
Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

133 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

ISSN 2063-5346 MAKESPAN AWARE OPTIMIZED HYBRID-

HADOOP MAPREDUCE MODEL IN CLOUD 

COMPUTING ENVIRONMENT 

Vaishali Sontakke 1, Dr. Chandrakala B M*2  

Article History: Received: 10.05.2023 Revised: 29.05.2023                  Accepted:  09.06.2023 

Abstract 

The use of high-performance computing (HPC) infrastructure in a cloud computing 

environment is an effective approach for running data-intensive applications. The MapReduce 

(MR) framework is a parallel computing solution that is commonly used for high-performance 

applications that involve the analysis of BigData, scientific research, and data-intensive tasks. 

Hadoop is a parallel computing framework based on MapReduce that enjoys widespread 

adoption among diverse organizations. The Apache foundation offers an open source 

framework that can be obtained at no cost. The current makespan methodology that employs 

Hadoop MapReduce (HMR) results in memory and I/O overhead, which has an adverse effect 

on the makespan performance. The proposed publication presents a model called Hybrid HMR 

(HHMR) makespan, which aims to effectively tackle research problems and obstacles. The 

Hybrid Hadoop MapReduce (HHMR) technique utilizes virtual computing workers to execute 

tasks in parallel, resulting in reduced makespan times. This is achieved through the 

implementation of a cloud computing framework. The HHMR model offers an efficient 

memory management framework suitable for virtual computing environments. The 

aforementioned architecture minimizes the amount of memory allocation and transmission 

overheads. Performance evaluation of the HHMR in comparison to previous models is carried 

out through experiments on the Azure HDInsight cloud platform, within a public cloud 

environment. Various applications, including bioinformatics, text mining, stream applications, 

and non-stream applications, are under consideration. According to the findings, the HHMR 

model demonstrates better performance than the previous model in reducing makespan time 

and enhancing the correlation between actual and theoretical makespan values. 

1 Research scholar, Dayananda Sagar College of Engineering, kumaraswamy layout, 

Bengaluru, India. 

2 Associate Professor, Department of Information Science & Engineering, Dayananda Sagar 

College of Engineering, Kumaraswamy layout, Bengaluru, India. 

*Corresponding Author: chandrakalabm-ise@dayanandasagar.edu 

 

DOI:10.48047/ecb/2023.12.9.15 

  

mailto:chandrakalabm-ise@dayanandasagar.edu


Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

134 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

1 Introduction 

Computations for applications that are data 

intensive as well as scientific use cloud 

computing as an essential function. 

Distributed architectural patterns are 

embraced by cloud computing that can 

process huge amount of data gathered by 

different sources. For instance, social 

network platforms, sensory networks, 

genome technology, etc. Measurable 

computations are performed on data which 

is huge, raw and unstructured being suited 

to various organisations. The final model 

includes Phoenix, Mars, Dryad and Spark 

[1-2] that are inefficient for stream data 

analysis. Google introduced a parallel 

computational framework termed 

MapReduce that examines information 

intense as well as scientific approaches. 

Considering MapReduce [3], it is the most 

wide-scale utilized framework because of it 

being open source, can be deployed easily 

and is also scalable. MapReduce proposed 

by Google was popularized using Hadoop 

Apache, transformed distributed 

information processing through 

simultaneous execution for a group of 

machines. The use of MapReduce [4] has 

increased throughput, scalability as well as 

fault tolerance. Although, efficient use of 

data is critical for performance optimization 

of MapReduce. inadequate management of 

memory could result to higher input/output 

disk, excessive transfer of data as well as 

errors that are out of memory, leading to 

task completion taking longer than normal. 

Hence, there exists a requirement for an 

alongside Hadoop MapReduce architecture 

that aims on efficient memory to focus on 

these tasks.  

The programming model 

architecture of MapReduce [5] streamlines 

the distributed information processing by 

splitting huge amount of information into 

small clusters that are processed 

simultaneously across various machines. In 

the map stage, alongside computations for 

input information, pairs of key-value are 

produced. The reduction stage [6] along 

with intermediate outcomes having the 

similar key that results in the concluding 

output. Considering the process, memory 

has a critical part in intermediate 

information storage, aiding information 

transfer as well as management of 

executional flow.  

The Reduce and Map Stage [7] is 

used to make up the MapReduce Hadoop 

framework. This is also combined with a 

shuffle, Setup as well as Sort stage. The 

MapReduce Hadoop architecture is given in 

the figure described above. The 

MapReduce Hadoop cluster is made up of a 

collection of virtual machines that is linked 

to master computational virtual machines. 

The tasks are given to the MapReduce 

Hadoop Cluster by the user. The master 

user divides the tasks and assigns them to 

Reduce and Map user. Considering the 

Setup stage, the input information from the 

cloud storage requires processing using 

Map machines that are divided logically 

into identical groups.  

Considering the Map stage, the 

master machine allots tasks to the Map 

machines. The map machines assume input 

to be the key and the value pairs to be 

(𝑗1, 𝑢1) and develop a list of (𝑗2, 𝑢2) key 

and valued pairs resulting in [8, 9]. Once the 

Map stage is complete, initialization of the 

shuffle stage begins. The shuffle stage 

gathers the value pairs as well as the 

intermediary keys from the Map machine. 

After which a sorting function is 

implemented to gather the intermediary 

information of the Map stage. For 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

135 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

convenience, the process of sort as well as 

shuffle are combined and termed as the 

Shuffle stage. Finally, considering the user 

specified operation Reduce stage is started. 

The result of this stage is stored in the cloud 

location.  

The utilization of memory [10] is 

crucial for performance optimization of 

MapReduce tasks. Inadequate management 

of memory could result in excessive 

input/output disk, higher transfer of 

information along the network, resource 

limitations, that finally lead to impacts on 

makespan tasks. Hence, efficient memory 

management is a essential factor for 

distribution of computational scenarios. 

Over the years, various researchers have 

studied efficient memory management for 

parallel MapReduce Hadoop scenarios and 

introduced different methodologies to 

resolve the challenge. Strategies of task 

schedules are one such means of resolving 

the problem. Although prior researches 

have added value to the insights of efficient 

memory and resource management for 

parallel MapReduce Hadoop scenarios [11] 

leaving room for future studies. Recently, 

advancements in parallel MapReduce 

Hadoop scenarios aim at improvising 

efficient resource and memory 

management. Different techniques are 

introduced and developed by researchers 

for optimization of memory usage, 

scheduling tasks as well as equipping 

resources dynamically. These 

advancements involve memory aware 

information locating techniques, memory 

management architectures that are cost 

efficient, efficient methods of memory 

usage for iterative computational methods. 

