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Abstract 

Zinc electroplated mild steels have been used extensively in automotive, marine and 

petrochemical industries. However, their vulnerability to corrosion and structural failure over 

time has required the inclusion of metallic oxide to enhance the coating properties. This work 

examined the influence of time variation on the corrosion response and microstructure of       

Zn-MgO-Al2O3 electroplated mild steel. The corrosion properties of the coating were examined 

using the potentiodynamic polarization experiment in a three-electrode system, employing a 

3.5% wt. NaCl solution. The microstructure of the coated samples was examined using the 

Scanning Electron Microscope (SEM). The control (uncoated sample) exhibited the least 

corrosion resistance, with the corrosion rate (Cr) and corrosion current density (jocorr) of 20.707 

mm/year and 1782 μA/cm
2
, respectively. The steel coated with Zn-MgO30-Al2O3 (20 mins) 

exhibited the optimum corrosion resistance, with the Cr and jcorr of 1.0521 mm/year and 90.51 

μA/cm
2
, respectively. The foregoing indicated that the coating minimized the attack on the steel 

surface by the corrosive medium. The SEM images indicated that the coatings were well 

dispersed on the steel surface, exhibiting minimal cracks and pores, revealing that the coating 

constituents are compatible. The variation in the deposition time and mass concentration of 

MgO had a significant effect on corrosion resistance and the microstructure of the coatings. 

Hence, the coating could be employed for advanced applications such as automotive, marine, 

petrochemical and chemical storage. 
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1. Introduction 

Steel is one of the most mass-produced metals in existence [1-3].  Steels come in different 

grades [4, 5]. Mild steel is a grade of steel with low hardness properties and low ultimate 

tensile strength [6-8]. However, it is one of the world’s least expensive and readily available 

metals [9, 10]. The carbon content in a sample of mild steel determines its properties. The 

maximum carbon content of 0.25% and in most cases, varying percentages of sulphur, silicon, 

manganese and phosphorus e.t.c in trace amounts and iron in a large quantity are contained in 

mild steel [11, 12]. Mild steel is also quite malleable even when cold, unlike other types of steel 

[13, 14], and its low carbon content gives it some level of resistance to breakage [15, 16]. Iron, 

which is the major constituent of steel, is in its pure form soft and generally not useful as an 

engineering material. The principal method of strengthening and converting it into steel is by 

adding small amounts of carbon to enhance physicochemical properties [17, 18]. Steel is the 

most commonly employed metallic material in open-air structures and is used to make a wide 

range of equipment and metallic structures due to its low cost and ready availability [19-21]. 

The most important properties of steel are its great formability, durability, good yield strength 

and good thermal conductivity.  

 

However, for steel components exposed to the atmosphere and other harsh environments, it is 

critical to coat the steel for corrosion protection [22, 23]. It is estimated that annual loss and 

damage due to corrosion in the United Kingdom costs about £5000 million, and approximately 

one ton of steel is lost through corrosion every 90 seconds [24]. Ferrous-based alloys like steel 

are generally susceptible to corrosion and wear. Thus, limiting their use in marine, automotive 

and petrol chemical environments [25, 26]. To enhance the corrosion resistance of steel alloys, 

the use of zinc as sacrificial coatings in the electroplating of ferrous substrates has been well 

reported [27-29]. However, one of its major limitations is that it degrades with time as it 

exposes to the atmosphere due to corrosion [30-32]. Corrosion of steel is an electrochemical 

process, in which iron (Fe) is taken from steel, dissolved in the surrounding fluid, and deposited 

as a red-brown hydrated metal oxide in any environment [33, 34]. Hence, there is a need to 

further enhance the corrosion resistance of the alloys by the inclusion of alloying elements. 

