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Abstract: - Futuristic object recognition grids are 

based on regional focusing algorithms to generate 

hypotheses about the position of objects. Advances such 

as Fast R-C.N.N [5] and SPPnet [7] has shortened the 

execution times of these recognition networks and show 

that region focus computation is an obstacle. In this 

research, a Region Proposal Network (RPN) is proposed 

that has full convolution functionality with the 

recognition grid and permits quasi-free region 

applications. The RPN is a completely convolved grid 

that simultaneously forecasts object boundaries and 

objectivity values at each location. The RPN continually 

trains to create best-in-class regional proposals utilized 

by Fast R-C.N.N used for recognition. A simple 

alternative enhancement allows us to train Fast R-C.N.N 

and RPN to exhibit complicated qualities. The 

recognition engine ran at 5.0 fps (counting all phases) on 

the GPU for the very deep model VGG-16 [19], PASCAL 

VOC 2007 (73.19% mAP) and 2012 (70.41% mAP) at 

300 frame rate. 

Keywords – Machine Learning, Fast R-CNN, Region 

Proposed Networks, grids, Recognition 

1. INTRODUCTION 

The advancement of region-based approaches like the one 

proposed in [22] and the development of region-based 

complex neural networks, namely R-C.N.N [6], have been 

the guiding force behind current progress in the field of 

object recognition. While building region-based 

convolutional neural networks was computationally 

expensive [6], the sharing of convolutions among proposals 

led to a significant reduction in costs [7, 5]. The up-to-date 

version of fast R-C.N.N [5] accomplishes near real-time 

performance by leveraging very deep grids [19] and 

circumventing the computational overhead incurred by local 

proposals. Thus, in modern recognition systems, the 

proposal stage is no longer a bottleneck for computation. 

 

The methods for suggesting regions are typically founded on 

inexpensive characteristics and logical reasoning processes. 

Among these methods, Selective Search (SS) [22] is widely 

utilized and works by merging super pixels in a greedy 

manner based on low-level features. However, in CPU 

implementations, Selective Search is significantly slower, 

taking about 2 seconds per frame, compared to efficient 

recognition networks [5]. On the other hand, Edge Box [24], 

which takes approximately 0.2 seconds per frame, currently 

delivers the best balance between value and speed for region 

suggestion. Nevertheless, the time taken for region 

suggestion is still as much as that required by the 

recognition network. 

 

The speedy region-based C.N.Ns commonly utilize 

Graphical Processing Units, whereas the region suggestion 

approaches utilized in our research rely on CPUs. Hence, 

comparing the runtimes of these methods would be unjust. 

One way to enhance the efficiency of our proposed 

approach is by adapting it for GPUs, which can be a viable 

technical solution. However, this re-implementation 

overlooks the computational trade-offs that are significant 

for downstream sensor networks. 

 

In this article, we demonstrate that the modified deep mesh 

algorithm offers a sophisticated and effective approach to 

computing the reconnaissance network calculation, which 

was previously challenging to accomplish. To achieve this, 

we present a novel RPN that utilizes convolutional levels 

and advanced object recognition grids [7, 5]. This approach 

evenly distributes the computational load during testing, 

resulting in a negligible cost (e.g., only 10.0 ms per frame) 

for computing the proposal. 

 

Our remark is that regions suggestions can also be generated 

by Convolutional Attribute (Conv) maps and implemented 

in region-based. In addition to these conversion functions, 

we add two more conversion layers to create the RPN. One 

encodes each location in the conv-map into a brief feature 

vector (e.g.., 256 - d) and the second outputs the object at 

every location in the conv-map. Scores and regression limit 

for k-region nominations on that location associated with 

different scope and aspect ratios (k = 9.0 is a standard 

value). 

 

We can use a Fully Convolutional Network (FCN) type to 

train end-to-end for producing recognition cues, and 

recommend integrating RPN into R-C.N.N networks for fast 

object recognition [5]. For this purpose, we suggest a simple 

training structure that alternates between region proposal 

task matching and object recognition matching, while 

keeping the proposal unchanged. This approach quickly 
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leads to the creation of an integrated network with shared 

conversion functionality for both processes. 

