Forcing Split and Forcing Non-split Geodetic Number of a Graph

L.S.Chitra ${ }^{1}$, Venkanagouda M.Goudar ${ }^{2}$
${ }^{1}$ Research Scholar, Sri Siddhartha Academy of Higher Education
Tumkur, Karnataka, India
Department of Mathematics, Adhichunchanagiri Institute of Technology Chikkamagaluru, Karnataka, India
${ }^{2}$ Department of Mathematics, Sri Siddhartha Institute of Technology,
Constituent College of Sri Siddhartha Academy of Higher Education
Tumkur, Karnataka, India
chitrals.ait@gmail.com, vmgouda@gmail.com

Abstract

In a connected graph $G=(\mathrm{V}, \mathrm{E})$, the set S is a minimum split geodetic set. A subset $\mathrm{T} \subseteq \mathrm{S}$ is called as the forcing subset for S if S is the unique minimum split geodetic set of G containing T . The minimum cardinality of a forcing subset of S is the forcing split geodetic number $f_{s}(S)$ of S. The forcing split geodetic number of a connected graph G is $f_{s}(G)=\min \left\{f_{s}(S): S\right.$ is a split geodetic set of $\left.G\right\}$. The set S is a minimum non-split geodetic set in a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and the subset $\mathrm{T} \subseteq \mathrm{S}$ is called as forcing subset for S if S is the unique minimum non-split geodetic set of G containing T. The minimum cardinality of a forcing subset of S is the forcing non-split geodetic number $f_{n s}(S)$ of S. The forcing non split geodetic number of a connected graph G is $f_{n s}(G)=$ $\min \left\{\mathrm{f}_{\mathrm{ns}}(\mathrm{S}): \mathrm{S}\right.$ is a non - split geodetic set of G$\}$. Here we determined forcing split and non-split geodetic number of certain classes of graphs. Further, we determine the forcing split and forcing non-split geodetic number of graphs under some binary operations such join, Cartesian product and corona of two graphs.

Keywords: split geodetic set, non-split geodetic set, split geodetic number, non-split geodetic number, Cartesian product, join, corona.

Subject Classification: AMS-05C12.

1. Introduction

In this paper, the graph $G=(V(G), E(G))$ is finite, connected and simple with the vertex set $\mathrm{V}(\mathrm{G})$ containing $\mathrm{n} \geq 3$ vertices and the edge set $\mathrm{E}(\mathrm{G}) \subseteq \mathrm{V} \times \mathrm{V}$. The distance between any
two points u, v is $d(u, v)$ is a length of the shortest $u-v$ path in a graph G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. This concept was introduced in [1, 4].
The interval $I[u, v]$ containing all the points lying on some $u-v$ geodesic in G and $S \subseteq$ $V(G), I[S]=U_{u, v \in S} I[u, v] \cdot A$ set of vertices S is a geodetic set if $I[S]=V(G)$.

The minimum cardinality of a geodetic set is the geodetic number and is denoted as $g(G)$. This concept was introduced in [2].

A subset T of a minimum geodetic set S is called as the forcing subset for S if S is the unique minimum geodetic set of G containing T. The minimum cardinality among the forcing subsets of S is the forcing geodetic number $f_{G}(S)$ of a minimum geodetic set S and the forcing geodetic number $f(G)$ of a connected graph G is $f(G)=\min \left(f_{G}(S)\right)$. The forcing geodetic sets and the forcing geodetic number of a graph was introduced in [3].
The geodetic set S is said to be a non-split geodetic set in a graph G , if the induced sub graph $<\mathrm{V}(\mathrm{G})-\mathrm{S}>$ is connected. The cardinality of a non-split geodetic set which is minimum is the non-split geodetic number and is denoted as $\mathrm{g}_{\mathrm{ns}}(\mathrm{G})$. In [5], the non-split geodetic number was introduced.
The geodetic set S is said to be a split geodetic set in a graph G, if the sub graph $<V(G)-$ $\mathrm{S}>$ is disconnected. The cardinality of a split geodetic set which is minimum is the split geodetic number $\mathrm{g}_{\mathrm{s}}(\mathrm{G})$. In [6], the split geodetic number was introduced.

Let G and H be any two connected graphs. The join of G, H is denoted by $G+H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and the edge set $E(G+H)=E(G) \cup E(H) \cup\{u v$: $u \in V(G), V \in V(H)\}$.
A graph formed by taking a single copy of G with $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$ copies of H . By joining i^{th} vertex of G with each vertex in the $i^{\text {th }}$ copy of H, then it is said to be a corona $G \circ H$ of two graphs G and H.
The cartesian product of any two graphs G, H is a graph with vertex set $V(G) \times V(H)=$ $\left(u_{i}, v_{j}\right)$ where $u_{i} \in V(G), v_{j} \in V(H), 1 \leq i \leq m$ and $1 \leq j \leq n$. Any two distinct vertices $\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)$ adjacent in $G \times H$ if and only if either $u_{i}=u_{k}$ and $v_{j} v_{l} \in E(H)$ or $v_{j}=v_{l}$ and $u_{i} u_{k} \in E(G)$.

2. Forcing split geodetic number $f_{s}(\mathbf{G})$ of a graph

The set S is a minimum split geodetic set in a connected graph $G=(V, E)$. A subset $T \subseteq S$ is called as the forcing subset for S if S is the unique minimum split geodetic set of G containing T. The cardinality of a minimum forcing subset of S is the forcing split geodetic
number $f_{s}(S)$ of S. The forcing split geodetic number of a connected graph G is $f_{s}(G)=$ $\min \left(f_{s}(S)\right)$.