Also, strategies for managing information 

[12] and reducing its influence on memory 

utilization are studied. The recent 

developments add to enhancing efficient 

memory, decreasing completion time of 

tasks and improving the total performance 

for parallel MapReduce Hadoop scenarios.  

Considering the analysis mentioned 

above, it is obvious that there are more 

limitations of resource utilization in 

Hadoop [13] as well as accuracy of task 

modelling for makespan model. Hence, 

reducing time of makespan and using 

resources effectively with reduced 

expenses is required of the cloud computing 

model.  

The makespan model [14] that is 

proposed in this paper focuses to develop 

on the prior researches as well as give a 

complete framework that includes 

scheduling of tasks, analysed execution, 

optimization of memory and memory 

management to improve memory usage as 

well as decrease task complete time taken. 

  

1.1 Motivation and contribution 

Memory utilization and management of 

resources effectively are critical challenges 

that are faced by MapReduce Hadoop 

scenarios. These challenges are to be 

resolved with the motivation of 

performance optimization as well as 

scalable information processing for huge 

distributed systems. Memory management 

that in inadequate results in overhead 

transfer of information, higher input/output 

disk, effective the complete efficiency of 

system as well as performance depletion. 

Also, sub-optimization of resource 

allocation as well as scheduling of 

techniques result in underuse of resources 

and increased time for task completion. The 

attention given to efficient memory and 

resource management, is focused at 

reduced time for task completion, improved 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

136 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

memory usage as well as enhancement of 

complete performance for distributed 

information processing. This study is aimed 

at developing real-time solutions that allow 

increased efficiency and effectiveness for 

processing as well as analysing information 

on large-scale, being advantageous to 

different domains and industries that 

require scientific study, financial research, 

information-intensive applications, etc. 

 This paper introduces a novel 

makespan model specifically 

designed for Hybrid Hadoop 

MapReduce jobs. This model takes 

into account memory utilization as a 

crucial factor in determining the 

overall makespan of the job 

execution.  

 By considering memory efficiency, 

the proposed model aims to 

optimize resource allocation and 

reduce the overall execution time 

and optimizing memory usage and 

improving overall system 

performance. 

 A memory-aware scheduling 

strategy that leverages the 

makespan model to allocate 

resources efficiently is designed by 

considering memory utilization as a 

key factor, the scheduling strategy 

aims to minimize memory-related 

issues and enhance overall 

performance. 

2 Related Work 

The Hadoop MapReduce model 

predominantly consist of following phases, 

Setup, Map, Shuffle, Sort and Reduce. The 

Hadoop framework consists of a master 

node and a cluster of computing nodes. Jobs 

submitted to Hadoop are further distributed 

into Map and Reduce tasks. The Hadoop 

MapReduce platform suffers from a 

number of drawbacks. The preconfigured 

memory allocator for Hadoop jobs leads to 

issues of buffer concurrency amongst jobs 

and heavy disk read seeks. The memory 

allocator issues result in increasing 

makespan time and induces high 

Input/output (I/O) [15]. 

Assumed homogenous map execution 

times and serial execution strategy put forth 

utilized map workers (and their resources) 

who have completed their tasks and are 

waiting for the other map workers to 

complete [16]. In cloud environments 

where organizations / users are charged 

according to (storage, compute and 

communication) resources utilized these 

issues burden the costs apart from effecting 

performance [17]. 

Hadoop platforms do not support flexible 

pricing [18]. Scalability is an issue owing to 

the cluster based nature of Hadoop 

platforms. Processing of streaming data is 

also an issue with Hadoop . To overcome 

these drawbacks researchers have adopted 

various techniques. 

In [19], as size of HPC algorithm surges, 

four noteworthy difficulties comprising 

programmability, heterogeneity, energy 

proficiency and fault tolerance have 

emerged in the basic of distributed 

computing environment. To handle with 

every one of them without giving 

(compromising) up execution, customary 

methodologies in utilizing resource, 

programming model and job scheduling are 

ought to be re-examined. As HMR has dealt 

with scientific and data-intensive HPC 

algorithms well in CC platforms, GPU has 

shown its speeding up viability for 

calculation of serious scientific and data-

intensive HPC algorithms. 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

137 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

In [20], the cutting edge genome 

sequencing issue with short and long 

genomic sequences is a developing field in 

various Big-data and scientific areas. 

Nevertheless, information sizes and 

straightforward entry for research scientists 

are developing and most current 

philosophies depend on one speeding up 

methodology thus can't meet the 

prerequisites forced by massive 

information scales and complexities. Here, 

they resented accelerator model by 

combining FPGA with MR computing 

model on various hardware. The mixture of 

MR computing model and hardware 

accelerator could incredibly quicken the job 

of performing short-read genomic sequence 

alignment operation to a known database 

genomic sequence. 

In Hadoop task [21] are executed based on 

the available CPU cores and memory is 

allocated based on preset configuration 

which lead do memory bottleneck due to 

buffer concurrency and heavy disk seeks 

resulting I/O wait occupancy which further 

increases the makespan time. In [22] they 

addressed the issues related to Hadoop 

memory management by adopting a global 

memory management technique. They 

proposed a prioritization model of memory 

allocation and revocation by adopting a rule 

based heuristic approach. 

HMR is the most mainstream open-source 

execution [23-24] of the MR programming 

framework. In HMR, input records are 

segmented into numerous small data 

chunks and these chunks are distributed to 

number of virtual computing machine a 

computing clusters. To proficiently process 

the information chunks, HMR ought to give 

an effective scheduling design to upgrading 

the execution of the framework in a shared 

computing platform. In HMR scheduling 

predominantly induced by information 

location awareness problems because of 

constrained system data transfer capacity. 

[25] This study focuses on enhancing 

Hadoop MapReduce task scheduling to 

boost efficiency and speed up job 

completion. It proposes a load balancing 

and data locality-aware adaptive task 

scheduling technique. 

[26] The following document introduces 

the Spark framework, which expands the 

capabilities of the MapReduce model by 

enabling in-memory processing and 

iterative algorithms. The technology under 

discussion presents RDD (Resilient 

Distributed Datasets) as a highly effective 

distributed memory abstraction for the 

purpose of data processing. 

[27] The present study introduces a 

performance model for Hadoop 

MapReduce, which assists in 

approximating the duration of task 

execution and the requisite resources. The 

model takes into account various factors 

such as the size of data, job scheduling, and 

system configuration. 