 

Comparing to the PASCAL repository for VOC recognition 

[4], the RPN integrated with fast R-C.N.N achieves superior 

recognition accuracy than the selective search's robust base 

in combination with fast R-C.N.N. On the other hand, this 

procedure removes almost all the computational load of SS 

during testing. The execution time of the proposal is only 

10ms. Using the exclusive very deep model from [19], the 

recognition method maintains a 5.0 fps (consisting of all 

steps) on the GPU, making it a real-world object recognition 

system in terms of swiftness and precision. (73).      

 

2. RELATED WORK 

 

Several recent studies have proposed methods to find 

specific or class-independent bounding boxes using deep 

networks [21, 18, 3, 20]. A fully associated (fc) layer is built 

by the OverFeat technique [18] to predict frame coordinates 

for localization tasks performed by a sole object. A conv 

layer is then obtained from a fc layer through conversion to 

recognize various objects of a particular class. Multi-box 

approach is used for object recognition in deep neural 

networks by producing region suggestions with a final fully 

connected layer that predicts multiple boxes at once, which 

can number up to 800. This process is often implemented by 

the R-C.N.N system. The proposed grid is applied to a sole 

image or to several large image sections (e.g.., 225,225) 

[20]. MultiBox and OverFeat are discussed in increased 

detail further in the context of methods. 

 

The calculation of curved joints [18, 7, 2, 5] attracts more 

and more attention for effective and precise visual 

identification. The OverFeat article [18] calculates 

conversion attributes from image for organization, locating 

and recognition. Size compatible clustering (SPP) [7] on 

collective conversion characteristic maps has been expected 

for effective region-based object recognition [7, 16] and 

semantic distribution [2]. End-to-end indicator training is 

empowered by Fast R-C.N.N [5] for common conversion 

functions and impresses with its precision and swiftness 

[25][26][27]. 

 

3. PROPOSED METHODOLOGY 

 

3.1 REGION PROPOSED NETWORKS 

 

The purpose of the RPN is to produce object proposals 

along with their respective objectness scores from an input 

image, irrespective of its dimensions. To achieve fast object 

recognition with the R-C.N.N network [5], we suppose that 

both networks use a mutual set of convolutional layers. 

During our researches, we evaluated the shareability of four 

convolutional layers in the Z.F. model by Zeiler and Fergus 

[23] and twelve convolutional layers in the VGG model by 

Simonyan and Zisserman [19] [28]. 

 

To produce proposals, we overlay a minor grid on the 

product of the last shared convolutional layer and leverage a 

fully connected network to predict proposal scores. This is 

accomplished by connecting a spatial window of size m x m 

from the convolutional feature map of the input to the 

network [29]. 

 

 
 

Figure 1 

Leftward: Regional Proposal Network (RPN) 

Rightward: Examples of recognitions using RPN statements 

in the PASCAL VOC test 2007 

 

The process involves associating each sliding window with 

a low-dimensional vector, which has a dimension of 256 for 

ZF and 512 for VGG. These vectors are then inserted into 

two fully connected layers: a box classification layer 

(referred to as ".cls") and a d box regression layer (referred 

to as ".reg"). The effective field of view of the input picture 

is quite huge, measuring 173 pixels and 229 pixels for IF 

and VGG, respectively, when n = 3.0. This mini-grid, which 

functions like a S.W (Sliding Window), spreads the fully 

associated layers across all spatial positions, as depicted in 

Figure 1 (on the left). To achieve this, a Conv m X m layer 

is utilized, alongside two 1.0 X 1.0 Conv sibling layers (for. 

cls and .reg, correspondingly). The output of the m X m-

conv layer is passed through a ReLU[15] activation function 

[30]. 

