

Dr. G. Kumar, Dr. R. Brindha and Dr. A. Mohamed Ali

Department of Mathematics, A.E.T. College, Attur, Salem – 636108. E-mail: <u>kumargmaths@gmail.com</u>

Department of Mathematics, Mahendra Engineering College (Autonomous), Mallasamudram, Namakkal – 637503. E-mail: <u>Brindhaaramasamy@gmail.com</u>

Associate professor, Department of Mathematics, Islamiah College (Autonomous), Vaniyambadi – 635752. E-mail: <u>mohamedalihashim@gmail.com</u>

# Abstract

In this Paper, we discuss about fuzzy inner product space, orthonormal set etc. We establish some fundamental results and Bessel's inequality.

## 1. Introduction

In studying fuzzy topological vector spaces, Katsaras [1] in 1984, first introduced the notion of fuzzy norm on a linear space. Later on many author viz. Felbin [2], Cheng & Mordeson [3], Bag and Samanta [4] etc. have given different definitions of fuzzy normed linear spaces.

R. Biswas [5] and A. M. El-Abyed & H. M. El-Hamouly [6] first tried to give a meaningful definition of fuzzy inner product space and associated fuzzy norm function. Also those definitions are restricted to the real linear space only. Recently Pinaki Mazumder & S. K. Samanta [7] introduced a definition of fuzzy inner product space whose associated fuzzy norm is of Bag & Samanta [4] type. Where as A.Hasankhani, A. Nazari & M.Saheli [8] have introduced a definition of fuzzy inner product space whose associated norm is of Felbin [2] type. Following the definition of fuzzy inner product space intro-duced by Pinaki Mazumder & S. K. Samanta [7], we study some results. Bessel's inequality and some theorems in fuzzy settings.

# 2. Some Preliminary Results

In this section, some definitions and preliminary results are given which will be used in this paper.

**Definition 2.1 [4].** Let U be a linear space over a field F (field of real / complex numbers).

A fuzzy subset N of  $U \times R$  (R is the set of real numbers) is called a

fuzzy norm on U if  $x, u \in U$  and  $c \in F$ : following conditions are satisfied:

(N1)  $\forall t \in R \text{ with } t \leq 0, N(x,t) = 0;$ 

 $(N2)(\forall t \in R, t > 0, N(x, t) = 1)$  iff x = 0;

(N3)  $\forall t \in R, t > 0, N(cx, t) = N\left(x, \frac{t}{|c|}\right)$  if  $c \neq 0$ ;

 $(N4) \forall s, t \in R, x, u \in U; N(x + u; s + t) \ge \min\{N(x, s), N(u, t)\}$ 

(N5) N(x,.) is a non-decreasing function of **R** and  $\lim_{t \to \infty} N(x, t) = 1$ .

(N6)  $\forall t > 0$ , N(x,t) > 0 implies x = 0.

The pair (U, N) will be referred to as a fuzzy normed linear space.

**Definition 2.2 [4].** Let (U, N) be a fuzzy normed linear space. Let  $\{x_n\}$  be a sequence in U. Then  $\{x_n\}$  is said to be convergent if  $\exists x \in U$  such that  $\lim_{n \to \infty} N(x_n - x, t) = 1 \forall t > 0$ . In that case x is called the limit of the

sequence  $\{x_n\}$  and we denote it by  $\lim x_n$ .

**Definition 2.3** Let  $(U, N_1)$  be a fuzzy normed linear space satisfying (N6). Let  $T \in U^*$  and  $\{ || ||_{\alpha}^1 : \alpha \in (0, 1) \}$  be the family of  $\alpha$  -norms of  $N_1$ . We define

$$\left||T|\right|_{\alpha}^{*} = \bigvee_{x \in U, x \neq \underline{0}} \frac{|T(x)|}{\left||x|\right|_{1-\alpha}^{1}} \quad \forall \alpha \in (0, 1)$$

Then  $\left\{ \left| \left| \right|_{\alpha}^{*} : \alpha \in (0, 1) \right\}$  is an ascending family of norms on  $U^{*}$ .

**Definition 2.4** Let (U, N) be a fuzzy normed linear space and  $\alpha \in (0, 1)$ . A sequence  $\{x_n\}$  in U is said to be  $\alpha$  -convergent in U if  $\exists x \in U$  such that  $\lim_{n \to \infty} N(x_n - x, t) > \alpha, \forall t > 0$  and x is called the limit of  $\{x_n\}$ .