 

3 Proposed Methodology 

This paper introduces a model for 

optimizing the utilization of unused slots 

through Hybrid Hadoop MapReduce 

(HHMR), this model is designed to improve 

the overall makespan. The initial step 

involves the description of a system model. 

Next, it provides a description of the 

sequential Hadoop MapReduce makespan 

model. Finally, the Hybrid Hadoop 

MapReduce makespan model that has been 

proposed is presented. 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

138 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

3.1 System Architecture 

The cloud computing platform is 

considered as a base in this research, its 

components are, the master computing 

node/worker, map and reduce computing 

nodes make up the Hybrid Hadoop 

MapReduce (HHMR) makespan 

framework. Initialization of  𝑠 maps and 

virtual computing nodes is done by the 

master computing node. 𝑃 computer cores 

make up each virtual computing node. Let 

𝑊ℊrepresent the amount of time it takes to 

set up the virtual computing environment. 

Let 𝑊𝑜 be the 𝑠 map computing workers' 

average makespan time. Let 𝑊𝑡 be the 

typical amount of time that it has taken for  

𝑠 reduction computing workers to complete 

shuffle, sort, and reduce computation. Upon 

assumption that an execution operation 𝑖 

will be assessed in a cloud environment 

utilizing the MR framework in a 

heterogeneous computing environment. 

Equation (1) explains the evaluation by 

considering 𝑈,where the input parameter is 

shown by 𝑑. 

 

𝑈 = 𝑖(𝑑) (1) 

 

The Map and Reduce framework utilizes 

virtual computing nodes, also known as 

workers, to perform computational tasks for 

the given activity. The execution of g on the 

cloud computing architecture incurs 

overhead or costs. The variables 𝑅𝑓 and 

𝑊 denote the overhead resulting from 

input/output operations and computation, 

respectively. The expense is determined by 

the makespan that has been accumulated. 

The acronym 𝑊𝑈
𝑅  denotes the total or 

aggregated makespan.   

In the context of a cloud computing 

environment denoted by 𝑦, an input/output 

(I/O) event is currently occurrs. The 

function 𝑀(𝑎, 𝑝, 𝑦) denotes the retrieval of 

𝑝 bytes of data from a blob container 

location in the cloud and storing it in a 

virtual storage location 𝑎 on a local 

machine. The function 𝑀𝑂(𝑦) is a 

representation of the observer for data 

transfer makespan overhead. The function 

𝐷𝐸(𝑏, 𝑝) is used to save the results of an 

execution process to a Hadoop distributed 

storage location on a cloud computing 

platform. The variable 𝑧 denotes the virtual 

node that is presently operational at the 

given time 𝑢. The 𝑅𝑙 denotes the 

initialization of makespan for 𝑧 virtual 

computing nodes. The transfer of 𝑒 bytes of 

data from the cloud computing platform to 

the virtual computing worker's memory is 

supposed to have 𝑅𝑤
𝑒 . The function 𝑅𝑤

𝑒 (𝑧) 

represents the I/O makespan from the 

viewpoint of different virtual computing 

workers. 

3.2 Makespan model of HMR framework 

This study implies the utilization of the 

HMR framework to assess the operation 𝑖. 

The virtual computing nodes for Map and 

Reduce have been initialized using a cloud 

computing configuration. The virtual 

computing node count, denoted as 𝑧 , is 

initialized. The dataset 𝑖 is partitioned into 

𝑔′ segments. Each segment has a size of  

𝑔" ∗ 𝑒 bytes. The Map virtual nodes for 

computing retrieve the input array of data 

from another spot container location and 

store it in a memory cache represented by 

the symbol 𝐸. The expression for the 

makespan method for production of varying 

values of 𝑧 is as follows. 

𝑅𝑓(𝑔′) = (𝑅𝐿 + (𝑅𝑤
𝑒 ∗ 𝑒

∗ 𝑔′)) 

(2) 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

139 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

 

𝑢 is an application computation used for 

memory-caching to exchange information 

to get the resultant outcome operation to 

store the remote spot container location 

through virtual computation nodes. The 

information for the dataset is executed  

using 𝑔′ for virtual map content expressed 

through the following equation. 

𝑊(𝑔′) = (𝑤𝑒 ∗ 𝑔′′ ∗ 𝑔′) (3) 

 

Upon completion of the Map execution, the 

intermediary outcome information is stored 

in a remote spot container location. Due to 

variations in makespan across virtual 

computing environments and the inherent 

challenges of performing synchronization, 

achieving optimal performance can be a 

complex task. The initialization of Reduce 

virtual computing nodes occurs after the 

completion of Map task execution. The 

Reduce virtual computing node executes a 

reduction operation on intermediary data 

that is stored remotely. The resulting array 

𝑈 is obtained as the output of the reduce 

jobs. The equation below expresses the 

makespan time induced by the Reduce 

virtual computing node for performing 

reducing operations. 

𝑔

𝑔′′
− 1 

(4) 

 

The HMR algorithm operates sequentially, 

resulting in a significant initial makespan. 

This is necessary to segment information 

and transmit it through a remote spot 

container (𝑅𝐹(𝑔′)) before executing the 

algorithm (𝑊(𝑔′)). The variable 𝑔𝑟
′  

denotes the duration of the session where 

the computation of segmentation and 

application occurs, while considering the 

transmission makespan, this results in equal 

values for the utilization function 𝑊 and the 

processing demand function 𝑄𝐷 (i.e., 

𝑊(𝑔′) = 𝑅𝐹(𝑔′)). The makespan's length 

is represented as a set [1 … 𝑔𝑟
′ … 𝑔′̂]. The 

initial makespan is expressed using the 

equation 𝑔′ < 𝑔𝑟
′ . 

𝑊𝑈
𝑅(𝑔′)

= (
𝑔

𝑔′′
+ 1) 𝑅𝐹(𝑔′) , ∀𝑔′ < 𝑔𝑟

′  

 

(5) 

 

The computation of makespan time 

𝑊𝑈
𝑅(𝑔′) can be performed in the following 

manner. 

𝑊𝑈
𝑅(𝑔′) ≅ (

𝑔. 𝑅𝐿

𝑔′′
)

+ (𝑔 ∗ 𝑟𝑤
𝑒 ∗ 𝑒

∗ 𝑔′), ∀𝑔′ < 𝑔𝑟
′  

(6) 

   

The expression for the makespan time, 

taking into account  for the time period 

when ∀𝑔′ > 𝑔𝑟
′ , is as follows. 