Recent advances show that the electroplating characteristics of zinc can be modified by the 

addition of some alloying elements, utilizing surface engineering techniques [35-37].   
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Surface engineering has been classified as both a science and the art of improvement for 

surfaces of various materials [38-39]. The application of the surface coatings may be by 

electrochemical or electrolytic means usually for protective purposes and also for improving 

the appearance of the metal and also to improve mechanical characteristics and other required 

properties [40, 41]. The surface coatings can either be non-metallic or metallic coatings. In 

recent years, technological improvements have made protective metallic or non-metallic 

coatings one of the most commonly used systems of corrosion control [42, 43]. The intrinsic 

properties of these coatings make mild steel relevant for structural applications, automobile 

bodies and cans, especially after being subjected to treatment and protection by surface 

engineers. As is often the case, the coating materials are selected based on the desired 

properties. For instance, in this work, zinc is used because it has better corrosion resistance than 

steel. It has been employed for the galvanizing of steel [44, 45]. Galvanizing, a surface coating 

process uses zinc (Zn) as its major coating element to protect metals from corrosion. On the 

electrochemical series, zinc has a lower reduction potential (E
o
 = -0.76V) than Iron (E

o
 = -

0.44V), making zinc more easily oxidized than iron and thus more reactive [46-48]. Because 

zinc is more reactive, when exposed to the atmosphere, Zn reacts with oxygen to form ZnO 

[49, 50]. Aluminium oxide (Al2O3) also known as alumina is chemically inert and insoluble in 

water. It has a very high melting of 2072 °C [51, 52], indicating that it can aid the enhancement 

of corrosion and mechanical properties.  Magnesium oxide (MgO) powder has also been 

reportedly employed by several authors to enhance the corrosion of metals due to its ability to 

form a passivation layer, which prevents the ingression of corrosive ions into the active sites of 

the metal [53, 54]. Therefore, this research investigated the effect of time variation and 

concentration of MgO on the corrosion response and microstructure of Zn-MgO-Al2O3 coated 

mild steel. 

 

2. Experimental Procedures  

2.1 Materials 

The substrates used in this work were sectioned rectangular mild steel plates with a dimension 

of 40 mm × 40 mm × 2 mm, procured in Ogun state, Nigeria. Zinc anode of dimension           

80 mm × 60 mm × 20 mm, also procured in Ogun state, Nigeria, was also used in this study. 

The weight percentage of elements in the mild steel used is indicated in Table 1. The other co-

deposited materials such as MgO and Al2O3 were equally purchased in Ogun state in powdery 

form. 
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Table 1: Percentage composition of mild steel 

Element Mn C S Si P Ni Al Fe 

Composition 0.43 0.16 0.033 0.16 0.02 0.008 0.007 Bal. 

 

 

2.2 Bath Formulation 

The deposition bath was prepared using reagents indicated in Table 2. The proportion of the 

reagents inclusion in the bath is equally indicated. The process parameters such as temperature, 

pH, voltage, stirring rate and deposition time are also indicated. The KCl, NaCl and ZnCl2 form 

the basic component of the bath, which aids the flow of current. Thus, the bath could be 

referred to as a chloride bath. 

 

Table 2: Bath formulation 

Composition & 

process 

perimeters 

 

Mass concentration &  

magnitude of process 

perimeters 

 

KCl 30 g/L 

Boric Acid 10 g/L 

Thiourea 10 g/L 

NaCl 40 g/L 

MgO 10, 20 & 30 g/L 

ZnCl2 30 g/L 

Al2O3 10 g/L 

pH 5.63 

Voltage 0.5 V 

Time 10, 15 & 20 mins 

Temperature 45 
o
C 

Stirring rate 250 rpm 

 

2.3 Pre-coating Process 

The pre-coating procedure involves polishing the mild steel samples surface with grades of 

emery paper whose grit range from 120 to 180. To get rid of organic oxides and contaminants, 

pickling of the steel surface was done in a 10 percent HCl solution. Ultimately, the steel 

samples were washed in distilled water before the initiation of coating. The cross-sections of 

the polished samples are indicated in Figure 1. 
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Figure 1: Polished mild steel samples 

 