 

Transformation invariant hook 

 

The RPN and MultiBox techniques are two methods for 

generating proposals in object detection. The RPN predicts 

k proposed regions at every position of the sliding window, 

resulting in 4k outputs from the reg layer in which the 

coordinates of k-boxes are encoded. The cls layer generates 

2000 probabilities for each statement to estimate the 

object/non-object probability. Hooks are used to restrict the 

proposals with respect to k reference boxes, and with 4 

scales and 4 aspect ratios, each sliding window position has 

k=16 hooks. The RPN is translation invariant for both the 

hooks and the function that computes the hints for the 

hooks, which is a significant advantage [31]. 

 

In comparison, the MultiBox technique [20] generates 800 

non-translatable hooks using k-means. As the declaration 

must be converted when translating an object to a picture, 

the MultiBox hook necessitates a [[(4) + (1)] × 800] 

dimensional resultant layer, whereas the RPN requires only 

one [(4 + 2) × 9] dimensional resultant layer. This results in 

fewer parameters and reduces the risk of over-fitting small 

databases similar to PASCAL VOC [32]. 

 

A loss function for training sample suggestions 

 

To train the Regional Proposal Network (RPN), hooks are 

assigned binary class labels indicating whether they 
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correspond to an object or not. Positive labels are allocated 

to two sorts of hooks: those with high intersection with 

ground truth boxes and the hook with the highest 

intersection for each ground truth box. If an hook has low 

intersection with all ground truth boxes (IoU score < 0.3), it 

is assigned a negative label. Hooks that do not fall into the 

positive or negative categories are ignored during training 

[33][34]. 

 

We then minimize the multitasking loss objective function 

as in Fast R-C.N.N [5], which includes a regression loss and 

a classification loss as follows [35][36]. 

 

 

In the Region Proposal Network (RPN), the hook index i 

and its corresponding predicted probability pi play an 

important role. A positive hook is assigned a ground truth 

label pi* of 1, while a negative hook has a label of 0. The 

predicted bounding box coordinates are represented by 

vector ti, and ti* corresponds to the coordinates for the 

positive hook. The classification loss, Lcls, uses the log loss 

function. The regression loss, Lreg(ti; ti*), is computed 

using the robust loss function R defined in [5] for the 

parameterized bounding box coordinates. The outcomes of 

the classification and regression layers, {pi} and {ti}, are 

regularized by Ncls and Nreg, respectively, along with a 

balance parameter λ.3.For the regression, we assume a four-

coordinate parametrization according to [6] [37][38]. 

 

The prediction, hook, and ground truth values of a box are 

calculated using the center coordinates (x, y), width (w), and 

height (h) of the box [39][40]. 

 

While previous methods for bounding box regression relied 

on feature maps [7, 5] and clustered features of regions of 

varying sizes, our approach differs in that it utilizes features 

with the identical spatial size (m x m) in the charcteristic 

map for regression. A set of k bounding box regressors is 

trained, with each regressor accounting for different sizes 

and aspect ratios. Unlike previous methods, these regressors 

have unique weights, enabling the prediction of boxes of 

varying sizes even when feature size and scaling are 

constant [41]. 

 

Improvement 

 

The fully convolutional mesh implementation can be used to 

train the RPN end-to-end through stochastic gradient 

descent (SGD) and backpropagation in a passive voice 

construction [12]. In line with the image-centric sampling 

approach proposed in [5], each mini-stack consists of 

positive and negative hooks randomly selected from an 

image. Instead of optimizing the loss function for all hooks, 

a subset of 256 hooks is randomly chosen from the picture 

to compute the ministack loss function. The negative and 

positive samples have a maximum ratio of 1:1, and if an 

image has less than 128 positive samples, the ministack is 

complemented with negatives [42][43]. 

 

New layers are initialized by drawing weights randomly 

from a Gaussian distribution with a S.D. [Standard 

Deviation] of 0.009. The common conversion layers and all 

other layers are prepared using a model trained for 

ImageNet categorization [17], similar to the standard 

method [6]. To conserve memory, layers from network IF 

and conv3 1 or higher are placed on the VGG network [5]. 

The PASCAL dataset is used for the first 60,000 mini-

batches with a learning degree of 0.001, followed by a 

learning degree of 0.0001 for the next 20,000 mini-batches 

[44]. 