Figure 2.1: General graph.
The graph G given in Figure 2.1, $\mathrm{S}_{1}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}, \mathrm{S}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}, \mathrm{S}_{3}=\left\{\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $S_{4}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ are four minimum split geodetic sets with $\mathrm{g}(\mathrm{G})=\mathrm{g}_{\mathrm{s}}(\mathrm{G})=3$. The set S_{1} is the only minimum split geodetic set containing the vertex v_{2}, thus $\mathrm{f}_{\mathrm{s}}\left(\mathrm{S}_{1}\right)=1$. The remaining vertices other than v_{2} of a graph G belongs to two or more minimum split geodetic sets S_{i} for $\mathrm{i}=2,3,4$. So that $\mathrm{f}_{\mathrm{s}}\left(\mathrm{S}_{2}\right)=2, \mathrm{f}_{\mathrm{s}}\left(\mathrm{S}_{3}\right)=2$ and $\mathrm{f}_{\mathrm{s}}\left(\mathrm{S}_{4}\right)=2$. Therefore the forcing split geodetic number of a connected graph G is $f_{s}(G)=1$.

Observation 2.1. Let G be a connected graph of order n then,

- G has only one minimum split geodetic set if and only if $f_{s}(G)=0$.
- The graph G has two or more minimum split geodetic sets and a vertex of G belongs to exactly one minimum split geodetic set if and only if $f_{s}(G)=1$.
- All vertices of each minimum split geodetic set belongs to at least two minimum split geodetic sets if and only if $\mathrm{f}_{\mathrm{s}}(\mathrm{G}) \geq 2$.

Theorem 2.2. For a path P_{n} with $n \geq 5$, the forcing split geodetic number is

$$
f_{s}\left(P_{n}\right)=\left\{\begin{array}{lr}
0 & \text { for } n=5 \\
1 & \text { otherwise }
\end{array}\right.
$$

Proof. Consider a path of order $n \geq 5$ is $P_{n}: v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$.
Suppose that $\mathrm{n}=5$. The unique minimum split geodetic set is $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$. Hence by Observation 2.1, $\mathrm{f}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{n}}\right)=0$.

Suppose that $\mathrm{n}>5$. The set $\mathrm{S}_{\mathrm{i}-2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{i}}\right\}$ where $3 \leq \mathrm{i} \leq \mathrm{n}-2$ gives different minimum split geodetic sets containing a vertex v_{i} of P_{n}, belongs to exactly one minimum split geodetic set. By Observation 2.1, $\mathrm{f}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{n}}\right)=1$ for $\mathrm{n}>5$.

Theorem 2.3. Forcing split geodetic number of a cycle C_{n} with $n \geq 4$ is

$$
f_{s}\left(C_{n}\right)=\left\{\begin{array}{lc}
1 & \text { if } n \text { is even } \\
2 & \text { if } n \text { is odd }
\end{array}\right.
$$

Proof. If n is even, then a cycle $\mathrm{C}_{2 \mathrm{r}}: \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{r}}, \mathrm{v}_{1}$. Clearly, in this cycle the set $\mathrm{S}=$ $\left\{v_{i}, v_{j}\right\}$ containing pair of antipodal vertices are different minimum split geodetic sets. Each vertex containing a unique vertex antipodal to it. By Observation 2.1, $\mathrm{f}_{\mathrm{s}}\left(\mathrm{C}_{\mathrm{n}}\right)=1$.

If n is odd, then $\mathrm{C}_{2 \mathrm{r}+1}: \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{r}+1}, \mathrm{v}_{1}$ has more than one minimum split geodetic sets with each vertex belongs to two or more distinct minimum split geodetic sets. By Observation 2.1, $\mathrm{f}_{\mathrm{s}}(\mathrm{G}) \geq 2$. Further, the set $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{r}+1}, \mathrm{v}_{\mathrm{r}+2}\right\}$ is the unique minimum split geodetic set containing two adjacent vertices $\mathrm{v}_{\mathrm{r}+1}, \mathrm{v}_{\mathrm{r}+2}$ in C_{n} with $\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{r}+1}\right)=\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{r}+2}\right)$. Thus $\mathrm{f}_{\mathrm{s}}\left(\mathrm{C}_{\mathrm{n}}\right)=2$.

Theorem 2.4. The forcing split geodetic number of a wheel W_{n} with $\mathrm{n} \geq 5$ is

$$
f_{s}\left(W_{n}\right)=\left\{\begin{array}{cc}
2 & \text { if } n \text { is even } \\
1 & \text { if } n \text { is odd }
\end{array}\right.
$$

Proof. Suppose that n is even. The graph $\mathrm{G}=\mathrm{W}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}-1}+\mathrm{K}_{1}$ has $(\mathrm{n}-1)$ different minimum split geodetic sets and each vertex belongs to two or more distinct minimum split geodetic sets. By Observation 2.1, $\mathrm{f}_{\mathrm{s}}(\mathrm{G}) \geq 2$. Any two adjacent vertices in W_{n} forms a unique subset in minimum split geodetic sets. Thus $\mathrm{f}_{\mathrm{s}}\left(\mathrm{W}_{\mathrm{n}}\right)=2$.

Suppose that n is odd, $\mathrm{n} \geq 5$. The graph $\mathrm{G}=\mathrm{W}_{\mathrm{n}}$ has two minimum split geodetic sets containing different vertices with common universal vertex in W_{n}. Thus $f_{s}\left(W_{n}\right)=1$.

Theorem 2.5. The forcing split geodetic number of a tree T containing at least four internal vertices and k end vertices is $f_{s}(T)=1$.

