it can significantly reduce the overestimation of Q-

values, especially in high-dimensional action spaces. This can lead 

to more stable and accurate learning, as well as better performance 

on complex tasks[25]. 

2.3.DRL method based on Policy-Based 

2.3.1.Proximal Policy Optimization (PPO): 

A deep learning-based approach that directly improves bad 

policy by reducing the gap between current policy and previous 

policies has been discussed [6, 16]. 

The large variation of gradient estimates and the 

propensity to become trapped in local optima are two drawbacks of 

prior policy optimisation algorithms that PPO is intended to remedy. 

PPO does this by employing a substitute objective function that, 

while being simpler to optimise, approximates the goal of the policy 

optimisation problem. 

The PPO method gathers batch of trajectories using the 

current policy repeatedly, uses a value function estimator to 

calculate the benefits of each action, and then modifies the policy 

depending on the gradient of the surrogate objective function. The 

clipped surrogate objective which guarantees that the ne policy is 

not too far from the previous policy, and an entropy term, which 

promotes exploration and prevents the policy from becoming overly 
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deterministic, are the two terms that make up the surrogate objective 

function. 

Mathematically, the clipped surrogate objective is defined 

as: 

Lclip(θ) = E[min(rt(θ) * At, clip(rt(θ), 1- , 1+ε) * At)]  (11) 

 

In this context, the rule parameter setting is represented by 

θ, while rt(θ) refers to the ratio of the action probability under the 

new rule compared to the old rule. The effective value of the action 

over time t is represented by A_t, while the hyper-parameter check 

confidence size is represented by ε. Entropy, on the other hand, is 

defined as the negative probability of following the new rule divided 

by the hyper-parameter β, which controls the strength of the entropy 

constant. 

The policy update is then performed by optimizing the 

surrogate objective using stochastic gradient descent or other 

optimization techniques. 

PPO has been shown to be effective in a variety of 

challenging reinforcement learning problems, such as continuous 

control and robotic manipulation. It is also relatively easy to 

implement and tune compared to other policy optimization 

algorithms, making it a popular choice for researchers and 

practitioners in the field. 

2.3.2.Asynchronous Advantage Actor-Critic (A3C): 

Po-wei Chou(2017) developed a deep reinforcement 

learning technique that employs several asynchronous agents to 

simultaneously learn a policy and a value function. 

 Some of the drawbacks of existing reinforcement learning 

algorithms, such as the large variation of policy gradients and the 

sluggish convergence of value-based techniques, are addressed by 

A3C. 

The A3C algorithm works by simultaneously training 

multiple actor-specific agents, each with its own copy of the 

environment and parameters. Agents asynchronously update their 

own weights on the network based on their local knowledge, 

enabling faster and more efficient training. The Actor-Critic 

architecture has two parts: the actor choosing the action according 

to the current law; and Critic, which estimates the operating cost for 

each state. The 

A3C algorithm uses a variant of the actor-critic approach 

called Advantage Actor-Critic (A2C), which incorporates 

advantage estimation into the gradient adjustment rule. 

Optimization measures the benefits of taking action in a state 

compared to that state's needs under current law. 

The A3C algorithm modifies the actor and critic network 

based on the following drop functions [26]: 

 

Actor loss function: 

 

Lactor(θ) = -E[log π(at|st, θ) * At]  (12) 

 

Here θ is the correct parameter set, π is the correct function, 

a_t is the action at time t, s_t is the state at time t, and A_t is the 

advantage of the action at time t. 

 

Critic loss function: 

 

Lcritic(θ) = (V(st, θ) – Rt)2 (13) 

 

where V is the estimated value function of the state, R_t is 

the discounted sum of rewards from time t to the end of the episode, 

and θ is the set of critic network parameters. 

The A3C algorithm then updates the network parameters 

using stochastic gradient descent, where each agent contributes its 

own gradient to the optimization process. 