**Definition 2.5** Let (U, N) be a fuzzy normed linear space. A subset F of U is said to be *l*-fuzzy closed if for each  $\alpha \in (0,1)$  and for any sequence  $\{x_n\}$  in F and  $x \in U$ ,

$$\left(\lim_{n\to\infty}N(x_n-x,t)\geq \alpha, \forall t>0\right) \Longrightarrow x\in F.$$

**Definition 2.6 [7].** Let V be a linear space over the field C of complex numbers. Let  $\mu: V \times V \times C \rightarrow I = [0, 1]$  be a mapping such that the following holds.

 $\begin{array}{l} ({\rm FIP1}) \ {\rm For} \ s,t \in {\cal C}, \mu(x+y,z,|t|+|s|) \geq \min\{\mu(x,z,|t|),\mu(y,z,|s|)\}; \\ ({\rm FIP2}) \ {\rm For} \ s,t \in {\cal C}, \ \mu(x,y,|st|) \leq \min\{\mu(x,x,|s|^2),\mu(y,y,|t|^2)\}; \\ ({\rm FIP3}) \ {\rm For} \ t \in {\cal C}, \mu(x,y,t) = \mu(y,x,\bar{t}). \\ ({\rm FIP4}) \ \mu(ax,y,t) = \mu\left(x,y,\frac{t}{|a|}\right), \ \alpha(\neq 0) \in {\cal C}, t \in {\cal C}; \\ ({\rm FIP5}) \ \mu(x,x,t) = 0 \ \forall t \in {\cal C} \setminus {\mathbb{R}}^+; \\ ({\rm FIP6}) \ (\mu(x,x,t) = 1 \ \forall t > 0) \ iff \ x = \underline{0}; \\ ({\rm FIP7}) \ \mu(x,x,.): {\mathbb{R}} \to I(=[0,1]) \ {\rm is} \ {\rm a} \ {\rm monotonic} \ {\rm non-decreasing} \ {\rm function} \ {\rm of} \ {\mathbb{R}} \\ {\rm and} \ \lim_{t \to \infty} \mu(x,x,t) = 1 \end{array}$ 

We shall call  $\mu$  to be the fuzzy inner product (FIP in short) function on V and

(*V*, *µ*) is called a fuzzy inner product space (FIP space).

**Theorem 1.** [7]. Let V be a linear space over C. Let  $\mu$  be a FIP on V. Then

$$N(x,t) = \begin{cases} \mu(x,x,t^2), & t \in R & if \ t > 0 \\ 0 & if \ t \le 0 \end{cases}$$

is a fuzzy norm on V. Now if  $\mu$  satisfies the following conditions: (FIP8)  $(\mu(x, x, t^2) > 0, \forall t > 0) \Rightarrow x = 0$  and (FIP9) For all  $x, y \in V$  and  $p, q \in R$ ,

 $\begin{array}{l} \mu(x+y,\ x+y,\ 2q^2)\wedge\mu(x-y,\ x-y,\ 2p^2)\geq\mu(x,x,p^2)\wedge\mu(x,x,q^2) \ \text{then} \\ ||x_n||_{\alpha}=\wedge\{t>0:N(x,t)\geq\alpha\}\ \alpha\in(0,1) \ \text{is an ordinary norm} \\ (\alpha-norm) \text{ on }V \text{ satisfying parallelogram law.} \end{array}$ 

Then using Polarization identity we get ordinary inner product, called the  $\alpha$  -inner product, as follows:

$$< x, y >_{\alpha} = \frac{1}{4} \left( \left| \left| x + y \right| \right|_{\alpha}^{2} - \left| \left| x - y \right| \right|_{\alpha}^{2} \right) + \frac{1}{4} i \left( \left| \left| x + iy \right| \right|_{\alpha}^{2} - \left| \left| x - iy \right| \right|_{\alpha}^{2} \right), \forall \alpha \in (0, 1)$$

**Definition 2.7 [7].** Let  $(V, \mu)$  be a FIP space satisfying (FIP8). V is said to be level complete if for any  $\alpha \in (0, 1)$ , every sequence converges in V w.r.t.  $|| \quad ||_{\alpha}$  (the  $\alpha$ -norm generated by the fuzzy norm N which is induced by fuzzy inner product  $\mu$ ).

**Definition 2.8 [7].** Let  $(V, \mu)$  be a FIP space. V is said to be a fuzzy Hilbert space, if it is level complete.

## 3. Some Results on Fuzzy Inner Product Spaces

Here we study some results on fuzzy inner product spaces.