2.4 The Coating Process 

During the coating process, two zinc metals were used as anodes, while mild steel was the 

cathode. The cathode was positioned 3 cm between the anodes in the deposition bath. The 

content of the bath was heated to a constant temperature of 45 
o
C and stirred at a stirring rate of 

250 rpm to allow for mass flow of particles or electrophoresis. The constant agitation of the 

bath was also to ensure the homogeneous dispersion of particles on the surface of the steel 

substrates. The coating was achieved at the varying temperature of 10, 15 and 20 minutes and 

varying mass concentrations of MgO (10, 20 and 30 g/L). The deposition voltage was held 

constant at 0.5 V and pH of 5.63. After each coating, the coated samples' surfaces were slightly 

rinsed in distilled water to remove the salty solution from the coating and then allowed to dry in 

natural air. The cross sections of the coated mild steel samples are indicated in Figure 2. 

 

 

Figure 2: cross sections of coated mild steel samples 
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2.4 Characterization of the Uncoated and Coated samples 

2.4.1 Electrochemical experiment 

Before the characterization of the samples, the uncoated and coated samples were sectioned to 

the dimension of 10 mm × 10 mm × 2 mm. For the electrochemical test (potentiodynamic 

polarization experiment), the 10 mm × 10 mm × 2 mm specimen (working electrode) was 

connected to a copper wire and embedded in an epoxy resin, leaving an exposed area of 10 × 

10 mm
2
. This was linked to the reference electrode (Ag/AgCl electrode) and a counter 

electrode (graphite electrode), which were in turn connected to a computer-controlled 

metrohm-Autolab PGSTAT 101. The analysis was performed using Nova 2.1 software. The 

electrodes were immersed in 3.5% NaCl solution, and the potentiodynamic polarization 

experiment was run at the start and end potentials of -1.5 and 1.5 V, respectively, at a scan rate 

of 5 mV/s. The open circuit potentials of the samples were also evaluated. Using Equations 1 

and 2, the corrosion rate and polarization resistance were estimated, respectively, following the 

ASTM G102 standard. The coating efficiency (C.E) was also estimated using Equation 3. 

 

  Cr = (0.00327 ×  jcorr × eq. w) ∕ ℓ                                               (1)     

  Pr = 2.303babc ∕ jcorr (ba + bc)                                                    (2) 

  C. E =  1 − jcorr jocorr  × 100                      (3) 

 

Where 0.00327 is the constant, ℓ  is the density of samples in g/cm
3
, jocorr and jcorr in A/cm

2 
are 

the corrosion current density of the uncoated and coated steel, respectively, eq.w is the 

equivalent weight of samples in grams, while bc and ba are the cathodic and anodic slopes, 

respectively. 

 

2.4.2 Microstructural examination of samples  

The microstructural examination of the samples was carried out using a Scanning Electron 

Microscope (SEM).  The SEM images were captured at the magnification of 200 times the 

original samples. The detector of the SEM used was HD backscattered detector (HDBSD). The 

samples were subjected to an extra high tension (EHT) of 20.00 kV and high vacuum mode. 
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3. Results and Discussion 

3.1 Analysis Electrochemical (Corrosion) Performance of the Samples 

3.1.1 Potentiodynamic polarization data of samples 

The corrosion rate (Cr), corrosion current density (jcorr and jocorr) and polarization resistance (Pr) 

of the uncoated and coated samples are shown in Table 3. The Zn-MgO30-Al2O3 (20 mins) 

sample exhibited the best corrosion resistance, relative to the other test samples. The Zn-

MgO30-Al2O3 (20 mins) coating is adjudged the best corrosion-resisting coating in the test 

medium due to the least Cr of 1.0521 mm/year, lowest jcorr of  90.51 μA/cm
2
 and highest Pr of 

292.15 Ω. These parameters showed that the Zn-MgO30-Al2O3 (20 mins) coating offered the 

best resistance to the entrance of the corrosive ions from the 3.5% NaCl solution into the 

surface and the active sites of the base metal (mild steel) [55, 56]. It is also worthy of note that 

the control sample (uncoated mild steel sample) possessed the highest Cr of 20.707 mm/year, 

the utmost jocorr of  1782 μA/cm
2 

and the least Pr of 34.47 Ω. These values indicated that the 

control sample offered the least resistance effect to the deterioration of the corrosive ions [57]. 