A3C has been shown to be effective in a variety of 

reinforcement learning tasks, including playing Atari games, 

navigating complex mazes, and controlling robots. Its parallel and 

asynchronous nature allows for efficient use of computing resources 

and faster training compared to other algorithms. 

Drone navigation tasks, such as obstacle avoidance, target 

tracking, mapping, and surveillance, have been successfully 

addressed using various algorithms. The selection of a suitable 

algorithm depends on the constraints and requirements of the 

specific task at hand, with each algorithm offering its own set of 

advantages and limitations.  

3.DRL-Based Navigation 

3.1.Framework 

Drone navigation is mainly focused in the three 

dimensions. This process involves in searching for a shortest path 

or even shorter than the shortest path while navigating from source 

to destination by avoiding the obstacles. Most of the equipments 

used to perform this task are very expensive, hence most of the 

researchers who have involved in navigation research have 

performed it in a 2D space. 

To categorize the primary functions of drone navigation, 

they can be broadly divided into two categories: point-to-point 

(P2P) mobility and obstacle avoidance. 

Moving the drone from its starting position to a predefined 

target place is the challenge of point-to-point mobility. Target 

perspective photos can be used to acquire the target position 

indirectly or directly using GPS or other localization methods. 



“A Systematic Review of DRL-Based Approaches for Autonomous Drone Navigation: A review” 

 

Eur. Chem. Bull. 2023,12(Special issue 8), 5042-5055                                                                                               5048 

 

Obstacle Avoidance: Obstacles can be static, dynamic, or 

structurally continuous. Static obstacles are those that are fixed and 

do not move, such as walls, trees, or buildings. Dynamic obstacles 

are those that can move, such as other drones, birds, or vehicles. 

Structurally continuous obstacles refer a bridge or corridor that is a 

natural part of the landscape[27,28]. 

The drone needs to avoid obstacles while navigating 

towards the target point. This can be achieved through the use of 

sensors, such as laser range finders, ultrasonic sensors, cameras, or 

other sensors. 

By interacting with the surroundings, a DRL-based 

navigation system seeks to decide the best course of action for 

directing the drone to its trage position. This goal is accomplished 

by modelling the navigation process as Markov Decision 

Process(MDP), with sensor data serving as the state. Maximising 

the expected benefit of activities conducted with this MDP 

framework is the objective. 

The DRL representative goes forward while avoiding 

problems with the role of the area and the building block map, as 

well as the local plan of the traditional navigation system. Deep 

neural networks are trained in simulated environments and then 

used on real drones to make real-time decisions. 

In a complex environment with many persistent 

configuration issues, operators can fall for local vehicles. In these 

cases, the normal navigation system must provide additional 

international information to the DRL. For DRL-based navigation, 

the global planning module generates a sequence of intermediate 

way-points that serve as destination stations. This enables the 

integrated navigation system to effectively navigate through 

complex environments over extended periods of time. 

 

 

 

Figure 3. DRL-based Navigation. 

In order to identify the optimal course of action to direct 

the UAV to its destination, deep reinforcement learning(DRL) 

algorithms are utilised for autonomous navigation of UAVs 

interacting with the environment. Many well-known DRL 

algorithms, including DQN,DDPG and PPO, as well as the 

algorithms they produce,have been create in order to create a DRL-

based navigation system[11].  

The benefits of DRL-based navigation include being 

mapless, having a high capacity for learning, and requiring less 

reliance on sensor accuracy. The physical training procedure 

inherently results in drone accidents with environmental barriers 

since RL is a technique for learning by trial and error, which is not 

permitted. In order to train the deep neural network for real-time 

navigation decision making, a simulation environment is used first. 

The Deep Reinforcement Learning (DRL) algorithm is 

used in autonomous drone navigation to choose the optimal course 

of action for guiding the drone to its destination point by interacting 

with the surroundings. A DRL-based navigation system has been 

created by enhancing a number of popular algorithms arising from 

DRL, such as DQN,DDPG, and PPO. Some strategies model the 

navigation process as a Markov Decision Process(MDP), using 

senor data as the state, in order to accomplish the goal of 

maximising the expected reward of the action[11]. 