**Theorem 2.** Let (V, N) be a fuzzy normed linear space. Assume that for  $x, y \in V$  and  $s, t \in C$ ,

 $\min\{N(x, |st|), N(y, |st|)\} \ge \min\{N(x, |s|^2), N(y, |t|^2)\}.$ 

Define  $\mu': V \times V \times C \rightarrow [0,1]$  as  $\mu'(x, y, s+t) = 0$  if x = y and  $s+t \in C - R^+$ and elsewhere as  $\mu'(x, y, s+t) = N(x, |s|) \vee N(y, |t|)$ . Then  $\mu'$  is a fuzzy inner product on V.

# **Proof of Theorem 2**

(FIP1) For  $s, t \in C$  and  $x, y, z \in V$  we have  $\mu'(x + y, z, |s| + |t|) = \mu'(x + y, z, |s| + |t|)$  $= \mu'(x + y, z, |s| + |t| + 0)$  $= N(x + y, |s| + |t|) \vee N(z, 0)$ = N(x + y, |s| + |t|) $\geq \min\{N(x, |s|), N(y, |t|)\}$  $= \min\{\mu'(x, z, |s|), \mu'(y, z, |t|)\}$ (FIP2)  $\mu'(x, y, |st|) = N(x, |st|) = N(y, |st|)$  $= \min\{N(x, |st|), N(y, |st|)\}$  $\geq \min\{N(x, |s|^2), N(y, |t|^2)\}$  [By condition]  $= \min\{\mu'(x, x, |s|^2), \mu'(y, y, |t|^2)\}.$ (FIP3)  $\mu'(x, y, t) = N(x, |t|) = N(x, |\overline{t}|)$  $= \mu'(x, y, \overline{t}) = N(y, |\overline{t}|)$  $= \mu'(y, x, \overline{t}).$ (FIP4)  $\mu'(\alpha x, y, t) = N(\alpha x, |t|)$  $=N\left(x,\frac{|t|}{|\alpha|}\right)\left[\alpha\neq 0\right]$ 

$$=\mu'\left(y,x,\frac{t}{|\alpha|}\right).$$

(FIP5)  $\mu'(x, x, t) = 0 \ \forall t \in C - R^+ \ [By \ condition]$ 

10082

(FIP6) 
$$\mu'(x, x, t) = 1 \ \forall t > 0$$
  
 $\Leftrightarrow N(x, t) = 1 \ \forall t > 0$   
 $\Leftrightarrow x = 0.$ 

(FIP7) Since  $\mu'(x, x, .) = N(x, .)$  and N(x, .) is a monotonic non-decreasing function of R and  $\lim_{t \to \infty} N(x, t) = 1$ 

 $\Rightarrow \mu' \text{ has also the property. Thus } \mu' \text{ is a fuzzy inner product on } V.$ The proof of Theorem 2 is complete.

### 4. Orthonormal set, Bessel's Inequality

In this section orthonormal set, sequence are defined and Bessel's inequality, are established in fuzzy Hilbert spaces.

**Definition 4.1** Let  $(V, \mu)$  be a fuzzy inner product space satisfying (FIP8) and (FIP9) and  $\alpha \in (0, 1)$ . An  $\alpha$ -fuzzy orthogonal set M in V is said to be  $\alpha$ -fuzzy orthonormal if the elements have  $\alpha$ -norm 1 that is  $\forall x, y \in M$ .

$$< x, y >_{\alpha} = \begin{cases} 1 & if \quad x = y \\ 0 & if \quad x \neq y \end{cases}$$

where <,  $>_{\alpha}$  is the induced inner product by  $\mu$ .

**Definition 4.2** Let  $(V, \mu)$  be a fuzzy inner product space satisfying (FIP8) and (FIP9). A fuzzy orthogonal set M in V is said to be fuzzy orthonormal if the elements have  $\alpha$ -norm  $1 \forall \alpha \in (0, 1)$  that is  $\forall x, y \in M$ .

$$\langle x, y \rangle_{\alpha} = \begin{cases} 1 & if \quad x = y \\ 0 & if \quad x \neq y \end{cases} \quad \forall \alpha \in (0, 1)$$

where <,  $>_{\alpha}$  is induced inner product by  $\mu$ .

**Definition 4.3.** Let  $(V, \mu)$  be a fuzzy inner product space satisfying (FIP8) and (FIP9). A fuzzy orthonormal set  $M \subset V$  is called complete fuzzy orthonormal set if there is no  $\alpha$ -fuzzy orthonormal set  $(\alpha \in (0, 1))$  of which M is a proper subset. If M is countable then we call M is a complete fuzzy orthonormal sequence.