Proof. Consider, the set $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of end vertices and the set of internal vertices $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{x}}\right\} \subset \mathrm{V}-\mathrm{S}$ in a tree T. Clearly, the set S is a geodetic set and $<\mathrm{V}(\mathrm{T})-\mathrm{S}>$ is connected. Therefore consider $\mathrm{S}^{\prime}=\mathrm{S} \cup\left\{\mathrm{u}_{\mathrm{i}}\right\}$, where u_{i} is an arbitrary internal vertex which is not an end vertex in $\mathrm{V}-\mathrm{S}$ forms a split geodetic set. The arbitrary internal vertex belongs to exactly one minimum split geodetic set. Thus by Observation 2.1, $\mathrm{f}_{\mathrm{s}}(\mathrm{T})=1$.

Observation 2.6. There is no forcing split geodetic number in star.
Theorem 2.7. If $G=K_{m, n}$, the forcing split geodetic number for positive integers m and $\mathrm{n}>1$ is

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)= \begin{cases}1 & \text { for } \mathrm{m}=\mathrm{n} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The graph $G=K_{m, n}$ is formed by the partite sets $A=\left\{a_{i}\right\}$ where $1 \leq i \leq m$ and $B=$ $\left\{b_{j}\right\}$ where $1 \leq j \leq n$ with $m<n$. The vertex set of G is $A \cup B$.

For $m=n$, the graph $G=K_{m, n}$ having partite sets with same number of vertices forms two different minimum split geodetic sets $S_{1}=\left\{a_{i}\right\}$ and $S_{2}=\left\{b_{j}\right\}$ where $1 \leq i, j \leq m$ containing different vertices. Thus by Observation 2.1, $\mathrm{f}_{\mathrm{s}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=1$.
Suppose that $\mathrm{m} \neq \mathrm{n}$ and $\mathrm{m}<\mathrm{n}$. The unique minimum split geodetic set is $\mathrm{S}=\mathrm{A}$. Thus by Observation 2.1, $\mathrm{f}_{\mathrm{s}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=0$.

Theorem 2.8. The connected graph G^{\prime} formed by joining a leaf vertex v to the cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$, $n \geq 4$. The forcing split geodetic number of G^{\prime} is $f_{s}\left(G^{\prime}\right)=1$.

Proof. The graph G^{\prime} formed by adding the leaf vertex $\mathrm{v} \notin \mathrm{G}$ to $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ where $\mathrm{n} \geq 4$. In G^{\prime}, there exists two or more minimum split geodetic sets of the form $S=\left\{v, u_{i}, u_{j}\right\}$. The set S containing a leaf vertex v and the pair of antipodal vertices u_{i}, u_{j} of a graph $C_{n}=G$.

If n is even, then the set S with different antipodal vertices and each vertex containing a unique vertex antipodal to it. Therefore $\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)=1$.

If n is odd, then the antipodal vertex u_{i} is non adjacent to the vertex v with $d\left(u_{i}, v\right)=2$ belongs to exactly one minimum split geodetic set. Thus $\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)=1$.

Theorem 2.9. The graph $G^{\prime}=C_{n} \circ K_{1}$ is formed by adding leaf vertex $v \notin G$ to every vertex u_{i} where $1 \leq \mathrm{i} \leq \mathrm{n}$ in a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}, \mathrm{n} \geq 4$. The forcing split geodetic number of a graph G^{\prime} is

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)= \begin{cases}1 & \text { for } \mathrm{n}=4 \\ 2 & \text { for } \mathrm{n}>4\end{cases}
$$

Proof. The connected graph $\mathrm{G}^{\prime}=\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{1}$ is formed by adding leaf vertex v to every vertex u_{i} where $1 \leq \mathrm{i} \leq \mathrm{n}$ in a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}, \mathrm{n} \geq 4$.
Case 1: Suppose that $n=4$. In a graph $G^{\prime}=C_{4} \circ K_{1}$, the set X containing four end vertices forms a geodetic set and $<\mathrm{V}\left(\mathrm{G}^{\prime}\right)-\mathrm{X}>$ is connected. Clearly, the set of end vertices X is non-split geodetic set. Any two antipodal vertices with the set X forms two minimum split geodetic sets contains different antipodal vertices. Thus $\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)=1$.
Case 2: Suppose that $\mathrm{n}>4$. In the graph $\mathrm{G}^{\prime}=\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{1}$, the different minimum split geodetic sets are $S_{k}=X \cup\left\{v_{i}, v_{j}\right\}$ where X is a set of end vertices in G^{\prime} and $\left\{v_{i}, v_{j}\right\}$ are k possible nonadjacent vertices in G. Each non adjacent vertices belongs two or more minimum split geodetic sets, so $f_{s}\left(G^{\prime}\right) \geq 2$. Any two non adjacent vertices makes a unique subset in minimum split geodetic set S_{k} in a graph G^{\prime}. Thus $\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)=2$.

Theorem 2.10. Let G^{\prime} be the graph formed by adding k-leaf vertices $\mathrm{v}_{\mathrm{i}} \notin \mathrm{G}$ where $1 \leq \mathrm{i} \leq \mathrm{k}$ to any vertex $u \in G=C_{n}$, where C_{n} is a cycle with $n \geq 4$. The forcing split geodetic number of G^{\prime} is $\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)=1$.

Proof. The graph G^{\prime} formed by adding the k-leaf vertices $\mathrm{v}_{\mathrm{i}} \notin \mathrm{G}$ where $1 \leq \mathrm{i} \leq \mathrm{k}$ to the vertex $u \in G=C_{n}$. The different minimum split geodetic sets of the form $\left\{v_{i}, u_{j}, u_{1}\right\}$ containing a leaf vertices $\mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$ with a pair of antipodal vertices $\mathrm{u}_{\mathrm{j}}, \mathrm{u}_{1}$.
If n is even, then the pair of antipodal vertices $\mathrm{u}_{\mathrm{j}}, \mathrm{u}_{1}$ each vertex containing a unique vertex antipodal to it. Therefore $\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)=1$.
If n is odd, then the vertex $\mathrm{u}_{\mathrm{j}} \in \mathrm{G}^{\prime}$ is non adjacent to the vertex v_{i} where $1 \leq \mathrm{i} \leq \mathrm{k}$ with $d\left(v_{i}, u_{j}\right)=2$ belongs to exactly one minimum split geodetic set. Thus $f_{s}\left(G^{\prime}\right)=1$.