3.2.KeyElements 

The key elements of DRL-based navigation include: 

State: The state of the drone navigation system represents 

the current observation or perception of the environment, including 

information about the drone's position, orientation, and velocity, as 

well as information about the surrounding obstacles and other 

relevant features. 

Action: The action refers to the maneuver that the drone 

performs in response to the current state. The drone can choose from 

a set of available actions, which are defined based on the drone's 

capabilities, such as moving forward, backward, up, down, or 

rotating in different directions. 

Reward: The reward is the signal the drone receives as 

feedback from its surroundings after performing an action. The 

incentive feature is intended to motivate the drone to execute 

behaviours that result in the desired outcome, such travelling to a 

specified area while avoiding hazards. The outcome of the action 

can result in a positive, negative, or zero reward. 

Policy: The policy is the mapping between the current state 

and the action that the drone should take in response to that state. A 

DRL algorithm is used to learn the policy via trial and error and 

change it in response to rewards from the environment. 

Training environment: To train the drone using DRL, a 

simulation or real-world environment is used as the training 

environment. The training environment should accurately mimic the 

real-world conditions, taking into consideration the presence of 

obstacles, the impact of environmental factors such as wind, and the 

limitations of the drone's hardware components and sensors. 

DRL algorithm: The DRL algorithm is the core of the 

DRL-based navigation system. The algorithm is responsible for 

learning a good rule of thumb that shows the current situation for 
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the action that leads to the best result. Popular DRL algorithms 

include Deep Q-Network (DQN), Optimal Policy (PPO), and Deep 

Deterministic Policy Gradient (DDPG). 

Deployment environment: The deployment environment 

is the real-world environment in which the drone operates after the 

DRL training is complete. The deployment environment may differ 

from the training environment in several ways, such as the presence 

of new obstacles, changes in lighting or weather conditions, and 

variations in the drone's hardware or software. Therefore, the DRL-

based navigation system should be robust and adaptive enough to 

operate effectively in different deployment environments. 

4.Application Scenarios 

 Despite several years of research on DRL-based 

navigation, there is still no universally accepted taxonomy for such 

systems. One point of contention is the use of commercial 

localization technologies like GPS and WiFi to estimate the relative 

position of destination points without relying on a global map, 

which some researchers refer to as "mapless" navigation. 

 The DRL methodology, which has been referred to as a 

"map-based" method in prior research, involves preprocessing the 

drone's local observation data from its sensors into a local map, 

eliminating the need for global map data.  

 Studies have shown that while researchers may use similar 

DRL algorithms to solve a common problem, such as drone 

navigation, some have also applied domain-specific expertise and 

conducted specialized research for various application scenarios (as 

depicted in Figure 4)[28]. 

 

Figure 4. Two application scenarios of DRL-based Navigation. 

 

These various strategies have developed because, 

according to the state of the art, it is challenging to converge when 

the DRL navigation policy space is defined too broadly. At the 

moment, agents typically acquire navigation skills in a given 

environment, which are subsequently generalised to comparable 

settings, to lessen the complexity of DRL training. 

 The DRL navigation application scenarios are divided into 

two groups for the purposes of this evaluation: Indoor navigation 

and local obstacle avoidance. Table 1 and Table 2 provide a brief 

comparison of different circumstances. The fundamental 

navigational duties are the same for each scenario, but the specifics 

and emphasis are different. To focus on the dynamic changes of the 

environment, local obstacle-avoidance scenarios are emphasized, 

while indoor navigation highlights the complexity of the interior 

structural environment. 