𝑊𝑈
𝑅(𝑔′) = (𝑧 ∗ 𝑅𝐹(𝑔′)) + (𝑔)

∗ 𝑤𝑒 , ∀𝑔′ > 𝑔𝑟
′  

 

(7) 

 

The makespan time 𝑊𝑈
𝑅(𝑔′) is 

approximated as follows: 

𝑊𝑈
𝑅(𝑔′) ≅ (𝑟𝑤

𝑒 ∗ 𝑒 ∗ 𝑔′′)

+ (𝑔 ∗ 𝑤𝑒 ∗ 𝑟𝑤
𝑒

∗ 𝑔′), ∀𝑔′ < 𝑔𝑟
′  

 

(8) 

 

3.3 Hybrid HMR model 

The earlier section's HMR model employs 

a serial execution approach. The Map 

computing node is responsible for the 

management and utilization of the virtual 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

140 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

computing slots allocated in the HMR. 

Upon completion of the Map operation, the 

Reduce computing node proceeds to utilize 

the available open slots. Consequently, 

there are several locations that remain 

unutilized. The increase in algorithm 

runtime leads to a higher makespan time. 

The allocation of Map and Reduce slots in 

the Hybrid HMR proposal is optimized to 

achieve maximum slot utilization. The Map 

virtual computing node retrieves the dataset 

information in segments from a remote spot 

container location and store them in its 

virtual computing memory cache. The 

HHMR makespan divides the data collected 

from the dataset into parallel chunks 𝑔′′, 

allowing for execution on a multicore 

system. The makespan triggered by this 

procedure across 𝑧 workers is expressed as 

follows. 

𝑅𝑓(𝑔′′, 𝑧) = (𝑅𝐿

+ (𝑅𝑤
𝑒 (𝑧) ∗ 𝑔′′

∗ 𝑒)) 

 

(9) 

 

The parallelization of each element of 𝑔′ is 

accomplished by utilizing a multi-core 

environment that employs virtual 

computing workers. In order to minimize 

storage and makespan overhead, the virtual 

computing worker's in-memory cache is 

cleared of redundant and previously 

computed data. As the makespan increases, 

it can be deduced that the availability of in-

memory caching from the Map virtual 

computing nodes decreases. The decrease 

in usage of in-memory caching is in direct 

correlation with the quantity of 

computational operations utilized. The 

equation for calculating makespan takes 

into account the parallelized chunk 𝑔′, 

utilized in the execution of applications 𝑢 

by the Map virtual computing node. The 

equation is as follows: 

𝑊(𝑔′′) = (𝑤𝑒 ∗ 𝑔′′) (10) 

 

The Map virtual computing nodes store the 

processed output in remote spot containers. 

The Reduce virtual computing node utilizes 

these outcomes to perform the reduce 

operation. The Reduce virtual computing 

node is represented by the following 

equation for makespan time. 

 

(
𝑔

𝑔′′
− 1) 

 

(11) 

 

The makespan here is introduced by the 

notation 𝑊𝑈
𝑅(𝑔′′), whereas the input 

dataset information vector is shown using 

the notation 𝐷[𝑎]  and the algorithm 

consists of the vector shown as 𝑈[𝑏]. 

However [1,2, … 𝑔𝑟
′′ … 𝑔′′̂] shows the 

makespan time by considering 𝑔′′ > 𝑔𝑟
′′ 

shown as below: 

𝑊𝑈
𝑅(𝑔′′)

= (
𝑔

𝑔′′ ∗ 𝑧
+ 1) 𝑅𝐹(𝑔′′, 𝑧), ∀𝑔′′

< 𝑔𝑟
′′ 

 

(12) 

 

During the time-interval 𝑔′′ > 𝑔𝑟
′′ the 

makespan time is expressed as shown 

below: 

𝑊𝑈
𝑅(𝑔′′) = (𝑧 ∗ 𝑅𝐹(𝑔′′, 𝑧))

+ (
𝑔

𝑧 ∗ 𝑤𝑒
) , 𝑔′′

> 𝑔𝑟
′′ 

 

(13) 

 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

141 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

By utilizing the 𝑧 virtual computing nodes  

is efficient via the optimization function 

denoted as : 

𝑅𝐹(𝑔𝑟
′′(𝑧), 𝑧) = 𝑊𝑈

𝑅(𝑔𝑟
′′(𝑧)) 

 

(14) 

 

The equation 𝑅𝐹(𝑔𝑟
′′, 𝑧) = 𝑊(𝑔′′) is used 

to represent a relationship between the time 

period 𝑒𝑝
′′ and the array [1 … 𝑔′′̂], where 𝑔𝑟

′′  

is the time period. The proposed 

parallelized model could potentially 

enhance makespan performance by 

utilizing an enhanced slot scheduling 

technique for virtual computing workers. 

The utilization of in-memory cache is 

effective in achieving higher makespan 

speed, as demonstrated above. 

3.4 Parallel optimal HMR 

In this section, the HMR framework has 

been optimized for I/O to enhance parallel 

I/O performance and minimize disk search 

times. Furthermore, the HMR MergeSort 

algorithm has been optimized, concurrent 

input/output (I/O) activities within 

Heterogeneous Memory Management 

(HMR) may lead to considerable expenses 

to disk search. The reason for jobs being 

executed in distinct virtual machines 

without any interaction is due to their 

isolated nature. The I/O performance is 

decreased as a consequence. The study 

implemented a technique that involves 

sequential input/output (I/O) and layered 

central processing unit (CPU) execution 

and disk I/O in order to enhance I/O 

performance. The proposed I/O scheduler 

utilizes the ReadWorker (RW) and 

CleanWorker (CW) components to manage 

read and write operations, respectively. RW 

and CW have request capacity pools, which 

are also called multicapacity or multi-buffer 

capacities. Each pool is linked to 76 I/O 

requests. The read/write operations are 

reordered by RW and CW based on the 

selectivity of each capacity pool. 

The proposed model categorizes the 

input/output (I/O) operation into two 

distinct types: active and passive I/O. To 

ensure fault tolerance, an active 

input/output (I/O) mechanism writes both 

the final output and intermediate output 

from Map tasks to the Hadoop distributed 

file system. The system is capable of 

reading input from the Hadoop distributed 

file system. Active I/O is a more selective 

option when compared to passive I/O, 

performing active I/O operations as quickly 

is essential for completing tasks efficiently. 