 

 

 

 

Sharing of convolution functions for area suggestions 

and object recognition 

 

Our previous efforts have been directed towards training a 

network that generates region proposals without considering 

C.N.Ns for object recognition based on those proposals. 

However, to use these proposals, it is essential to 

incorporate C.N.Ns. In our approach, we utilize Fast R-

C.N.N [5] as our recognition network. 

 

In order to accomplish this goal, it is necessary to acquire 

knowledge of the transformation layers that are common to 

both the RPN and Fast R-CNN networks, which have 

undergone separate training. However, integrating these two 

networks into a single entity and optimizing it using 

backpropagation is a complex undertaking, as the process of 

training Fast R-CNN involves utilizing predetermined object 

proposals, and it is unclear whether modifying the proposal 

mechanism would lead to successful convergence of the 

Fast R-CNN training. While joint optimization is a 

promising topic for future research, we have devised a 

practical four-stage training algorithm that enables us to 

learn joint features by alternating between optimizing RPN 

and Fast R-C.N.N. 

 

The Region Proposal Network (RPN) is trained using a two-

step process. Initially, the RPN is initialized with a pre-

trained ImageNet model and then fine-tuned to improve its 

performance for the region proposal task. In the second step, 

the RPN generates proposals which are then used to train a 

Fast R-C.N.N detection network. The ImageNet model, 

which has been pre-trained, is used to initialize the detection 

network, but it doesn't share any layers with the RPN at this 

stage. In the third step, only the RPN-specific layers are 

optimized using the detection network while keeping the 

shared layers between the two networks fixed. Once the 

RPN is optimized, the shared layers are jointly fine-tuned, 

and the Fast R-C.N.N fully connected layer is optimized. 

 

Implementation Details 

 

To conduct our experiments, we trained and evaluated our 

proposed object recognition and region networks on images 

𝐿  𝑝𝑖 ,  𝑡𝑖  =
1

𝑁𝑐𝑙𝑠
∑𝑖  𝐿𝑐𝑙𝑠 𝑝𝑖 , 𝑝𝑖

∗ + 𝜆
1

𝑁reg 
∑𝑖  𝑝𝑖

∗𝐿reg  𝑡𝑖 , 𝑡𝑖
∗ . 
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of a fixed scale of [7, 5]. To ensure consistency, we resized 

the pictures so that the shorter side was set to s = 600 pixels. 

Although using multiple scales to extract features can 

enhance accuracy, we found that this approach resulted in a 

tradeoff between speed and accuracy that was not ideal. It is 

important to mention that in the case of the ZF and VGG 

neural network models, the cumulative stride value at the 

concluding convolutional layer is 16 pixels when applied to 

a scaled image, while for a standard PASCAL image with a 

resolution of approximately 500x375 pixels, the stride value 

is approximately 10 pixels. While larger strides can still 

produce good results, smaller strides can improve accuracy. 

 

Our proposed algorithm employs hooks with three scales 

that have frame areas of 5121, 2561, and 1281 pixels and 

three aspect ratios of 2:1, 1:2, and 1:1. Upon analysis, we 

observed that our algorithm has the ability to leverage hooks 

with larger frames than the underlying receptive field to 

generate predictions for larger proposals, even if the object's 

centre is the only visible portion. This is due to the fact that 

such predictions are not deemed impossible, we can still 

roughly estimate the extent of the object. By using this 

design, our solution avoids the need for multiscale features 

or multiscale sliding windows to predict large regions, 

resulting in significant runtime savings. As shown in Figure 

1 (right), Our approach achieves exceptional results on 

various scales and aspect ratios. Furthermore, we have 

included a table presenting the mean proposal size for each 

hook acquired through training with the ZF mesh at a 

resolution of 600 pixels. 

 

 
 

It is important to handle hook boxes that extend beyond the 

image boundaries with caution to avoid stalling during 

training. During training, such hooks should be ignored to 

prevent them from contributing to the error term and 

hindering convergence. In a typical 1000x600 image, there 

are approximately 20,000 hooks, of which only about 6,000 

are used for training after excluding transboundary outliers. 