4.1.Local Obstacle Avoidance using DRL-Navigation 

4.1.1.Understanding: 

 Local obstacle avoidance is an important feature in drone 

navigation that allows the drone to navigate safely and 

autonomously in cluttered environments. Local obstacle avoidance 

refers to the drone's ability to detect and avoid obstacles in its 

immediate surroundings, without relying on global path planning or 

prior knowledge of the environment. 

Some key features of local obstacle avoidance include: 

Sensor fusion:Sensor fusion is often employed to combine 

the information from multiple sensors and create a more reliable and 

accurate perception of the environment. With obstacle avoidance, 

the drone can adjust its trajectory in real-time to avoid collisions 

with detected obstacles while continuing towards its destination. By 

fusing information from multiple sensors, the drone can overcome 

the limitations of individual sensors and obtain a more accurate and 

reliable perception of its surroundings. 

Reactive control: Once an obstacle is detected, the drone 

must react quickly to avoid it.Reactive control refers to the 

capability of the drone to generate collision-free trajectories based 

on the current sensor information in real-time. This means that the 

drone can respond to changes in the environment quickly and adjust 

its trajectory accordingly to avoid obstacles. 

Safety guarantees: Local obstacle avoidance should 

provide safety guarantees, ensuring that the drone can avoid 

collisions with obstacles while still being able to achieve its 

intended mission objectives. 

Learning-based approaches: Deep reinforcement 

learning (DRL) is a popular technique used for local obstacle 

avoidance in drones. DRL algorithms can learn from experience and 

adapt to different environments, making them suitable for real-

world applications. 

 

Simple comparison of several DRL-based navigation scenarios is shown in Table 1.
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Aspect Local obstacle avoidance Indoor navigation DRL-based 

Static obstacle Yes Yes 

Dynamic obstacle Yes Yes 

Structured continuous obstacle No Yes 

Obstacle scale Small Large 

Obstacle velocity Low High 

Cooperation No Yes 

Randomness No Yes 

Simple comparison of several DRL-based navigation scenarios is shown in Table 2. 

 

Aspect Local obstacle avoidance Indoor navigation DRL-based 

Obstacle detection Sensor-based Sensor-based and vision-based 

Obstacle avoidance method Reactive-based Reactive-based and planning-based 

Learning capability Limited High 

Adaptability to environment changes Limited High 

Navigation accuracy Moderate High 

Complexity of system design Low High 

Deployment flexibility Limited High 
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4.1.2.Development 

  

To develop a navigation system for a robot, Guangda Chen et.al. 

(2021) proposed a methodology that involves creating a map-based 

environment where obstacles are represented as polygons. They 

extracted information from the map using a convolutional neural 

network(CNN), and then they trained the CNN to discover the best 

course of action for the robot to take in order to navigate to the goal 

while avoiding obstacles using the Deep Q-Network(DQN) 

algorithm[29,30]. 

The “locality-aware embedding” method, which the 

authors introduce, enhances the robot’s capacity to navigate in 

challenging situations by including the robot’s present state and 

orientation into the CNN. 

The proposed approach is evaluated through simulations in 

various map-based environments with different obstacles, and the 

results show that it outperforms existing methods for map-based 

obstacle avoidance in terms of success rate and efficiency. 

 The proposed approach involves two primary components: 

an obstacle detection module based on map representation and a 

navigation module based on DRL. The map-based obstacle 

detection module uses sensor inputs, such as a laser scanner or 

stereo camera, to generate a 2D occupancy grid map that represents 

the environment. From the generated map, obstacle features such as 

the obstacle's distance, angle, and size, as well as the robot's position 

and velocity, are extracted. 

 To navigate the drone, the DRL-based navigation module 

takes the obstacle features and robot state extracted by the map-

based obstacle detection module as inputs and outputs the best 

action for the drone to take. These actions could include moving 

forward, turning left or right, or stopping. The DRL algorithm used 

in this study is DQN, which learns the optimal action to take based 

on the current state of the drone. 