Passive I/O is a term used to describe the 

process of initiating I/O when intermediate 

data cannot be accommodated in the buffer 

and needs to be temporarily sent to the disk. 

Passive I/O is characterized by low clean 

selectivity and high read selectivity. This is 

achieved through the use of buffers that 

possess high allocation selectivity. 

Upon submission of a write request to the 

I/O scheduler, as detailed in Algorithm 3, 

the scheduler will allocate a selectivity to 

the request based on its class 𝑃 (Line 3 to 

11). Subsequently, a 𝑝𝑜𝑜𝑙 will be 

designated and appended to the pool list in 

𝐶𝑙𝑒𝑎𝑛𝑊𝑜𝑟𝑘𝑒𝑟. The process by which 

𝐶𝑙𝑒𝑎𝑛𝑊𝑜𝑟𝑘𝑒𝑟 performs data purification 

across multiple pools is shown in lines 14 

through 22. Requests with high selectivity 

are prioritized for fulfilment. CleanWorker 

utilizes a round-robin approach to write one 

block per instance for requests with the 

same selectivity by polling their pools. This 

process is referred to as Interleaved-I/O in 

this study. ReadWorker performs the same 

function as CleanWorker in handling a read 

request. 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

142 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

Step 1 start 

Step 2 Determine the required level of 

selection  to fulfil the task 

requirement. 

Step 3  If (Ƥ = 𝛽) then 

Step 4    𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 < − 𝐵 

Step 5 else if  (P=p) 

Step 6 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 < − 𝐾 

Step 7 else if (P=no of turns) 

Step 8 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 < −𝐿 

Step 9 else if (P= 0) 

Step 10 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 < −𝑀 

Step 11 end if 

Step 12 𝑃𝑜𝑜𝑙 

< −𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑜𝑙(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) 

Step 13 Include a new pool in the 

cleaner's pool inventory. 

Step 14 Data cleaning through the 

𝑏𝑢𝑓𝑓𝑒𝑟_𝑝𝑜𝑜𝑙 

Step 15 When the 𝑝𝑜𝑜𝑙𝑖𝑠𝑡 is not null 

Step 16        𝑇 < − 𝑃𝑒𝑎𝑘 selection of 

pools 

Step 17 𝑇𝑜𝑡𝑎𝑙_𝑃𝑜𝑜𝑙 ∈  𝑝𝑜𝑜𝑙𝑙𝑖𝑠𝑡 do 

Step 18 If (𝑡 = 𝑝𝑜𝑜𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) then 

Step 19        𝐶𝑙𝑒𝑎𝑛(𝑝𝑜𝑜𝑙[0]) 

Step 20   end if 

Step 21 end for 

Step 22 end while 

Step 23 end 

  

The operation utilized in this study is 

commonly known as "in-memory merge-

sort" as it is predominantly employed for 

processing data that has been stored in the 

memory. In the context of HMR, the sorting 

process is commonly known as an external 

sort. The sorting algorithm is applied to the 

data that is stored on drives, whereas the 

execution of CPU-bound sort operations 

and disk I/O incurs one after the other as a 

result. The central processing unit (CPU) is 

required to enter a blocking state and 

remain idle until the buffer is completely 

filled with the sorted data. Non-blocking, 

I/O can be achieved through various 

capabilities, the capacity pools of 

𝐶𝑙𝑒𝑎𝑛𝑊𝑜𝑟𝑘𝑒𝑟 are expanded by 

incorporating a cache of data elements. 

Once the cache components have been 

written back to the disk, 𝐶𝑎𝑐ℎ𝑒𝐿𝑖𝑠𝑡 will 

immediately retrieve them.  

4 Result Analysis` 

This section presents an empirical 

evaluation of the HHMR's performance 

related to the previous model across various 

applications. HMR is the recommended 

MR framework for running data-intensive 

and scientific applications on a cloud 

computing infrastructure. The Hadoop 

cluster consists of a single master node and 

four slave nodes; it has been deployed on 

the Microsoft Azure public cloud platform. 

This study utilizes Hadoop 2.7, which 

includes a cloud spot container capacity of 

120 GB, 7 GB of RAM, and 4 cores for each 

worker, encompassing both the master and 

slave. Identical configurations are utilized 

for executing various applications on both 

HMR and HHMR. The evaluation of 

HHMR versus HMR performance in 

memory is based on an assessment that 

considers applications with a high CPU to 

I/O workload. To assess the resilience of a 

parallel computing framework, it is 

essential to utilize the three case studies. 

The study examined various applications, 

including stream data analysis, non-stream 

data analysis, and gene sequence analysis. 

The process of analyzing gene sequences is 

currently resource-intensive in terms of 

memory, CPU, and I/O due to the vast 

amount of genetic data that is accessible. 

HMR models exhibit careful handling of 

tasks that necessitate elevated CPU 

utilization. Therefore, it is essential to 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

143 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

assess its efficiency when subjected to 

memory and I/O intensive workloads. The 

evaluation of the HHMR model's 

performance is crucial in the context of 

diverse genomic data sizes, which may 

comprise short and long reads. The HHMR 

model is designed to tackle the challenges 

related to Memory and Input/Output, while 

simultaneously maintaining the CPU 

capabilities of HMR. This section presents 

an in-depth examination of the genetic 

information that is employed. Both stream 

and non-stream applications are considered 

for analysis. The analysis of data for non-

stream e-commerce data is considered. 

CPU-intensive applications frequently 

require minimal input/output (I/O), here the 

Twitter dataset is considered for non-stream 

applications. The performance of these 

applications relies heavily on the CPU and 

I/O operations. It is vital to evaluate the 

performance of HHMR and HMR in these 

particular applications. The following 

section provides a detailed analysis of the 

dataset. 

4.1 Performance Evaluation for gene 

sequenced data comparing HHMR vs 

HMR 

This section evaluates the efficacy of gene 

sequence analysis through the application 

of the HHMR and HMR frameworks. 

Sequence alignment methods are essential 

for analyzing applications related to cancer 

research, genetic illness detection, and 

reproductive health. This study utilized 

query sequences from the genomic 

databases of baker's yeast, the influenza 

virus, and the Homo sapiens chromosome 

(NC_000015.10). The query details and 

geneomic reference utilised for the 

experimental analysis are shown in table I 

and the result is graphically plotted in fig 2. 