During testing, The complete convolutional Region 

Proposal Network (RPN) is utilized to generate proposal 

boxes that cover the entire image and are clipped at the 

edges of the image. 

 

In order to handle significantly duplicated Region Proposal 

Network (RPN) proposals, the technique of non-maximum 

suppression (NMS) is utilized, where the classification score 

is considered. By setting the NMS IoU threshold at 0.7, 

about 2,000 potential regions are identified per image, 

leading to a reduction in proposal numbers without any 

adverse impact on the ultimate recognition accuracy. The 

recognition process involves the selection of the highest 

ranked N candidate regions, and a Fast R-CNN is 

subsequently trained, utilizing 2,000 RPN proposals, with 

different numbers of proposals assessed during the testing 

phase. 

 

4. EXPERIMENTS 

 

To evaluate the efficiency of our suggested approach, we 

carried out experiments on the extensively utilized 

recognition benchmark of 2007 PASCAL VOC in our study 

[4]. This dataset comprises of over 10,000 images divided 

into training and test sets, and features more than 21 object 

categories. Furthermore, to evaluate the effectiveness of our 

approach, we conducted experiments on the widely-used 

2012 PASCAL VOC benchmark and presented the results 

for several baseline models. 

 

To conduct our experiments, we employed two pre-trained 

models trained on the ImageNet dataset, namely Z.F net 

[23] and VGG-165 [19]. The Z.F net model comprises six 

convolutional layers and four fully connected layers, while 

the VGG-165 model consists of 13 convolutional layers and 

three fully connected layers. 

 

We assessed the efficacy of our approach mainly by 

utilizing the mean average precision (mAP) metric, which is 

commonly employed to evaluate object recognition systems. 

Our findings indicate the efficacy of the proposed method 

and offer valuable perspectives into the performance of 

various models and architectures on the PASCAL VOC 

benchmark. 

  

Table 1: The performance evaluation of Fast R-CNN and     

VGG16 

 
The results were carried out on the PASCAL VOC 2007 

assessment set through recognition experiments. The 

training data comprised two sets, namely "07" and "07+12", 

referring to VOC 2007 train.val and the combined VOC 

2007 train.val and VOC 2012 train.val datasets, 

respectively. The train time proposed by RPN using Fast R-

C.N.N was 2k. Furthermore, the symbol "†" indicates that 

the value specified was mentioned in [5], and according to 

the benchmark provided in this article, the number is higher, 

with an average of 68.01 ± 0.32 obtained in six run [45][46]. 

 

Recognition accuracy and operating time of the VGG-

16. The results of VGG-16 for proposal and recognition are 

presented in Table 1. When VGG is combined with RPN, 

the Fast R-CNN achieves a non-shared function accuracy of 

68.49%, which is comparatively superior to the SS baseline. 

According to the table, the higher precision of the 

assumption generated by VGG and RPN compared to SS 

can be attributed to the rigorous training of RPN and the 

improved networking. The collective feature modification 

resulted in a superior outcome of 69.89% compared to SS's 

baseline, even with almost free offerings. To enhance the 

performance of the RPN and recognition grid, we conducted 

additional training on the junction dataset extracted from the 

combined train.val sets of PASCAL VOC 2007 and 2012, 

following [5]. PAM is 73.18%. According to the results 

presented in Table 3 of the PASCAL VOC 2012 trial set, 

our technique demonstrates a mean average precision 

(mAP) of 71.02%. This performance metric was obtained 
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after training our approach on the unification set, which 

comprises the VOC 2007 train, validation, and test sets, 

along with the VOC 2012 train and validation sets. This 

performance surpasses that achieved by the method 

described in reference [5] [47][48]. 

 

IoU callback parsing. The next step involves calculating 

the recall of propositions across various IoU fractions in 

comparison to the ground truth cases. However, it is 

important to keep in mind that the Recall-to-IoU metric is 

not a precise measure of recognition accuracy, as its 

correlation with recognition precision is limited and 

approximate [8, 7, 1]. Using this metric to identify the 

proposal technique is more accurate than calculating it. 

 

 

 
 

 

 

 

One-Stage Recognition vs. Two-Stage Proposal + 

Recognition.  