To train the DRL model, the authors used a simulation 

environment that generates realistic indoor and outdoor 

environments with various obstacles. The simulation environment 

also includes realistic sensor models, such as laser scanners and 

cameras, to provide input data to the obstacle detection module. The 

authors demonstrated the usefulness of the suggested strategy for 

navigating towards the intended destination while avoiding 

obstacles by evaluating its performance using both simulation and 

real-world trials. 

 The authors employed a deep reinforcement 

learning(DRL) algorithm to generate an ideal policy for the robot to 

follow in their map-based approach to obstacle avoidance in mobile 

robot navigation. The system processed the map data and produced 

the robot’s behaviours using a convolutional neural network(CNN). 

The robot in a research used a laser range finder and a 

camera that were installed on it to acquire map data. The robot’s 

position and the location of any impediments in the area may both 

be determined using these sensors. The authors used a local costmap 

to represent the obstacles and the robot's current position and 

orientation, which was updated in real-time based on the sensor 

data. 

 The DRL algorithm was trained using a simulation 

environment, where the robot interacted with the environment and 

learned to avoid obstacles and reach the goal location. The authors 

used the Proximal Policy Optimization (PPO) algorithm, which is a 

popular DRL algorithm for continuous action spaces. 

 The trained model was then tested on a real mobile robot 

in a simulated environment and a real-world environment. The robot 

successfully avoided obstacles and reached the goal location in both 

environments, demonstrating the effectiveness of the proposed 

approach. 

4.2.Point-to-Point Indoor Navigation. 

4.2.1.Feature 

 The movement of a mobile robot from an origin point to a 

destination point within an interior environment is known as indoor 

P2P navigation. The robot must be able to locate itself in space, 

determine its orientation, and create a path to the goal point that 

avoids hitting any obstacles. The following are some of the essential 

components of indoor P2P navigation: Localization, Path Planning, 

Obstacle avoidance, Robustness, and Efficiency.  

4.2.2.Development 

 In the year (2020), Enrico Sutera et.al. have proposed a 

method, where the authors use an Ultra-wideband (UWB) sensor to 

provide precise localization information of the robot in the 

environment[31]. The UWB sensor is used to estimate the distance 

between the robot and a set of UWB anchor nodes placed in the 

environment, allowing for accurate localization of the robot. 

Additionally, the authors used a Deep Q-Network (DQN) 

algorithm to figure out the best course for the robot to take in order 

to avoid obstacles and reach to the goal point. The output of the 

DQN algorithm selects the optimum course of action depending on 

the current state of the robot, which is represented by a raw depth 

picture taken by a monocular camera installed on the robot. 

To train the DQN algorithm, the authors use a simulator to 

generate synthetic environments with varying levels of complexity 

and randomness. The DQN algorithm is trained using a curriculum 

learning approach, where the complexity of the environment is 

gradually increased over time as the algorithm improves. 

The proposed method is evaluated on a real-world indoor 

navigation task that involves navigating a robot to a target point 
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while avoiding obstacles. The authors compare their approach with 

other state-of-the-art navigation algorithms and demonstrate 

superior performance in terms of both navigation accuracy and 

obstacle avoidance. The robot's state is represented as a raw depth 

image from a monocular camera, and a DQN algorithm is used to 

learn an optimal policy for navigation. 

Table 3 and Table 4 depicts the simple Simple comparison of 

relevant references. 

5.Challenges and Solution 

5.1.Challenges 

P2P and security protection, as mentioned earlier, are 

included in the operation of mobile robots. When the agent reaches 

the goal, he gets a good reward. This reward is rare because it is 

only created once at the end of each period. The broker must decide 

on the correction process to achieve the goal of creating a rare gift, 

because as we know, the value of RL depends on the sum of the 

value effect effect. A random search has a low chance of identifying 

a rare reward. 

As the complexity and dynamics of the environment 

increase, the size of the state space also grows rapidly. Data 

invalidity is exacerbated by infrequent rewards, which also increase 

training time and poor training convergence. 