The outcome of the experiment shows that  

The current investigation concerns the 

calculation of the theoretical optimization 

of HHMR makespan time, as outlined in 

Equation (14). The acquired numerical 

result is subsequently compared to the 

empirical value, taking into account 

different sizes of genomic data. The output 

obtained is presented in Figure 3. The 

calculation of makespan, as determined 

through both empirical data and 

mathematical analysis, displays a slight 

variance. It is common for there to be a high 

degree of agreement between the makespan 

time derived from experimental and 

computational approaches. The results of 

the experiment suggest that incorporating 

gene sequence analysis into the proposed 

HHMR framework generates better results 

when compared to the HMR framework. 

The demonstration is achieved via the 

utilization of bioinformatics analysis. The 

mathematical model for job makespan in 

HHMR is validated by means of correlation 

measurements, which conform to its 

accuracy and validity.

 

  



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

144 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

Table 1 Gene sequence considered for experiment analysis  

Reference genome sequence  
Sequence length 

Query genome sequence 
Sequence 

length 

NC_000015.10 101991189 bp NC 026141.2 4988 base 

pair 

NC_000015.10 101991189 bp NC 010955.1 10207 base 

pair 

Saccharomyces cerevisiae 

S288c chromosome XII 

1001933 bp Saccharomyces cerevisiae 

S288c chromosome 

V_BK006939.2 

576874 base 

pair 

Saccharomyces cerevisiae 

S288c chromosome XII 
1001933 bp 

Saccharomyces cerevisiae 

S288c chromosome 

XVI_BK006949.2 

948066 base 

pair 

 

 

 

Figure 1 Makespan comparison of gene sequenced data of existing system and proposed system 

 

 

0

50

100

150

200

250

300

350

400

450

500

4 9 8 8  B P 1 0 2 0 7  B P 1 5 1 3 1  B P 5 7 6 8 7 4  B P 9 4 8 0 6 6  B P

TI
M

E

GENOMIC DATA

MAKESPAN COMPARISON FOR GENE 
SEQUENCED DATA

HHMR HMR



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

145 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

 

Figure 2 Theoretical and actual execution times on varied datasets and the magnitude of the 

genomic data  using the HHMR framework are correlated. 

 

4.2 Performance Evaluation of e-

commerce data comparing HHMR vs 

HMR 

This section discusses the findings of a 

performance assessment conducted on 

HHMR and HMR for e-commerce data. 

The purpose of the assessment was to 

compare the performance of HHMR and 

HMR in handling e-commerce data. The 

investigation was carried out using 

established methodologies and statistical 

techniques. The results of the assessment 

are depicted in this section. The 

performance of the HDPC and HMR 

framework is assessed in this section with 

respect to its application in the analysis of 

e-commerce data. The program 

"Wordcount" (also known as "Text 

computation/mining") is utilized for the 

purpose of conducting experimental 

analysis. The experiment instance 

illustrated in Table II is considered in this 

study. Figure 4 presents a visual 

representation of the outcomes obtained 

from the wordcount analysis conducted on 

the Amazon review dataset. 

The present study estimates and compares 

the experimental value of HHMR's 

makespan time with the theoretically 

optimized value. The analysis takes into 

account various Amazon review data sizes. 

Figure 5 depicts the resulting outcome. The 

experimental results and calculations 

related to makespan computation exhibit a 

minor deviation. Frequently, there exists a 

significant concurrence between the 

makespan times obtained from experiments 

and those calculated. The experimental 

findings indicate that utilizing Wordcount 

analysis, a technique in text 

computing/mining, on the proposed HHMR 

framework produces superior outcomes in 

comparison to utilizing the HMR 

framework. The level of precision and 

accuracy of the makespan model utilized in 

the HHMR is demonstrated through 

correlation measurements. 

 

0

20

40

60

80

100

120

140

160

Ti
m

e
 r

e
q

u
ir

e
d

 f
o

r 
e

xe
cu

ti
o

n
e

Genomic data

Makespan comparison

HHMR HHMR-Theory



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

146 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

Table 2 E-commerce data considered for experiment analysis  

Experiment ID 
Dataset  

Number of 

reviews 

Number of 

product 

1 Sports and outdoors 3,268,695 532,197 

2 Cellphones and accessories  3,447,249 346,793 

3 Clothing shoes and jewelry  5,748,920 1,503,384 

 

 

Figure 3  total makespan time required to perform E-commerce analysis on datasets of varying 

sizes and review sizes using both the HHMR and HMR frameworks. 

 

Figure 4 Theoretical and actual execution times on varied datasets and the magnitude of the 

review done using the HHMR framework are correlated. 

 

0

20

40

60

80

100

120

140

3 2 , 6 8 , 6 9 5 3 4 , 4 7 , 2 4 9 5 7 , 4 8 , 9 2 0

M
A

K
ES

P
A

N
 T

IM
E

REVIEW SIZE

MAKESPAN TIME FOR  REVIEW 

HHMR HMR

0

10

20

30

40

50

60

32,68,695 34,47,249 57,48,920

M
ak

e
sp

an
 t

im
e

Review size

Makespan Comparison

HHMR HHMR-Theory



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

147 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

4.3  Performance assessment of HHMR 

vs HMR using stream data analysis 

This section evaluates the performance of 

the stream application on both HHMR and 

HMR frameworks. The hot word detection 

application is being taken into 

consideration. Python is the programming 

language utilized for application 

development. In order to evaluate the 

effectiveness of a system or process, it is 

necessary to conduct a performance 

assessment. The "Movietweetings" dataset 

has been taken into consideration. The 

present task is stored in a container of Azure 

blob storage and employs stream tweet 

sizes of 25K, 50K, and 100K for 

experimental evaluation. The hot word 

detection test is performed on the stored 

data of both HMR and HHMR. The 

outcomes of this test are recorded as 

illustrated in Figure 6. 

The makespan time of HHMR is 

theoretically optimized and compared to 

experimental values obtained from varying 

tweet data sizes. Figure 7 presents the 

resulting output. The computation of 

makespan based on experimental results 

and mathematical analysis exhibits a minor 

deviation. The experimental and calculated 

makespan times frequently exhibit 

significant concurrence. The experimental 

findings indicate that the HHMR 

framework's stream data analysis 

outperforms the HMR framework in terms 

of performance. The accuracy and validity 

of the makespan model utilized in the 

HHMR is demonstrated through correlation 

measurements. 

