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Abstract

In this study we prove a common fixed point theorem for D-operator pairs that meet the general contractive
condition on cone metric type spaces. The D-operator pair is an extension of mappings that are weakly
compatible. The examples are provided to demonstrate the outcome. As an application, Best Approximation is
also demonstrated as an application.
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Common fixed points theorems for D-Operator
Pair on Cone Metric Type Spaces

1. INTRODUCTION

Huang and Zhang [5] established the explanation of
cone metric space by replacing the real numbers R
in metric space with an ordered Banach space.
Jungck[9] specified compatible maps and after a
year or so, he added weak compatibility. Al-
Thagafi and shahzad [4] outlined occasionally
weakly compatible, which is more general than
weakly compatible maps. Later M. Abbas and G.
Jungck [1] proposed the idea of a D-operator pair,
which is a more widespread concept in space of
metric than occasionally weak compatibility. This
paper discusses a few common fixed point theorems
in cone metric type spaces under some general
contractive conditions.

2. PRELIMINARIES

Definition 2.1 [2]

Let X be a non-empty set and £ be a real Banach
space with cone p. A vector-valued function

d: X x X — pis said to be a cone metric type
function on X with the constant K > 1 if the
following conditions are satisfied:

(1) 6 <d(x,y),forall x,y € X,and d(x,y) = 6
iff x = y;

(2) d(x,y) =d(y,x) forall x,y € X;

(3) d(x,2) <K (d(x,y) +d(y,z))forall x,y,z
€ X.

The pair (X,d) is called the cone metric type
space.If K = 1 then the ordinary triangle inequality
in a cone metric space is satisfied, however it does
not hold true if K > 1.Thus the class of cone metric
type spaces is effectively larger than that of
ordinary cone metric spaces.Every cone metric
space is a cone metric type space, but the converse
need not be true.

Example 2.2 [2]

Let X={-1,01},E=R% p={(x,y): x =0,y >
0}. Defined: X x X — p by d(x,y) = d(y, x) for
allx,y € X,d(x,x) = 6,x € Xand d(—1,0) =
(3,3), d(—1,1) =d(0,1) = (1,1). Then (X, d) is
a complete cone metric space but the triangle
inequality is not satisfied.

We have that, d(—1,1) + d(1,0) =(1,1) + (1,1) =
(2,2) < (3,3) =d(—1,0).ltisclear that K = %
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Definition 2.3

Let (X,d) be a cone metric type space. We say that
{xg}is

(@) A cauchy sequence if V ¢ in £ with ¢>> 0,
thereisNs.t V,g > N, d(xg, x4)< ¢

(b) A convergent sequence if for every c in £ with
¢> O,there is N such that for all g > N,
d(xg, x) < ¢ for some fixed x in X.

A cone metric type space X is said to be complete
if every Cauchy sequence in X is convergent in X.
It is known that {x;} convergent to x in X if and
only if d(xg4, x) > 0 as g — .

Definition 2.4 [9]

Let X be a set and let f, g be a two self mapping of
X. A point x € X is called a coincidence point of f
and g iff fx =gx. We shall call w=f x =g x a point
of coincidence of fand g.

Definition 2.5

Two self-maps f and g of a set X are occasionally
weakly compatible iff there is a point x € X which
is a coincidence point of f and g at which f and g
commute.

Definition 2.6
Let X be a non empty set and d be a function, d: X
xX —-£3

dia, W) =0 if and only if A=pVvApuex -
(2.6)

for a space (X,d) satisfying (2.6) and Ac X, the
diameter of A is defined by

diam(A)=sup{max{ (d(1, u), d(u, 1,) A, u € A}}

Definition 2.7[1]

Let A, u: X =X be mappings. The pair (o, 7) is said
to be D-operator pair if there is a pointuin X s.t o
€ C (o,7) and d(ot U, To U)<R diam (PC(g, 1)) for
some R > 0.

Definition 2.8
Let M be a nonempty subset of a cone metric space
(M,d).The set of best M-approximants to

ue X, denoted as Py, (u) is defined by

Py(u)={y € M:d(y,u) = dist(u, M)}

where dist(u, M) = inf {d(x,u): x € M}.
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3. MAIN RESULTS

Theorem 3.1

Let (X,d) be a cone metric type space with constant K > 1 and P be a cone with a nonempty interior. Suppose
that the mappings A, u: X—X are such that A(X) € u(X) and A (X) or u(X) is a complete subspace of X. Suppose
(A, g) is a D-operator pair and satisfy the conditio

A, Ay)< § fmax {ke dGue, i), k dGue, 30, k dGuy, Ay), 2RIl (3.)

V x,y €X and for some constant 8 € (0, %) Then A and u have a unique common fixed point.

Proof:
By the definition of D-operator pair there exist u in X and R >0 such that Au = pu and
d(Auu, pAu)<Rdiam(PC(4, u))

First, we prove that PC(4, g) is singleton. Suppose w and z be two distinct points in X such thatw = Au = gu
and z = Av = gv forsome wu,v € C(4, g). Then from (3.1) we obtain

d(w,z) = d(Au, Av)

p d(uu, Av) + d(Au, uv
< X {max {k d(u, uv), k d(gu, Au), k d(Av, gv), (u ) _ (Au, u )}1

d(w,2) < 2 (d(tu, 1v))
< 6(d(w,2)
< d(w,z).
Which is a contradiction. Therefore w=z, i.e, w=Au = yu = Av = yv = z. Thus,

PC(A, u) is singleton, i.e., w= Au = pu is the unique point of coincidence and diam(PC(4, 1)) = 0 from
definition of D-operator pair Auu = uAu for some points u € C(A4, w).