**Theorem 3. (Bessel's inequality)** Let (V, u) be a fuzzy Hilbert space satisfying (FIP8) and (FIP9) and  $(\alpha \in (0, 1))$  and  $\{e_k\}$  be an  $\alpha$ -fuzzy orthonormal sequence in V. Then for every  $x \in V$ ,

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle_{\alpha}|^2 \le \left| |x| \right|_{\alpha}^2$$

Proof of the theorem 3

Since  $\alpha$ -fuzzy orthonormal sequence is orthonormal sequence in  $(V, < , >_{\alpha})$ , so by Bessel's inequality in crisp inner product we have

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle_{\alpha}|^2 \le \left| |x| \right|_{\alpha}^2$$

**Theorem 4.** Let  $(V, \mu)$  be a Hilbert space satisfying (FIP9) and  $\{e_i\}$  is fuzzy orthonormal sequence in V. Then the following satements are equivalent.

- (i)  $\{e_i\}$  is complete fuzzy orthonormal.
- (ii)  $x \perp e_i$  for  $i = 1, 2, \dots \Rightarrow x = \underline{0}$ .
- (iii) For every  $x \in V$ ,  $x = \sum_{k=1}^{\infty} \langle x, e_i \rangle_{\alpha} \quad \forall \alpha \in (0, 1)$  and hence  $\langle x, e_k \rangle_{\alpha} = \langle x, e_k \rangle_{\beta} \quad \forall \alpha, \beta \in (0, 1)$

i.e.  $\mathbf{x}$  is independent on  $\boldsymbol{\alpha}$ .

(1v) For every 
$$x \in V$$
,

$$\left||x|\right|_{\alpha}^{2} = \sum_{k=1} |\langle x, e_{i} \rangle_{\alpha}| \quad \forall \alpha \in (0, 1)$$

and hence

$$||x||_{\alpha}^{2} = ||x||_{\beta}^{2} \quad \forall \alpha, \beta \in (0,1).$$

#### **Proof of the theorem 4**

(a) Suppose (i) holds. Let  $\{e_i\}$  be a complete fuzzy orthonormal sequence and  $x \perp e_i$  for i = 1, 2, ... $\Rightarrow x \perp_{\alpha} e_i \ \forall \alpha \in (0, 1) \text{ and } i = 1, 2, ...$  $\Rightarrow < x, e_i >_{\alpha} = 0 \quad \forall \alpha \in (0, 1) \text{ and } i = 1, 2, \dots$ Set for a fixed  $\alpha_0, e^{\alpha_0} = \frac{x}{||x||_{\alpha_0}}$ Then  $||e^{\alpha_0}|| = \langle e^{\alpha_0}, e^{\alpha_0} \rangle_{\alpha_0} = 1$  and  $\langle e^{\alpha_0}, e_i \rangle_{\alpha_0} = 0$  for i = 1, 2, ...Therefore we get an  $\alpha_0$ -fuzzy orthonormal sequence  $\{e^{\alpha_0}, e_1, e_2, ...\}$  of which  $\{e_1, e_2, ...\}$  is proper subset a contraction to completeness. There for  $e^{\alpha_0} = 0$ .  $\Rightarrow x = 0.$  $S_0(i) \Rightarrow (ii).$ Suppose (*ii*) holds. (b) Let  $x \perp_{\alpha} e_i$  for i = 1, 2, ... implies x = 0.  $\Rightarrow x - \sum_{i=1} < x, e_i >_{\alpha} e_i \perp_{\alpha} e_j \quad j = 1, 2, \dots \quad and \quad \forall \alpha$  $\in (0, 1)$  $\Rightarrow x - \sum_{i=1}^{\infty} < x, e_i >_{\alpha} e_i \perp_{\alpha} e_j \quad j = 1, 2, \dots \text{ and } \forall \alpha \in (0, 1)$  $\Rightarrow x - \sum_{i=1}^{n} \langle x, e_i \rangle_{\alpha} e_i = 0 \quad \forall \alpha \in (0, 1)$  $\Rightarrow x = \sum_{i=1}^{\infty} \langle x, e_i \rangle_{\alpha} e_i = \sum_{i=1}^{\infty} \langle x, e_i \rangle_{\beta} e_i \quad \forall \alpha, \beta \in (0, 1)$  $\Rightarrow \sum_{i=1}^{\infty} \langle x, e_i \rangle_{\alpha} e_i - \sum_{i=1}^{\infty} \langle x, e_i \rangle_{\beta} e_i = 0 \quad \forall \alpha, \beta \in (0, 1)$ Since  $\{e_i\}$  is linearly independent, therefore  $\begin{array}{ll} \Rightarrow < x, e_i >_{\alpha} - < x, e_i >_{\beta} = 0 & i = 1, 2, \dots \text{ and } \forall \alpha, \beta \in (0, 1) \\ \Rightarrow < x, e_i >_{\alpha} = < x, e_i >_{\beta} & i = 1, 2, \dots \text{ and } \forall \alpha, \beta \in (0, 1) \end{array}$ Thus (*ii*)  $\Rightarrow$  (*iii*). Suppose (iii) holds. (c) Let  $x = \sum_{i=1}^{n} \langle x, e_i \rangle_{\alpha} e_i \quad \forall \alpha \in (0, 1)$ 