 

 

 

Figure 5  Makespan time for various stream sizes 

 

0

20

40

60

80

100

120

2 5 K 5 0 K 1 0 0 K

M
A

K
ES

P
A

N
 T

IM
E

TWITTER FEEDS

MAKESPAN TIME FOR VARIOUS 
STREAM SIZES

HHMR HMR - MAP TASKS



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

148 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

 

Figure 6 Makespan time considering varied tweets 

4.4 Comparison result 

This section discusses the advantages of 

HHMR over HMR and other Hadoop-based 

MR models for a variety of applications, 

including hot word detection, non-stream 

applications for analysing e-commerce 

reviews, and non-stream applications for 

genomic sequence analysis. The findings 

presented here demonstrate that the 

suggested makespan model, which takes 

into account memory optimization and a 

parallel execution technique to eliminate 

empty/null slots, results in the HHMR 

framework minimizing the overall 

makespan. In table 3 the comparative 

analysis for gene sequence data is carried 

out for 4988 bp, 10207 bp, 15131 bp, 

576846 bp, 948066 bp the improvisation is 

124.896%, 82.2939%, 98.4811%, 

65.1441%, 66.8069%. In table 4 the 

comparative analysis is carried out for 

review data for reviews 32,68,695, 

34,47,249, 57,48,920 the improvisation is 

75.9679%, 68.4801%, 81.6689%. In table 5 

the comparative analysis is carried out for 

twitter feeds data for 25k,50k and 100k the 

improvisation is 101.767%, 70.6656%, 

85.7474%. 

Table 3 Comparative Analysis for gene sequenced data 

Gene sequenced 

data 

ES PS Improvisation 

4988 bp 9.72 2.2469518 124.896% 

10207 bp 28.45 11.86267896 82.2939% 

15131 bp 72.56 24.67899 98.4811% 

576846 bp 201.66 102.567 65.1441% 

948066 bp 253.75 126.675 66.8069% 

 

  

0

10

20

30

40

50

50K 100K

M
ak

es
p

an
 t

im
e

Twitter feeds considered

Makespan time considering varied tweets

HHMR HHMR-Theory



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

149 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

Table 4 Comparative Analysis for review data 

Review ES PS Improvisation 

32,68,695 83.857 37.689 75.9679% 

34,47,249 86.215 42.234 68.4801% 

57,48,920 115.085 48.348 81.6689% 

 

Table 5 Comparative Analysis for twitter feeds data 

Twitter feeds data ES PS Improvisation 

25k 40.998 13.3459 101.767% 

50k 58.57 27.987 70.6656% 

100k 109.787 43.897 85.7474% 

 

Conclusion: 

The objective of this study was to examine 

the constraints of the Hadoop MapReduce 

framework. This section discusses the 

importance of memory and input/output 

(I/O) requirements in the development of an 

efficient HMR (Hybrid Mobile 

Application) framework. The aim of this 

project was to reduce the time taken for 

makespan and enhance the efficiency of 

resource utilization in a cloud computing 

environment. This article presents a model 

for achieving a Hybrid Hadoop MapReduce 

makespan. The HHMR makespan model 

has been developed with the objective of 

minimizing the unutilized or null slot of a 

virtual compute node. The proposed 

approach involves the development of an 

optimization model to manage the memory 

of local workers. Our developed paradigm 

enables efficient parallel processing while 

minimizing memory overhead. The 

segmented data is divided into smaller units 

to enable concurrent processing by virtual 

machines utilized in MapReduce 

computing. Efficient utilization of 

resources (slots) is made possible by the use 

of parallel execution technique and minimal 

memory usage, which reduces memory I/O 

overhead. Microsoft Azure HDInsight, a 

cloud-based platform for the public, is 

currently in the testing phase for its usage. 

The performance of the HHMR framework 

has undergone testing in comparison to the 

latest parallel computing technology. The 

validation process encompassed various 

applications, including bioinformatics, text 

mining, stream, and non-stream 

applications. 

REFERENCES 

[1] B. He, W. Fang, Q. Luo, N. K. 

Govindaraju, and T. Wang, “Mars: a 

MapReduce framework on graphics 

processors,” in Proceedings of the 17th 

international conference on Parallel 

architectures and compilation 

techniques - PACT ’08, p. 260, 2008. 

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, 

and D. Fetterly, “Dryad: distributed 

data-parallel programs from sequential 

building blocks,” ACM SIGOPS Oper. 

Syst. Rev., vol. 41, no. 3, pp. 59–72, 

Mar. 2007. 

[3] M. Zaharia, M. Chowdhury, M. J. 

Franklin, S. Shenker, and I. 

Stoica,“Spark: Cluster Computing with 

Working Sets,” in Proceedings of the 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

150 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

2nd USENIX Conference on Hot topics 

in Cloud Computing, (Boston,MA), 

June 2010. 

[4] J. Dean and S. Ghemawat, 

“MapReduce: Simplified Data 

Processing on Large Clusters,” ACM 

Commun., vol. 51, no. 1, pp. 107–113, 

Jan. 2008. 

[5] “Apache Hadoop.” [Online]. Available: 

http://hadoop.apache.org/. [Accessed: 

21-july-2018]. 

[6] U. Kang, C. E. Tsourakakis, and C. 

Faloutsos, “PEGASUS: Mining Peta-

scale Graphs,” Knowl. Inf. Syst., vol. 

27, no. 2, pp. 303–325, May 2011. 

[7] X. Shi et al., "Mammoth: Gearing 

Hadoop Towards Memory-Intensive 

MapReduce Applications," in IEEE 

Transactions on Parallel and 

Distributed Systems, vol. 26, no. 8, pp. 

2300-2315, Aug. 1 2015. 

[8] J. Zhu, J. Li, E. Hardesty, H. Jiang and 

K. C. Li, "GPU-in-Hadoop: Enabling 

MapReduce across distributed 

heterogeneous platforms," Computer 

and Information Science (ICIS), 2014 

IEEE/ACIS 13th International 

Conference on, Taiyuan, pp. 321-326, 

2014. 

[9] D. Dahiphale et al., "An Advanced 

MapReduce: Cloud MapReduce, 

Enhancements and Applications," in 

IEEE Transactions on Network and 

Service Management, vol. 11, no. 1, pp. 

101-115, March 2014. 

[10] E. Deelman, G. Singh, M. Livny, B. 

Berriman and J. Good, "The cost of 

doing science on the cloud: The 

Montage example," 2008 SC - 

International Conference for High 

Performance Computing, Networking, 

Storage and Analysis, Austin, TX, pp. 

1-12, 2008. 

[11] N. Chohan, C. Castillo, M. Spreitzer, 

M. Steinder, A. Tantawi, and C. Krintz, 

“See spot run: using spot instances for 

mapreduce workflows,” in Proc. 2010 

USENIX Conference on Hot Topics in 

Cloud Computing, ser. HotCloud’10. 