 

The method proposed in the OverFeat paper [18] utilizes 

regressors and classifiers to detect objects in input feature 

maps by sliding windows. In contrast, our approach consists 

of a two-stage cascade that involves separate classification 

and object-specific recognition. While OverFeat uses a 

scaled pyramid with aspect ratio sliders to simultaneously 

determine the location and category of objects, our RPN 

method employs square sliders (3x3) to suggest regions with 

different aspect ratios and scales. However, although both 

methods use sliding windows, our RPN + Fast R-C.N.N 

cascade is more comprehensive, as it involves a second 

stage where the suggested regions are refined to improve 

object detection. In this step, regional qualities are 

adaptively clustered from suggested regions, leading to 

more accurate object recognition. To compare single-stage 

and two-stage systems, we simulated the OverFeat system 

using the single-stage Fast R-C.N.N, eliminating potential 

differences in implementation details. Our results indicate 

that the single-stage system produces a mean average 

precision (mAP) of 53.9%, which is 4.8% lower than the 

two-stage system's 58.7% achieved with the ZF model. 

These findings demonstrate the effectiveness of using a 

cascade of region proposals and object recognition to 

improve object detection, as previous studies have also 

reported. Additionally, the one-step system is slower due to 

the higher number of suggestions that need to be processed. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

The Regional Proposal Network (RPN) was developed by us 

as a means of generating regional proposals in a highly 

efficient and precise manner. By sharing its complex 

function with the downstream recognition grids, by making 

the region suggestion step highly efficient, it is now possible 

for a deep learning-powered object recognition system to 

operate at an impressive speed ranging between 5 to 17 

frames per second, without incurring significant 

computational costs. Furthermore, the implementation of the 

RPN improves the quality of the region proposals, the 

implementation resulted in a notable improvement in the 

precision of detecting objects. In summary, the RPN is a 

valuable tool that enables fast and accurate object 

recognition through the efficient generation of high-quality 

region proposals. 

 

Real-time object detection is a crucial technology that offers 

numerous benefits and promising applications in diverse 

fields. A research paper on this topic can emphasize several 

advantages, such as enhanced safety and increased 

efficiency. For example, real-time object detection can 

improve safety by identifying and tracking objects in real-

time, which is particularly relevant in the automotive 

industry to prevent collisions between vehicles. 

Additionally, object detection can enhance efficiency by 

detecting defects in real-time during manufacturing 

processes, leading to higher product quality and less waste. 

Overall, real-time object detection has the potential to 

revolutionize multiple industries, making it a technology 

worth exploring further. 

 

 

 

 

References 

 
[1] N. Chavali, H. Agrawal, A. Mahendru, and D. Batra. 

Object-Proposal Evaluation Protocol is ’Gameable’. arXiv: 

1505.05836, 2015. 

[2] J. Dai, K. He, and J. Sun. Convolutional feature masking for 

joint object and stuff segmentation. In CVPR, 2015. 

[3] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. 

Scalable object recognition using deep neural networks. In 

CVPR, 2014. 

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, 

and A. Zisserman. The PASCAL Visual Object Classes 

Challenge 2007 (VOC2007) Results, 2007. 

[5] R. Girshick. Fast R-C.N.N. arXiv:1504.08083, 2015. 

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich 

feature hierarchies for accurate object recognition and 

semantic segmentation. In CVPR, 2014. 

[7] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid 

pooling in deep convolutional networks for visual 

recognition. In ECCV. 2014. 

[8] J. Hosang, R. Benenson, P. Doll´ar, and B. Schiele. What 

makes for effective recognition proposals? 

arXiv:1502.05082, 2015. 

[9] J. Hosang, R. Benenson, and B. Schiele. How good are 

recognition proposals, really? In BMVC, 2014. 

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. 

Girshick, S. Guadarrama, and T. Darrell. Caffe: 

Convolutional architecture for fast feature embedding. 

arXiv:1408.5093, 2014. 

[11]  A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet 

classification with deep convolutional neural networks. 

In NIPS, 2012. 