Now from (3.1) we have

d(Adu, Av) = d(Au, Au)

IA
x| ©

d (e, A7) + d (i, A
max{k A, ), k d(uau, o), k d s, ), S - (pau ”)}}

IA
=l

d(Au, Au) + d(Adu, Au)
max 3k d(AAu, Aw), k d(AAu, AAu), k d(Au, Au),

2
<2 {d(Atu, 2u}

<6 (d (A, Au))
< d(Au, Au)

This is a contradiction. Hence AAu = udu = Au and therefore 4, uhave a common fixed point. For unigueness,
suppose that u, v € X, such that Au = yu = u and Av = yv = v and u # v.Then (3.1) gives,
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d(u,v) = (d(Au, Av))

]
< X {max {k d(uu, uv), k d(uu, pu), k d(Av, uv),

< (d(u, v))
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d(uu, Av) er d(Au, ’“’)}} < % (d(u,v)

Which is a contradiction. Therefore u = v and hence the common fixed point of 1 and p is unique.

Example 3.2

Let E=R?,P={(x,y) € E:x,y = 0,c R}and define
d:RXR—- £by d(x,y) = (Jx — y|, a|x —
y|),where a > 0 is constant.Define A, u: X - X

by, A(x) = (%)l x and u(x) = [(%) + 9‘%] %,

forx € X where 8 € (O,%) and K > 1.(X,d)

is a cone metric type space. A and u are D-
operator pair satisfy condition (3.1). A and u have
a coincidence point 0 and unique point of
coincidence which is 0. Since A and u commute
at 0, it is the unique common fixed point.

Corollary 3.3

Let (X, d) be a cone metric type space with the
constant K = 1 and b a cone having a nonempty
interior. Suppose that the mappings A, u : X—X are
such that A(X) € u(X) and A(X) or u(X) is a
complete subspace of X, and that for some constant
6 €(0,1 ) and for every ,y € X, we have
d(Ax, Ay)< 6 d(ux,uy). Then Aand u have a
unique point of coincidence in X. Moreover if
A and p are D-operator p, 1 and u have a unique
common fixed point.

Corollary 3.4

Let (X, d) be a cone metric type space with the
constant K = 1 and b a cone having a nonempty
interior. Suppose that the mappings 4, u : X - X are
such that A(X) € u(X) and A(X) or u(X) is a
complete subspace of X, and that for some constant
6 € (0,1) and for every x,y € X, we have

d(Ax, Ay)< 6 { d(ﬂxmzd(uy.m}

Then A and u have a unique point of coincidence
in X. Moreover if A and u are D-operator pair,
A and p have a unigue common fixed point.

Corollary 3.5

Let (X, d) be a cone metric type space with the
constant K > 1 and P a cone having a nonempty
interior. Suppose that the mappings 4,u : X— X
are such that A(X) € u(X) and A(X) or u(X) is a
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complete subspace of X, and that for some
constant 6 € (0,1 ) and for every ,y € X, we have

6 (d(gyAx)+d(gx,Ay)
d@x, 2y)< 2 { ! }

Then A and u have a unique point of coincidence
in X.Moreover if A and p are D-operator pair,
A and u have a unique common fixed point.

Corollary 3.6

Let (X, d) be a cone metric type space with the
constant K = 1 and P a cone having a nonempty
interior. Suppose that the mappings 4, u : X—»X are
suchthat A(X) € u(X) and A(X) or u(X) is a
complete subspace of X, and that for some
constant 6 € (0,1 ) and for every,y € X, we have

d(Ax, Ay)
< ad(ux, uy) + b(max{(d(Ax, ux), d(ly, uy)})

+ c(max{(d(ux, wy), d(ux, Ax), d(uy, 1y)})
- (3.6)

for all x, y €X, where a,b,c > 0, a+b+c=1. Then
A and p have a unique point of coincidence in
X.Moreover if A and g are D-operator pair,

A and p have a unigue common fixed point.

Proof: In the theorem (3.1) replacing the condition
(3.1) by (3.4) we get the result that 1 and u have a
unique common fixed point.

4. APPLICATION TO
BEST APPROXIMATION

Theorem 4.1:

Let (X,) be a metric space of the cone type..
Suppose that u € X, A and u satisfy inequality (3.1)
in theorem 3.1. A leaves p- invariant compact
subset M of a closed subspace uX as invariant. For
each be Py(u), let d(x,Ab) <d(x,ub) and fb €
Py (u).If A and u are D-operator pair, then u has a
best approximation in M which is also a common
fixed point of A and u
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Proof:

Let ue F(4) n F(u). Since M is a compact subset
of uX, Py(u)# @. To prove that A(Py(u)) c
u(Py (u), assume the contrary.Then there exist be
Py (u) with Ab & u(Py(u).)

Now, d(u, ub) = dist(u,M)
< d(u, Ab)
< d(u, Ab)

As a result of Contradiction, we now have
APy (W) € u(Py(u).Now  f(Py(u)) being a
closed subset of a complete cone metric space, it is
complete. Hence Py, (u) N F(A1) N F(u) is singleton.
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