It was further observed that the mass concentration of MgO and the coating time played vital 

roles in the corrosion-resisting performance of the coatings. For instance, Zn-MgO10-Al2O3 

(20 mins) coating achieved in 20 minutes exhibited the Cr of 6.4252 mm/year, while Zn-

MgO10-Al2O3 (15 mins) and Zn-MgO10-Al2O3 (10 mins) coating exhibited higher Cr of 

6.5122 and 7.7608 mm/year, respectively. In the same vein, Zn-MgO20-Al2O3 (20 mins) 

coating possessed superior corrosion resistance or lower corrosion rate compared to Zn-

MgO20-Al2O3 (15 mins) and Zn-MgO20-Al2O3 (10 mins) coatings. Similarly, Zn-MgO30-

Al2O3 (20 mins) coating possessed superior corrosion performance, relative Zn-MgO30-Al2O3 

(15 mins) and Zn-MgO30-Al2O3 (10 mins) coatings. It was therefore observed that in each of 

the three coating phases (Zn-MgO10-Al2O3, Zn-MgO20-Al2O3 and Zn-MgO30-Al2O3), the 

corrosion performance increases with the increase in the deposition time, as also reported by Li 

et al., Dai et al. [58, 59]. A similar trend was also obviously observed with an increase in mass 

concentration, where the Zn-MgO30-Al2O3 (15 mins) coating exhibited superior corrosion 

properties than the Zn-MgO20-Al2O3 (15 mins) coating, Zn-MgO20-Al2O3 (10 mins) coating 

than Zn-MgO10-Al2O3 (10 mins) coating e.t.c. despite being subjected to the same deposition 

time. This type of occurrence was also reported by Zhou and Kong, Fayomi et al. [60, 61]. 
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Table 3: Potentiodynamic polarization data of samples 

Sample 

 

Ecorr 

(V) 

jocorr  & jcorr  

(μA/cm²) 

Cr  

(mm/year) 

Pr 

(Ω) 

Control -1.2994 1782 20.707 34.47 

Zn-MgO10-Al2O3 (10 mins) -1.0830 667.98 7.7608 88.47 

Zn-MgO10-Al2O3 (15 mins) -1.0283 560.43 6.5122 98.05 

Zn-MgO10-Al2O3 (20 mins) -1.2149 552.95 6.4252 111.09 

Zn-MgO20-Al2O3 (10 mins) -0.9988 474.42 5.5127 156.12 

Zn-MgO20-Al2O3 (15 mins) -1.1044 420.33 4.8842 167.48 

Zn-MgO20-Al2O3 (20 mins) -1.1055 219.43 2.5498 281.63 

Zn-MgO30-Al2O3 (10 mins) -1.2102 249.30 3.3215 256.35 

Zn-MgO30-Al2O3 (15 mins) -1.0160 178.85 2.0782 286.75 

Zn-MgO30-Al2O3 (20 mins) -1.2068 90.51 1.0521 292.15 

 

3.1.2 Coating efficiency (C.E) of the deposited films 

Figure 3 indicated the coating efficiency (C.E) or surface protection efficiency of the coatings. 