Theorem 2.11. The forcing split geodetic number of join of two paths, $\mathrm{P}_{\mathrm{n}_{1}}$ and $P_{n_{2}}$ with $n_{1}, n_{2} \geq 4$ is

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{n}_{1}}+\mathrm{P}_{\mathrm{n}_{2}}\right)=\left\{\begin{array}{l}
2 \\
\text { for } \mathrm{n}_{1}=\mathrm{n}_{2} \\
1
\end{array} \quad\right. \text { otherwise }
$$

Proof. Consider $V=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $U=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$ are the vertex sets of a path $P_{n_{1}}$ and $P_{n_{2}}$ respectively. From the definition, the join of these two graphs is $G=\left(P_{n_{1}}+P_{n_{2}}\right)$ with the vertex set $\mathrm{W}=\mathrm{V} \cup \mathrm{U}$ with $\mathrm{n}_{1}, \mathrm{n}_{2} \geq 4$.

Case 1: Suppose that $n_{1}=n_{2}$. The different possible minimum split geodetic sets with cardinality $n_{1}+1$ are $S_{k}=V \cup u_{k}$ where u_{k} is any internal vertex in a set U and $S_{l}=U U v_{l}$ where v_{l} is any internal vertex in V. Each vertex in these minimum split geodetic sets belongs to at least two sets. So $f_{s}\left(G^{\prime}\right) \geq 2$. Since the end vertex in V and any internal vertex in U form the unique subset in minimum split geodetic set of cardinality two in S_{k}, similarly in S_{l}, the end vertex in U and any internal vertex in V form the unique subset in minimum split geodetic set of cardinality two. Thus $f_{s}\left(G^{\prime}\right)=2$ for $n_{1}=n_{2}$.
Case 2: Suppose that $n_{1} \neq n_{2}$ and $|V|<|U|$. Every possible minimum split geodetic sets contains all vertices of set V and one internal vertex in U. Since the internal vertex in U belongs to exactly one split geodetic set which is minimum. So that $\mathrm{f}_{\mathrm{s}}\left(\mathrm{G}^{\prime}\right)=1$.
Similarly, if $|\mathrm{U}|<|\mathrm{V}|$, minimum split geodetic sets contains all vertices of set U and one internal vertex in V. Since the internal vertex in V belongs to exactly one split geodetic set which is minimum. So $f_{s}\left(G^{\prime}\right)=1$.

Theorem 2.12. The forcing split geodetic number of corona product of two paths
$P_{n_{1}}$ and $P_{n_{2}}$ with $n_{1} \geq 2, n_{2} \geq 3$ is

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{n}_{1}} \circ \mathrm{P}_{\mathrm{n}_{2}}\right)= \begin{cases}1 & \text { if } \mathrm{n}_{2} \text { is odd } \\ \mathrm{n}_{1}+1 & \text { otherwise }\end{cases}
$$

Proof. Consider $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}_{1}}\right\}$ and $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}_{2}}\right\}$ are the two vertex sets of $P_{n_{1}}$ and $P_{n_{2}}$ respectively. From the definition, the corona product of these two paths $G=$ ($\mathrm{P}_{\mathrm{n}_{1}} \circ \mathrm{P}_{\mathrm{n}_{2}}$) having $\mathrm{n}_{1}+\mathrm{n}_{1} \mathrm{n}_{2}$ vertices is formed by taking a copy of $\mathrm{P}_{\mathrm{n}_{1}}$ and $|V|=\mathrm{n}_{1}$ copies of $\mathrm{P}_{\mathrm{n}_{2}}$ also by joining $\mathrm{i}^{\text {th }}$ vertex of $\mathrm{P}_{\mathrm{n}_{1}}$ with each vertex in the $\mathrm{i}^{\text {th }}$ copy of $\mathrm{P}_{\mathrm{n}_{2}}$.
Case 1: Suppose that n_{2} is odd. In a graph $G=\left(P_{n_{1}} \circ P_{n_{2}}\right)$, the geodetic set X having $\left(n_{1}\left\lceil\frac{n_{2}}{2}\right\rceil\right)$ vertices. The minimum different split geodetic sets are $S_{i}=X \cup v_{i}, 1 \leq i \leq n_{1}$ where $v_{i} \in V$. Since the vertices $v_{i} \in V$ belongs to exactly one split geodetic set which is minimum and this is the unique subset of minimum split geodetic set. So that $f_{s}\left(S_{i}\right)=1$, $1 \leq \mathrm{i} \leq \mathrm{n}_{1}$. Therefore $\mathrm{f}_{\mathrm{s}}(\mathrm{G})=1$.

Case 2: Suppose that n_{2} is not an odd number. The number of possible geodetic sets are $n_{1}\left(\frac{n_{2}}{2}\right)^{2}$ and each minimum geodetic set X containing $n_{1}\left(\frac{n_{2}}{2}+1\right)$ vertices. The different split geodetic sets are $S_{i}=X \cup v_{i}, 1 \leq i \leq n_{1}$ where $v_{i} \in V$. Every vertex in these sets belongs two or more minimum split geodetic sets. By Observation 2.1, $\mathrm{f}_{\mathrm{s}}\left(\mathrm{S}_{\mathrm{i}}\right) \geq 2$. Since any internal vertex of $P_{n_{2}}$ in each $|V|=n_{1}$ copy with one vertex in $P_{n_{1}}$ form the unique subset in a minimum split geodetic set of cardinality $n_{1}+1$. Therefore $f_{s}\left(S_{i}\right)=n_{1}+1$ and for the $\operatorname{graph} G, \mathrm{f}_{\mathrm{s}}(\mathrm{G})=\mathrm{n}_{1}+1$.