Now  $||x||_{\alpha}^2 = \langle x, x \rangle_{\alpha}$ 

10085

$$= <\sum_{i=1}^{\infty} < x, e_i >_{\alpha} e_i, \sum_{i=1}^{\infty} < x, e_i >_{\alpha} e_i >_{\alpha}$$
$$= <\lim_{n \to \infty} \sum_{i=1}^{n} < x, e_i >_{\alpha} e_i, \lim_{n \to \infty} \sum_{i=1}^{n} < x, e_i >_{\alpha} e_i >_{\alpha}$$
$$=\lim_{n \to \infty} <\sum_{i=1}^{n} < x, e_i >_{\alpha} e_i, \sum_{j=1}^{n} < x, e_j >_{\alpha} e_j >_{\alpha}$$
$$=\lim_{n \to \infty} \sum_{i=1}^{n} < x, e_i >_{\alpha} \overline{< x, e_i >_{\alpha}}$$
$$=\sum_{i=1}^{n} |< x, e_i >_{\alpha}|^2 \quad \forall \alpha \in (0, 1)$$

Now from (*iii*) we have  $\langle x, e_i \rangle_{\alpha} = \langle x, e_i \rangle_{\beta}$  i = 1, 2, ... and  $\forall \alpha, \beta \in (0, 1)$ So (*iii*)  $\Rightarrow$  (*iv*).

(d) Suppose (iv) holds and  $\{e_i\}$  is not complete. Then we get for an  $\alpha \in (0, 1)$  $\{e^{\alpha}, e_1, e_2, ...\}$  of which  $\{e_1, e_2, ...\}$  is aproper subset and  $||e^{\alpha}||_{\alpha} = 1$  and  $< e^{\alpha}, e_i >_{\alpha} = 0 \forall i = 1, 2, ...$ Now

$$\left|\left|e^{\alpha}\right|\right|_{\alpha}^{2} = \sum_{i=1}^{n} |\langle e^{\alpha}, e_{i} \rangle_{\alpha}|^{2} = 0$$
  
$$\Rightarrow e^{\alpha} = \overline{0}.$$

Thus  $(iv) \Rightarrow (i)$ .

## 6. Conclusion

In this paper, we have discussed fuzzy inner product space  $\alpha$  -fuzzy orthonormal set, complete fuzzy orthonormal set etc. have been introduced. We establish Bessel's inequality.

### References

- A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, Vol. 12(2) (1984), 143-154.
- [2] C.Felbin, *Finite dimensional fuzzy normed linear spaces*, Fuzzy Sets and Systems, Vol. 48 (1992), 39-248.
- S. C. Cheng, J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., Vol. 86(5) (1994), 429-436.
- [4] T.Bag, S.K.Samanta, *Finite dimensional fuzzy normed linear spaces*, The Journal of Fuzzy Mathematics Vol. 11, No. 3 (2003), 687-705.
- [5] R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci., Vol. 53

(1991), 185-190.

- [6] A. M. El-Abyad, H. M. El-Hamouly, *Fuzzy inner product spaces*, Fuzzy Sets and Systems, Vol. 44(2) (1991), 309-326.
- [7] Pinaki Mazumdar,S.K.Samanta, On fuzzy inner product spaces, The Journal of Fuzzy Mathematics, Vol.16 (2), (2008), 377-392.
- [8] A.Hasankhani, A.Nazari, M.Saheli, Some properties of fuzzy Hilbert spaces and norm of operators, Iranian Journal of Fuzzy Systems, Vol. 7(3) (2010), 129-157.