It was observed that the efficiency of the Zn-MgO-Al2O3 coatings increased with the deposition 

time. Similarly, the mass concentration of the MgO particles also enhanced the coating 

efficiency of the Zn-MgO-Al2O3 coatings. Among the Zn-MgO10-Al2O3 coatings, Zn-MgO10-

Al2O3 (20 mins) coating exhibited the highest coating efficiency of 68.97%. Relative to the 

other Zn-MgO20-Al2O3 coatings, Zn-MgO20-Al2O3 (20 mins) possessed a superior coating 

efficiency of 87.69%, while the Zn-MgO30-Al2O3 (20 mins) coating exhibited the uppermost 

coating efficiency (C.E) of 94.92% compared to the other Zn-MgO30-Al2O3 coatings. These 

efficiencies indicated that the adhesiveness and protective ability of the coatings in the saline 

medium could be a function of the deposition time and mass concentration of particles [62].   
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Figure 3: Coating efficiency (C.E) of the deposited films 

 

3.1.3 Tafel plots of samples 

The Tafel plots for the Zn-MgO-Al2O3 coated samples are shown in Figures 4-6. The Tafel 

plots further indicated that, for the Zn-MgO10-Al2O3, Zn-MgO20-Al2O3 and Zn-MgO30-Al2O3 

coatings, the deposition at 20 minutes exhibited the lowest corrosion current densities. This 

implied that the Zn-MgO10-Al2O3 (20 mins), Zn-MgO20-Al2O3 (20 mins) and Zn-MgO30-

Al2O3 (20 mins) coatings offer more passivation in the 3.5% NaCl solution, compared to their 

counterpart coatings with the same mass concentration [63, 64]. Comparing the entire coatings, 

the Zn-MgO30-Al2O3 (20 mins) coating possessed the most superior passivation The Tafel 

plots also indicated through the Ecorr values  that the Zn-MgO-Al2O3 coatings also exhibited 

mixed-type inhibition or protective effect on the surface of the mild steel i.e. protecting the 

anodic and cathodic region of the steel [65, 66].  
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Figure 4: Tafel plots for Zn-MgO10-Al2O3 coated samples 

 

 

Figure 5: Tafel plots for Zn-MgO20-Al2O3 coated samples 
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Figure 6: Tafel plots for Zn-MgO30-Al2O3 coated samples 

 

 3.1.4 Open-circuit potential (OCP) of samples 

 Figures 7-9 indicated the OCP of the Zn-MgO-Al2O3 coated samples. The coatings were 

observed to have shifted the OCP of the mild steel (control) to more negative potentials.  The 

potential of the control was -0.69 V. This was constant for 120 seconds. This constancy in the 

value of the potential indicated that a steady state was reached [67]. This potential can in order 

words be referred to as a steady state potential. At different times, the steady state potentials of 

Zn-MgO10-Al2O3 (10 mins), Zn-MgO10-Al2O3 (20 mins) and Zn-MgO10-Al2O3 (30 mins) 

coatings were -0.75, -0.8 and -1.1 V, respectively. For the Zn-MgO20-Al2O3 coatings, the 

steady-state potentials of Zn-MgO20-Al2O3 (10 mins), Zn-MgO20-Al2O3 (20 mins) and Zn-

MgO20-Al2O3 (30 mins) coatings were -0.76, -0.75 and -0.725 V, respectively. Similarly, the 

steady state potentials of Zn-MgO30-Al2O3 (10 mins), Zn-MgO30-Al2O3 (20 mins) and Zn-

MgO30-Al2O3 (30 mins) coatings were -0.785, -0.745 and -0.76 V, respectively.  
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Figure 7: Open-circuit potential of Zn-MgO10-Al2O3 coated samples 

 

 

Figure 8: Open-circuit potential of Zn-MgO20-Al2O3 coated samples 
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Figure 9: Open-circuit potential of Zn-MgO30-Al2O3 coated samples 

 

3.2 Microstructures  

 The SEM images of the uncoated and coated samples are indicated in Figures 10-15. On the 

SEM image of the uncoated mild steel in Figure 10 was observed few puffed-up scales, 

indicating the initiation and propagation of corrosion products, possibly from the slight 

exposure to the environmental contaminants. In Figure 11, the SEM image of the Zn-MgO10-