Theorem 2.13. For the cartesian product of two paths $P_{n_{1}}$ and $P_{n_{2}}$ with $n_{1} \geq 2$ and $n_{2} \geq 5$, the forcing split geodetic number

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{n}_{1}} \times \mathrm{P}_{\mathrm{n}_{2}}\right)=\left\{\begin{array}{lc}
2 & \text { if } \mathrm{n}_{1}=3 \\
1 & \text { otherwise }
\end{array}\right.
$$

Proof. Consider the vertex set $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}_{1}}\right\}$ of $\mathrm{P}_{\mathrm{n}_{1}}$ and $\mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}_{2}}\right\}$ of $P_{n_{2}}$. Let $\left(P_{n_{1}} \times P_{n_{2}}\right)=G$ be a cartesian product of two paths $P_{n_{1}}$ and $P_{n_{2}}$ with $n_{1} \geq 2, n_{2} \geq$ 5.

Case 1: If $\mathrm{n}_{1}=3$, then the set $X=\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)\left(\mathrm{v}_{3}, \mathrm{w}_{\mathrm{n}_{2}}\right)\right\}$ is a minimum geodetic sets in $\mathrm{G}=$ $\left(\mathrm{P}_{\mathrm{n}_{1}} \times \mathrm{P}_{\mathrm{n}_{2}}\right.$). Since the induced sub graph $<V(G)-\mathrm{X}>$ is connected, the set X is a non-split geodetic set. There exist many split geodetic sets in G of cardinality four and every vertex in these sets belongs to two or more minimum split geodetic sets. By Observation 2.1, $\mathrm{f}_{\mathrm{s}}(\mathrm{G}) \geq$ 2. The set $S=X \cup\left\{\left(\mathrm{v}_{2}, \mathrm{w}_{1}\right)\left(\mathrm{v}_{3}, \mathrm{w}_{2}\right)\right\}$. is the minimum unique split geodetic set containing
the subset $T=\left\{\left(\mathrm{v}_{2}, \mathrm{w}_{1}\right)\left(\mathrm{v}_{3}, \mathrm{w}_{2}\right)\right\}$. Also any subset U of S with $|\mathrm{U}|<|T|$ is not a forcing subset of split geodetic set. Therefore $f_{s}(G)=2$.

Case 2: If $\mathrm{n}_{1} \neq 3$, then the minimum geodetic set $\mathrm{X}=\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)\left(v_{\mathrm{n}_{1}}, \mathrm{w}_{\mathrm{n}_{2}}\right)\right\}$ is not a split geodetic set. Since $\left\langle V(G)-X>\right.$ is connected, the set $S=X \cup\left\{\left(\mathrm{v}_{\mathrm{n}_{1}-1}, \mathrm{w}_{1}\right)\left(\mathrm{v}_{\mathrm{n}_{1}}, \mathrm{w}_{2}\right)\right\}$ form split geodetic set. There exists many split geodetic sets in G of cardinality four but some vertex in these sets belongs to exactly one split geodetic set. The set S is the unique minimum split geodetic set containing the subset $T=\left\{\left(\mathrm{v}_{\mathrm{n}_{1}}, \mathrm{w}_{2}\right)\right\}$. This implies that $\mathrm{f}_{\mathrm{s}}(\mathrm{S})=$ 1 also $\mathrm{f}_{\mathrm{s}}(\mathrm{G})=1$.

3. Forcing non-split geodetic number $f_{\text {ns }}(G)$ of a graph

The set S is a minimum non-split geodetic set in a connected graph $G=(V, E)$ and the subset $\mathrm{T} \subseteq \mathrm{S}$ is called as the forcing subset for S if S is the unique minimum non-split geodetic set of G containing T . The minimum cardinality of a forcing subset of S is the forcing non-split geodetic number $\mathrm{f}_{\mathrm{ns}}(\mathrm{S})$ of S . The forcing non-split geodetic number of a connected graph G is $f_{n s}(G)=\min \left(f_{n s}(S)\right)$.

Figure 3.1: General graph.
The two minimum non-split geodetic sets in G shown in Figure 3.1, are $S_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{8}\right\}$ and $S_{2}=\left\{v_{4}, v_{5}, v_{8}\right\}$. Clearly, set S_{1} is the only minimum non-split geodetic set containing v_{1} and the vertex v_{5} of G belongs to the set S_{2}. Thus $f_{n s}\left(S_{1}\right)=f_{n s}\left(S_{2}\right)=1$. Therefore for the graph $\mathrm{G}, \mathrm{f}_{\mathrm{ns}}(\mathrm{G})=1$.

Observation 3.1. Let G be a connected graph then,

- G has only one minimum non-split geodetic set if and only if $f_{n s}(G)=0$.
- The graph G has two or more minimum non-split geodetic sets and a vertex of G belongs to exactly one minimum non-split geodetic set if and only if $\mathrm{f}_{\mathrm{ns}}(\mathrm{G})=1$.
- All vertices of each minimum non-split geodetic set belongs to two or more minimum non-split geodetic sets if and only if $\mathrm{f}_{\mathrm{ns}}(\mathrm{G}) \geq 2$.

Theorem 3.2. The forcing non-split geodetic number of a path P_{n} with $n \geq 5$, a tree T and the star $\mathrm{K}_{1, \mathrm{n}}$ is zero.