Faster R-C.N.N: Towards Real-Time Oject Recognition 

 

Section: Research Paper 

 

6341 

    

Eur. Chem. Bull. 2023, 12(Special Issue 4),6336-6342 

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. 

Howard,W. Hubbard, and L. D. Jackel. Backpropagation 

applied to handwritten zip code recognition. Neural 

computation, 1989. 

[13] K. Lenc and A. Vedaldi. R-C.N.N minus R. 

arXiv:1506.06981, 2015. 

[14] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional 

networks for semantic segmentation. In CVPR, 2015. 

[15] V. Nair and G. E. Hinton. Rectified linear units improve 

restricted boltzmann machines. In ICML, 2010. 

[16] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun. Object 

recognition networks on convolutional feature maps. 

arXiv:1504.06066, 2015. 

[17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. 

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. 

Berg, and L. Fei-Fei. ImageNet Large Scale Visual 

Recognition Challenge. arXiv:1409.0575, 2014. 

[18] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, 

and Y. LeCun. Overfeat: Integrated recognition, localization 

and recognition using convolutional networks. In ICLR, 

2014. 

[19] K. Simonyan and A. Zisserman. Very deep convolutional 

networks for large-scale image recognition. In ICLR, 2015. 

[20] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov. Scalable, 

high-quality object recognition. arXiv:1412.1441v2, 2015. 

[21] C. Szegedy, A. Toshev, and D. Erhan. Deep neural 

networks for object recognition. In NIPS, 2013. 

[22] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A.W. 

Smeulders. Selective search for object recognition. IJCV, 

2013. 

[23] M. D. Zeiler and R. Fergus. Visualizing and understanding 

convolutional neural networks. In ECCV, 2014. 

[24] C. L. Zitnick and P. Doll´ar. Edge boxes: Locating object 

proposals from edges. In ECCV, 2014. 
 

 

[25] Pramanik, Sabyasachi, et al. "A novel 
approach using steganography and 
cryptography in business 
intelligence." Integration Challenges for 
Analytics, Business Intelligence, and Data 
Mining. IGI Global, 2021. 192-217. 
[26] Narayan, Vipul, et al. "FuzzyNet: Medical 
Image Classification based on GLCM Texture 
Feature." 2023 International Conference on 
Artificial Intelligence and Smart Communication 
(AISC). IEEE, 2023. 
[27] Narayan, Vipul, et al. "Deep Learning 
Approaches for Human Gait Recognition: A 
Review." 2023 International Conference on 
Artificial Intelligence and Smart Communication 
(AISC). IEEE, 2023. 
[28] Mall, Pawan Kumar, et al. "FuzzyNet-Based 
Modelling Smart Traffic System in Smart Cities 
Using Deep Learning Models." Handbook of 
Research on Data-Driven Mathematical 
Modeling in Smart Cities. IGI Global, 2023. 76-95. 
[29] Mall, Pawan Kumar, et al. "Early Warning 
Signs Of Parkinson’s Disease Prediction Using 
Machine Learning Technique." Journal of 
Pharmaceutical Negative Results (2022): 4784-
4792. 
[30] Srivastava, Swapnita, et al. "An Ensemble 
Learning Approach For Chronic Kidney Disease 