5.2.Solution 

 The sparse reward problem is a common challenge in 

reinforcement learning, where the agent receives very little or no 

reward for most of the state-action pairs, making it difficult to learn 

a good policy. To address this problem, several techniques have 

been proposed: 

Shaping the reward: This involves designing a reward 

function that provides more informative feedback to the agent. For 

example, instead of just rewarding the agent for reaching the goal, 

intermediate rewards can be given for making progress towards the 

goal or for avoiding obstacles. This can help the agent learn faster 

by providing more frequent feedback. 

Curriculum learning: This refers to a technique where 

the difficulty of the task is gradually increased as the agent learns 

and improves its performance. This can help the agent learn faster 

by starting with simpler tasks and gradually moving towards more 

complex ones, where the rewards are more sparse [31]. 

Exploration strategies: This involves encouraging the 

agent to explore the environment more thoroughly to find more 

rewarding actions. This can be done using techniques such as 

epsilon-greedy exploration or adding noise to the action selection 

process. 

Hierarchical reinforcement learning: This involves 

decomposing the task into subtasks, each with their own reward 

function. This can help reduce the sparsity of the rewards by 

providing more frequent feedback at the subtask level.

Table 3. Simple Comparison of References 
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Application 

scenario 
Reference Algorithm Action space 

Reward 

setting 
Year 

Indoor 

environments 
[32] DDPG Continuous 

Collision and 

distance-based 
2021 

Dynamic 

obstacle 

avoidance in 

cluttered 

environments 

[33] DRL Continuous 
Distance-

based 
2021 

Urban 

navigation 
[34] DDPG Continuous 

Distance-

based 
2018 

Indoor 

environments 
[35]. DDQN Discrete Time-based 2017 

Dynamic 

obstacle 

avoidance in 

urban 

environments 

[36] DRL Continuous 
Distance-

based 

2018 

 

 

 

Intrinsic motivation: This involves providing the agent 

with an internal motivation to explore and learn, even in the absence 

of external rewards. This can be done using techniques such as 

curiosity-driven exploration or unsupervised learning. 
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6.Results: 

In the literature review, different DRL-based approaches 

for autonomous drone navigation were identified. Convolution 

neural networks (CNNs) were utilized in some studies to extract 

features from sensor data, while deep Q-networks (DQNs) were 

utilized in others to learn navigation policies. Recurrent neural 

networks (RNNs) and multi-agent reinforcement learning (MARL) 

frameworks were also explored for drone navigation in some 

studies. Moreover, some studies have focused on DRL-based 

approaches for specific tasks such as collision avoidance, target 

tracking, and navigation in GPS-denied environments. 

The review also identified several challenges associated 

with DRL-based approaches for drone navigation. For instance, the 

high-dimensional input space of sensor data can make it difficult to 

train DRL algorithms effectively. Additionally, the limited battery 

life of drones can constrain the amount of data that can be collected, 

making it challenging to train DRL algorithms from scratch. 

7.Discussion: 

 

The literature suggests that DRL-based approaches have 

the potential to significantly improve the performance of 

autonomous drone navigation. However, several challenges remain 

that need to be addressed. One possible solution is to use transfer 

learning, which enables the drone to transfer knowledge learned in 

one environment to another. Using transfer learning can be 

beneficial as it reduces the data requirement to train the DRL model 

and increases its performance. Additionally, data augmentation 

techniques can be employed to generate more training data, which 

can improve the accuracy of the DRL algorithm. 

8.Conclusion: 

In summary, the systematic review presents a 

comprehensive overview of the current state-of-the-art in DRL-

based approaches for autonomous drone navigation, including 

algorithms, architectures, and applications. The review also 

highlights the challenges of DRL-based methods and offers 

potential solutions to address these issues. Additionally, the review 

discusses potential future directions for research in this field, such 

as developing more efficient DRL algorithms for real-world 

applications. 
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