Proof. In a path P_{n} with $n \geq 5$, a tree T and the star $K_{1, n}$, the set X of end vertices forms the minimum non-split geodetic set which is unique. By Observation 3.1, the forcing nonsplit geodetic number is zero.

Theorem 3.3. The forcing non-split geodetic number of a cycle $G=C_{n}$ with $n \geq 4$ is

$$
\mathrm{f}_{\mathrm{ns}}\left(\mathrm{C}_{\mathrm{n}}\right)= \begin{cases}3 & \text { for } \mathrm{n} \text { is even } \\ 1+\left\lceil\frac{\mathrm{n}}{2}\right\rceil & \text { for } \mathrm{n} \text { is odd }\end{cases}
$$

Proof. Case 1: Suppose n is even. Consider a cycle $C_{2 r}$ containing $2 r$ vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{r}}, \mathrm{v}_{1}\right\}$. The pair of antipodal vertices in a set $\mathrm{X}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$ forms different geodetic sets. Since $<\mathrm{V}(\mathrm{G})-\mathrm{X}>$ is not connected, the set X is not a non-split geodetic set and the set $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\mathrm{r}+1}\right\}$ of cardinality $\left(\frac{\mathrm{n}}{2}+1\right)$ forms a non-split geodetic set. There exists n number of minimum non-split geodetic sets and all vertices in n minimum non-split geodetic set belongs to two or more minimum non-split geodetic sets so that $f_{n s}(G) \geq 2$. The unique minimum non-split geodetic set containing the subset $T=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{\mathrm{r}+1}\right\}$. This implies that $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{C}_{\mathrm{n}}\right)=3$.

Case 2: Suppose n is odd. Consider a cycle $\mathrm{C}_{2 \mathrm{r}+1}$ containing $2 \mathrm{r}+1$ vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{r}+1}, \mathrm{v}_{1}\right\}$. The set $\mathrm{X}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right\}$ forms minimum geodetic sets where $d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{k}\right)$ and v_{j}, v_{k} are adjacent vertices. Here $<V(G)-X>$ is not connected. The n number of minimum non-split geodetic sets S_{i} where $1 \leq \mathrm{i} \leq \mathrm{n}$ of cardinality $1+\left\lceil\frac{\mathrm{n}}{2}\right\rceil$ is obtained by taking all the internal vertices from v_{i} to v_{j} or v_{i} to v_{k} with X. Every vertex of each minimum n number of non-split geodetic set belongs to two or more minimum nonsplit geodetic sets so that $f_{n s}(G) \geq 2$. Also, any subset T of S_{i} with $|T|<\left|S_{i}\right|$ is not a forcing subset of non-split geodetic sets $S_{i}, 1 \leq i \leq n$. Therefore $f_{n s}\left(C_{n}\right)=1+\left\lceil\frac{n}{2}\right\rceil$.

Theorem 3.4. The forcing non-split geodetic number of a wheel W_{n} with $n \geq 5$ is

$$
f_{n s}\left(W_{n}\right)=\left\{\begin{array}{cc}
2 & \text { if } n \text { is even } \\
1 & \text { if } n \text { is odd }
\end{array}\right.
$$

Proof. The proof is similar to the proof of Theorem 2.4.
Theorem 3.5. The forcing non-split geodetic number of $K_{m, n}$ for any positive integers $\mathrm{m}, \mathrm{n} \geq 2$ is

$$
f_{n s}\left(K_{m, n}\right)= \begin{cases}m+n-1 & \text { for } m=2 \\ 4 & \text { for } m \geq 3\end{cases}
$$

Proof. The graph $G=K_{m, n}$ with $A=\left\{a_{i}\right\}$ where $1 \leq i \leq m$ and $B=\left\{b_{j}\right\}$ where $1 \leq j \leq n$ are partite sets also $m \leq n . A \cup B$ is a vertex set of a graph G.

Case 1: For $\mathrm{m}=2$, the different minimum non-split geodetic sets are S_{i} where $1 \leq \mathrm{i} \leq \mathrm{m}+$ n and the cardinality of each set S_{i} is $\mathrm{m}+\mathrm{n}-1$. Every vertex in S_{i} belongs to two or more minimum non-split geodetic sets. Also, any subset T of S_{i} with $|T|<\left|S_{i}\right|$ is not a forcing subset of non-split geodetic sets $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq m+n$. Therefore $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{m}+\mathrm{n}-1$.

Case 2: For $m \geq 3$, different minimum non-split geodetic sets in $G=K_{m, n}$ are S_{i} where $1 \leq$ $\mathrm{i} \leq\binom{\mathrm{m}}{\mathrm{r}} \times\binom{\mathrm{n}}{\mathrm{r}}$ with cardinality four. Also no subset T of S_{i} with $|\mathrm{T}|<\left|\mathrm{S}_{\mathrm{i}}\right|$ is a forcing subset of non-split geodetic sets. Therefore $f_{n s}\left(K_{m, n}\right)=4$.

Theorem 3.6. If the graph G^{\prime} formed by joining the leaf vertex $v \notin G$ to a cycle $C_{n}=G$ where $\mathrm{n} \geq 3$. Then $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

Proof. The graph G^{\prime} formed by adding the leaf vertex $\mathrm{v} \notin \mathrm{G}$ to a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ where $\mathrm{n} \geq$ 3.