Classification." Journal of Pharmaceutical 
Negative Results (2022): 2401-2409. 
[31] Sawhney, Rahul, et al. "A comparative 
assessment of artificial intelligence models used 
for early prediction and evaluation of chronic 
kidney disease." Decision Analytics Journal 6 
(2023): 100169. 
[32]Paricherla, Mutyalaiah, et al. "Towards 
Development of Machine Learning Framework 
for Enhancing Security in Internet of 
Things." Security and Communication 
Networks 2022 (2022). 
[33]Tyagi, Lalit Kumar, et al. "Energy Efficient 
Routing Protocol Using Next Cluster Head 
Selection Process In Two-Level Hierarchy For 
Wireless Sensor Network." Journal of 
Pharmaceutical Negative Results (2023): 665-676. 
[34]Narayan, Vipul, A. K. Daniel, and Pooja 
Chaturvedi. "E-FEERP: Enhanced Fuzzy based 
Energy Efficient Routing Protocol for Wireless 
Sensor Network." Wireless Personal 
Communications (2023): 1-28. 
[35 NARAYAN, VIPUL, A. K. Daniel, and Pooja 
Chaturvedi. "FGWOA: An Efficient Heuristic for 
Cluster Head Selection in WSN using Fuzzy 
based Grey Wolf Optimization Algorithm." 
(2022). 
[36] Faiz, Mohammad, et al. "IMPROVED 
HOMOMORPHIC ENCRYPTION FOR 
SECURITY IN CLOUD USING PARTICLE 
SWARM OPTIMIZATION." Journal of 
Pharmaceutical Negative Results (2022): 4761-
4771. 
[37] Babu, S. Z., et al. "Abridgement of Business 
Data Drilling with the Natural Selection and 
Recasting Breakthrough: Drill Data With 
GA." Authors Profile Tarun Danti Dey is doing 
Bachelor in LAW from Chittagong Independent 
University, Bangladesh. Her research discipline 
is business intelligence, LAW, and 
Computational thinking. She has done 3 (2020). 
[38] Narayan, Vipul, et al. "Enhance-Net: An 
Approach to Boost the Performance of Deep 
Learning Model Based on Real-Time Medical 
Images." Journal of Sensors 2023 (2023). 
[39] Ojha, Rudra Pratap, et al. "Global stability of 
dynamic model for worm propagation in 
wireless sensor network." Proceeding of 
International Conference on Intelligent 
Communication, Control and Devices: ICICCD 
2016. Springer Singapore, 2017. 
[40] Shashank, Awasthi, et al. "Stability analysis 
of SITR model and non linear dynamics in 
wireless sensor network." Indian Journal of 
Science and Technology 9.28 (2016). 
[41] Gupta, Sandeep, Arun Pratap Srivastava, 
and Shashank Awasthi. "Fast and effective 
searches of personal names in an international 
environment." Int J Innov Res Eng Manag 1 
(2014). 
[42]Awasthi, Shashank, Naresh Kumar, and 



Faster R-C.N.N: Towards Real-Time Oject Recognition 

 

Section: Research Paper 

 

6342 

    

Eur. Chem. Bull. 2023, 12(Special Issue 4),6336-6342 

Pramod Kumar Srivastava. "An epidemic model 
to analyze the dynamics of malware propagation 
in rechargeable wireless sensor 
network." Journal of Discrete Mathematical 
Sciences and Cryptography 24.5 (2021): 1529-
1543. 
[43]Tyagi, Neha, et al. "Data Science: Concern for 
Credit Card Scam with Artificial 
Intelligence." Cyber Security in Intelligent 
Computing and Communications. Singapore: 
Springer Singapore, 2022. 115-128. 
[44] Srivastava, Arun Pratap, et al. "Fingerprint 
recognition system using MATLAB." 2019 
International conference on automation, 
computational and technology management 
(ICACTM). IEEE, 2019. 
[45] Kumar, Neeraj, et al. "Parameter aware 
utility proportional fairness scheduling 
technique in a communication 
network." International Journal of Innovative 
Computing and Applications 12.2-3 (2021): 98-
107. 
[46] Awasthi, Shashank, et al. "A New 
Alzheimer's Disease Classification Technique 
from Brain MRI images." 2020 International 
Conference on Computation, Automation and 
Knowledge Management (ICCAKM). IEEE, 2020. 
[47] Awasthi, Shashank, et al. "Modified indel 
treatment for accurate Phylogenetic Tree 
construction." 2020 International Conference on 
Computation, Automation and Knowledge 
Management (ICCAKM). IEEE, 2020. 
[48] Mohseni, S., Yang, F., Pentyala, S., Du, M., 
Liu, Y., Lupfer, N., ... & Ragan, E. (2021, May). 
Machine learning explanations to prevent 
overtrust in fake news detection. In Proceedings 
of the International AAAI Conference on Web 
and Social Media (Vol. 15, pp. 421-431). 