Al2O3 (10 mins) coated sample was observed to exhibit a granulated structure, with few clefts 

which could act as sites for the penetration of degrading contaminants [68, 69]. Uniform-sized 

grains were also observed on most sections of the sample. It is also worthy of note that the 

coating exhibited seemingly regular colouration, indicating the homogeneous mixture of the 

particles in the coating [70, 71]. As indicated in Figure 12, the SEM image of the Zn-MgO10-

Al2O3 (15 mins) coated sample showed that the samples possessed a redefined microstructure 

with the predominance of flower-flake-like morphology and a portion of a dark granulated 

structure. Furthermore, the SEM image of Zn-MgO20-Al2O3 (15 mins) coated samples (see 

Figure 13) indicated the dispersion of larger and compact deposits of particles on the surface of 

the steel. The compact nature of the coating indicated the possibility of providing high 

corrosion resistance in a corrosive medium [72, 73]. The SEM image of the Zn-MgO20-Al2O3 

(20 mins) coated sample shown in Figure 14 indicated that it exhibited a similar structure as the 

Zn-MgO20-Al2O3 (15 mins) coated samples. However, more particle deposition could be 

observed with the Zn-MgO20-Al2O3 (20 mins) coating. This could be attributed to the 

extension in the coating time. Relative to the entire samples, the Zn-MgO30-Al2O3 (15 mins) 

and Zn-MgO30-Al2O3 (20 mins) coatings exhibited the most refined microstructure with 
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unique morphologies as shown in Figures 15 and 16. However, while the Zn-MgO30-Al2O3 (15 

mins) coated sample possessed more of a granulated structure, the Zn-MgO30-Al2O3 (20 mins) 

coated sample exhibited more of a flower-nodular-like structure. More particle dispersion and 

compact grain boundaries were also observed with the Zn-MgO30-Al2O3 (20 mins) coating, 

which could be the reason for the superior corrosion resistance it exhibited, compared to the 

other samples. 

 

 

 

Figure 10: SEM image of the uncoated (control) sample 
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 Figure 11: SEM image of Zn-MgO10-Al2O3 (10 mins)  

 

 

Figure 12: SEM image of Zn-MgO10-Al2O3 (15 mins) 
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Figure 13: SEM image of Zn-MgO20-Al2O3 (15 mins) 

 

 

Figure 14: SEM image of Zn-MgO20-Al2O3 (20 mins) 
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Figure 15: SEM image of Zn-MgO30-Al2O3 (15 mins) 

 

 

Figure 16: SEM image of Zn-MgO30-Al2O3 (20 mins) 

 

 

 

 



Influence of deposition time variation and mass concentration of MgO on the corrosion response and 
microstructure of Zn-MgO-Al2O3 electroplated mild steel 

Section A-Research paper 

8287 

Eur. Chem. Bull. 2023,12(10), 8270-8294 

 

4. Conclusions 

This research was carried out to investigate the effect of deposition time variation and mass 

concentration of MgO on the corrosion response and microstructure of Zn-MgO-Al2O3 coated 

mild steel. The following conclusions are drawn from the study: 

(i) The variation in the deposition time and mass concentration of MgO had a significant effect 

on corrosion resistance and microstructure of the coatings. The increment in the mass 

concentration of MgO and deposition time up to optimum values enhanced the corrosion 

resistance and microstructural properties of the Zn-MgO-Al2O3 coatings. 

(ii) The uncoated sample exhibited the least corrosion resistance, with the corrosion rate and 

corrosion current density of 20.707 mm/year and 1782 μA/cm
2
, respectively. The steel 

coated with Zn-MgO30-Al2O3 (20 mins) exhibited the optimum corrosion resistance, with 

the corrosion rate and corrosion current density of 1.0521 mm/year and 90.51 μA/cm
2
, 

respectively. This showed that the coating reduced the attack of the steel surface by the 

3.5% wt. NaCl solution.  

(iii) The coatings were observed to exhibit refined morphology with compact, granulated, 

flower-flake-like and flower-nodule-like structures, which were found beneficial to the 

corrosion properties of the coating. 
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