If n is even, then the non-split geodetic set in G^{\prime} is $\mathrm{S}=\{\mathrm{v}, \mathrm{u}\}$ which is minimum and unique, containing antipodal vertices $\mathrm{u} \in \mathrm{G}$ and $\mathrm{v} \notin \mathrm{G}$. By Observation 3.1, the forcing non-split geodetic number $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

If n is odd, then the unique minimum non-split geodetic set in G^{\prime} is $S=\left\{v, u_{i}, u_{j}\right\}$ where v is the leaf vertex and $u_{i}, u_{j} \in G$ are any two adjacent vertices such that $d\left(v, u_{i}\right)=d\left(v, u_{j}\right)$. By Observation 3.1, the forcing non-split geodetic number $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

Theorem 3.7. If the graph G^{\prime} is formed by joining a leaf vertex $v \notin G$ to each vertex u_{i} where $1 \leq \mathrm{i} \leq \mathrm{n}$ in $\mathrm{C}_{\mathrm{n}}=\mathrm{G}, \mathrm{n} \geq 3$. Then $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

Proof. The graph $\mathrm{G}^{\prime}=\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{1}$ formed by adding the leaf vertex v to each vertex u_{i} where $1 \leq \mathrm{i} \leq \mathrm{n}$ in $\mathrm{C}_{\mathrm{n}}=\mathrm{G}, \mathrm{n} \geq 3$. The set S of leaf vertices in G^{\prime} is a minimum non-split geodetic set. By Observation 3.1, the forcing non-split geodetic number $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

Theorem 3.8. The graph G^{\prime} is formed by joining k-leaf vertices $v_{i} \notin G$ where $1 \leq i \leq k$ to the vertex $u \in G=C_{n}$ where C_{n} is a cycle with $n \geq 3$. Then the forcing non-split geodetic number of G^{\prime} is $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

Proof. The graph G^{\prime} formed by adding the k-leaf vertices $\mathrm{v}_{\mathrm{i}} \notin \mathrm{G}$ where $1 \leq \mathrm{i} \leq \mathrm{k}$ to the vertex of $u \in C_{n}$ where $n \geq 3$.

If n is even, then the unique minimum non-split geodetic set in G^{\prime} is $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{1}\right\}, 1 \leq \mathrm{i} \leq \mathrm{k}$ containing the pendant vertices $v_{i} \in G^{\prime}$ and the vertex $u_{1} \in C_{n}$ such that $d\left(v_{i}, u_{1}\right)=$ diam $\left(\mathrm{G}^{\prime}\right)$. By Observation 3.1, the forcing non-split geodetic number $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

If n is odd in $C_{n}=G$, then the non-split geodetic set is $S=\left\{v_{i}, u_{1}, u_{j}\right\}$ where $v_{i} \in G^{\prime}$ are pendant vertices and u_{1}, u_{j} are any two adjacent vertices such that $d\left(v_{i}, u_{1}\right)=d\left(v_{i}, u_{j}\right)$. By Observation 3.1, the forcing non-split geodetic number $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{G}^{\prime}\right)=0$.

Theorem 3.9. The forcing non-split geodetic number of join of two graphs $P_{n_{1}}$ and $P_{n_{2}}$ where $n_{1}, n_{2} \geq 3, n_{2} \geq n_{1}$ is

$$
f_{n s}\left(P_{n_{1}}+P_{n_{2}}\right)=\left\{\begin{array}{lr}
1 & \text { for } n_{1}=n_{2} \text { or } n_{1} \text { is even } \\
0 & \text { otherwise. }
\end{array}\right.
$$

Proof. Consider $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}_{1}}\right\}$ and $U=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}_{2}}\right\}$ are the two vertex sets of a path $P_{n_{1}}$ and $P_{n_{2}}$ respectively. The join of these two graphs is $G=\left(P_{n_{1}}+P_{n_{2}}\right)$ with the vertex set $W=V \cup U$ with $n_{1}, n_{2} \geq 3$.

Case 1: If $n_{1}=n_{2}$ and n_{1} is odd, then there exists only two non-split geodetic sets which is minimum in a connected graph $G=\left(P_{n_{1}}+P_{n_{2}}\right)$ from two vertex sets V and U. These two non-split geodetic sets with different vertices of cardinality $\left\lceil\frac{n_{1}}{2}\right\rceil$. By Observation 3.1, the forcing non-split geodetic number $f_{n s}(G)=1$. If $n_{1} \leq n_{2}$ and n_{1} is even two or more nonsplit geodetic sets of cardinality $\left\lceil\frac{n_{1}+1}{2}\right\rceil$ having different vertices. The internal vertex which is adjacent to the end points in $\mathrm{P}_{\mathrm{n}_{1}}$ belongs to exactly one minimum non-split geodetic set. By Observation 3.1, the forcing non-split geodetic number $\mathrm{f}_{\mathrm{ns}}(\mathrm{G})=1$.

Case 2: If $n_{1}<n_{2}$ and n_{1} is not an even. Then the graph G has only one non-split geodetic set. By Observation 3.1, $\mathrm{f}_{\mathrm{ns}}(\mathrm{G})=0$.

Theorem 3.10. The forcing non-split geodetic number of corona of two graphs $P_{n_{1}}$ and $P_{n_{2}}$ with $n_{2} \geq n_{1}, n_{2} \geq 3$ is

$$
\mathrm{f}_{\mathrm{ns}}\left(\mathrm{P}_{\mathrm{n}_{1}} \circ \mathrm{P}_{\mathrm{n}_{2}}\right)= \begin{cases}0 & \text { for } \mathrm{n}_{2} \text { is odd } \\ \mathrm{n}_{1} & \text { otherwise }\end{cases}
$$

Proof. Consider $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}_{1}}\right\}$ and $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}_{2}}\right\}$ are the two vertex sets of $P_{n_{1}}$ and $P_{n_{2}}$ respectively. The corona of these two paths is $G=\left(P_{n_{1}} \circ P_{n_{2}}\right)$ having $n_{1}+n_{1} n_{2}$ vertices formed by taking one copy of $\mathrm{P}_{\mathrm{n}_{1}},|\mathrm{~V}|=\mathrm{n}_{1}$ copies of $\mathrm{P}_{\mathrm{n}_{2}}$ and joining $\mathrm{i}^{\text {th }}$ vertex of $P_{n_{1}}$ with each vertex in the $i^{\text {th }}$ copy of $P_{n_{2}}$.