USENIX Association, pp. 7–7, 2010. 

[12] X. Lin, Z. Meng, C. Xu, and M. Wang, 

“A Practical Performance Model for 

Hadoop MapReduce,” in Cluster 

Computing Workshops (CLUSTER 

WORKSHOPS), 2012 IEEE 

International Conference on, pp. 231–

239, 2012. 

[13] X. Cui, X. Lin, C. Hu, R. Zhang, and C. 

Wang, “Modeling the Performance of 

MapReduce under Resource 

Contentions and Task Failures,” in 

Cloud Computing Technology and 

Science (CloudCom), 2013 IEEE 5th 

International Conference on, vol. 1, pp. 

158–163, 2013. 

[14]  Liu Y, Maskell DL, Schmidt B. 

CUDASW + + : optimizing Smith– 

Waterman sequence database searches 

for CUDA-enabled graphics processing 

units. BMC Res. Notes. 2009; 2:73. 

[PubMed: 19416548].  

[15] Nawrocki EP, Kolbe DL, Eddy SR. 

Infernal 1.0: inference of RNA 

alignments. Bioinformatics. 2009; 

25:1335–1337. [PubM ed: 19307242] 

One of the first GPU-based RNA 

sequence aligners. 

[16] L. D. Stein, “The case for cloud 

computing in genome informatics,” 

Genome Biology, vol. 11, no. 5, article 

207, 2010.  

[17] R. S. Thakur, R. Bandopadhyay, B. 

Chaudhary, and S. Chatterjee, “Now 

and next-generation sequencing 

techniques: future of sequence analysis 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

151 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

using cloud computing,” Front 

Genetics, vol. 3, article 280, 2012.  

[18]  J. Chen, F. Qian, W. Yan, and B. Shen, 

“Translational biomedical informatics 

in the cloud: present and future,” 

BioMed Research International, vol. 

2013, Article ID 658925, 8 pages, 2013. 

[19]   T. Nguyen, W. Shi, and D. Ruden, 

“CloudAligner: a fast and fullfeatured 

MapReduce based tool for sequence 

mapping,” BMC Research Notes, vol. 

4, article 171, 2011. 

[20] John Gantz and David Reinsel. THE 

DIGITAL UNIVERSE IN 2020: Big 

Data, Bigger Digital Shadows, and 

Biggest Growth in the Far East. Tech. 

rep. Internet Data Center (IDC), 2012. 

URL: 

http://www.emc.com/collateral/analyst

-reports/idc-the-digitaluniverse-in-

2020.pdf.  

[21]  M. Sahli, E. Mansour, T. Alturkestani 

and P. Kalnis, "Automatic tuning of 

bag-of-tasks applications," 2015 IEEE 

31st International Conference on Data 

Engineering, Seoul, pp. 843-854, 2015 

[22] J. Arram, T. Kaplan, W. Luk and P. 

Jiang, "Leveraging FPGAs for 

Accelerating Short Read Alignment," in 

IEEE/ACM Transactions on 

Computational Biology and 

Bioinformatics, vol. 14, no. 3, pp. 668- 

677, May-June 1 2017. 

[23]  N. Chohan, C. Castillo, M. Spreitzer, 

M. Steinder, A. Tantawi, and C. Krintz, 

“See spot run: using spot instances for 

mapreduce workflows,” in Proc. 2010 

USENIX Conference on Hot Topics in 

Cloud Computing, ser. HotCloud’10. 

USENIX Association, 2010, pp. 7–7. 

[24]  Babak Alipanahi, Andrew Delong, 

Matthew T Weirauch and Brendan J 

Frey1, "Predicting the sequence 

specificities of DNA- and RNA-binding 

proteins by deep learning," in nature 

biotechnology, vol. 33, no 8, 2015. 

[25] H. Alshammari, J. Lee and H. Bajwa, 

"H2Hadoop: Improving Hadoop 

Performance using the Metadata of 

Related Jobs," in IEEE Transactions on 

Cloud Computing, vol. PP, no. 99, pp. 

1-1, 2016. [54] K. Mahadik, S. Chaterji, 

B. Zhou, M. Kulkarni and S. Bagchi, 

"Orion: Scaling Genomic Sequence 

Matching with Fine-Grained 

Parallelization," SC14: International 

Conference for High Performance 

Computing, Networking, Storage and 

Analysis, New Orleans, LA, 2014, pp. 

449-460. 

[26] 6]J. Kim, H. Roh and S. Park, 

"Selective I/O Bypass and Load 

Balancing Method for Write-Through 

SSD Caching in Big Data Analytics," in 

IEEE Transactions on Computers, vol. 

67, no. 4, pp. 589-595, April 1 2018. 

[107]N. Zhang, M. Wang, Z. Duan and 

C. Tian, "Verifying Properties of 

MapReduce-Based Big Data 

Processing," in IEEE Transactions on 

Reliability, doi: 

10.1109/TR.2020.2999441, 2020. 

[27]  Zheng, Huanyang & Wu, Jie. (2018). 

Joint Scheduling of Overlapping 

MapReduce Phases: Pair Jobs for 

Optimization. IEEE Transactions on 

Services Computing. PP. 1-1. 

10.1109/TSC.2018.2875698, 2018. 

[28]  Y. Yao, H. Gao, J. Wang, B. Sheng and 

N. Mi, "New Scheduling Algorithms 

for Improving Performance and 

Resource Utilization in Hadoop YARN 

Clusters," in IEEE Transactions on 

Cloud Computing, doi: 

10.1109/TCC.2019.2894779, 2019. 



Makespan Aware Optimized Hybrid-Hadoop MapReduce model in cloud computing 

Environment 

 

Section A-Research paper 

 

 

152 
Eur. Chem. Bull. 2023,12(Special Issue 9), 133-152 

 

 

[29] S. Wu, H. Chen, H. Jin and S. Ibrahim, 

"Shadow: Exploiting the Power of 

Choice for Efficient Shuffling in 

MapReduce," in IEEE Transactions on 

Big Data, doi: 

10.1109/TBDATA.2019.2943473, 

2019.  

[30] D. Yang, D. Cheng, W. Rang and Y. 

Wang, "Joint Optimization of 

MapReduce Scheduling and Network 

Policy in Hierarchical Data Centers," in 

IEEE Transactions on Cloud 

Computing, doi: 

10.1109/TCC.2019.2961653, 2019 

 