Case 1: If n_{2} is odd, then the graph $G=\left(P_{n_{1}} \circ P_{n_{2}}\right)$ has unique non-split geodetic set X having $\mathrm{n}_{1}\left\lceil\frac{\mathrm{n}_{2}}{2}\right\rceil$ vertices. By Observation 3.1, $\mathrm{f}_{\mathrm{ns}}(\mathrm{G})=0$.
Case 2: If n_{2} is not an odd, then the graph $G=\left(P_{n_{1}} \circ P_{n_{2}}\right)$ contains $\left(\frac{n_{2}}{2}\right)^{n_{1}}$ number of nonsplit geodetic sets of cardinality $n_{1}\left(\frac{n_{2}}{2}+1\right)$ All vertices of each minimum non-split geodetic set belongs to two or more minimum non-split geodetic sets so $\mathrm{f}_{\mathrm{ns}}(\mathrm{G}) \geq 2$. Any internal vertex which is adjacent to the end points of $\mathrm{P}_{\mathrm{n}_{2}}$ in each $|\mathrm{V}|=\mathrm{n}_{1}$ copy of G form the unique subset in minimum non-split geodetic sets $\mathrm{S}_{\mathrm{i}} 1 \leq \mathrm{i} \leq\left\{\left(\frac{\mathrm{n}_{2}}{2}\right)^{\mathrm{n}_{1}}\right\}$. The cardinality of this subset is n_{1}. Also, any subset T of S_{i} with $|\mathrm{T}|<\left|\mathrm{S}_{\mathrm{i}}\right|$ is not a forcing subset of non-split geodetic sets $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq\left\{\left(\frac{\mathrm{n}_{2}}{2}\right)^{\mathrm{n}_{1}}\right\}$. Therefore $\mathrm{f}_{\mathrm{ns}}\left(\mathrm{S}_{\mathrm{i}}\right)=\mathrm{n}_{1}$. Thus $\mathrm{f}_{\mathrm{ns}}(\mathrm{G})=\mathrm{n}_{1}$.

Theorem 3.11. The forcing non-split geodetic number in cartesian product of two graphs $\mathrm{P}_{\mathrm{n}_{1}}$ and $\mathrm{P}_{\mathrm{n}_{2}}$ with $\mathrm{n}_{1}, \mathrm{n}_{2} \geq 2$ is

$$
\mathrm{f}_{\mathrm{ns}}\left(\mathrm{P}_{\mathrm{n}_{1}} \times \mathrm{P}_{\mathrm{n}_{2}}\right)=\left\{\begin{array}{cc}
3 & \text { for } \mathrm{n}_{1}=\mathrm{n}_{2}=2 \\
1 & \text { otherwise }
\end{array}\right.
$$

Proof. Consider $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}_{1}}\right\}$ and $\mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}_{2}}\right\}$ are the two vertex sets of $P_{n_{1}}$ and $P_{n_{2}}$ respectively. Let $\left(P_{n_{1}} \times P_{n_{2}}\right)=G$ be a cartesian product of two paths $P_{n_{1}}$ and $\mathrm{P}_{\mathrm{n}_{2}}$.

Case 1: If $\mathrm{n}_{1}=\mathrm{n}_{2}=2$, then the graph $\left(\mathrm{P}_{\mathrm{n}_{1}} \times \mathrm{P}_{\mathrm{n}_{2}}\right)=\mathrm{G}$ is a cycle C_{4}. By Theorem 3.3, $\mathrm{f}_{\mathrm{ns}}(\mathrm{G})=3$.

Case 2: If $\mathrm{n}_{1}=\mathrm{n}_{2} \neq 2$, then $\mathrm{S}_{1}=\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{v}_{\mathrm{n}_{1}}, \mathrm{w}_{\mathrm{n}_{2}}\right)\right\}$ and $\mathrm{S}_{2}=\left\{\left(\mathrm{v}_{\mathrm{n}_{1}}, \mathrm{w}_{1}\right),\left(\mathrm{v}_{1}, \mathrm{w}_{\mathrm{n}_{2}}\right)\right\}$ are the only two non-split geodetic sets with different vertices. Thus $f_{n s}\left(S_{i}\right)=1$ where $i=1,2$. Therefore $\mathrm{f}_{\mathrm{ns}}(\mathrm{G})=1$.

4. Conclusion

In this paper we studied the forcing split and forcing non-split geodetic number of a graph and obtained some results on the join, corona and cartesian product of two graphs. Further studied the results on adding a leaf vertex to a cycle C_{n}.

References

[1] Buckley F. and Harary F., Distance in Graphs, Addison-Wesley, Redwood city, CA, (1990).
[2] Chartrand G., Harary F. and Zhang P., On the geodetic number of a graph, Networks, 39, 1-6, (2002).
[3] Chartrand G. and Zhang P., The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19, 45-58, (1999).
[4] Harary F., Graph Theory, Addison-Wesley, (1969).
[5] Tejaswini K M, Venkanagouda M Goudar, Nonsplit Geodetic Number of a Graph, International J.Math. Combin. Vol.2, 109-120, (2016).
[6] Venkanagouda M.Goudar, Ashalatha.K.S, Venkatesha, Split Geodetic Number of a Graph, Advances and Applications in Discrete Mathematics.vol.13, no.1, 9-22(2014).

