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Abstract—Driven by the rapid strides in information tech- 
nology, video surveillance systems have seamlessly integrated 
themselves as pivotal components within contemporary urban 
security and protection frameworks. This holds particularly 
true for locations like prisons, where surveillance cameras are 
ubiquitously deployed. However, as the surveillance network 
continually expands, these cameras bring not only convenience 
but also generate an extensive volume of monitoring data. This 
situation presents significant challenges related to data storage, 
analysis, and retrieval. Integrating intelligent video analytics 
technology into a smart monitoring system can effectively oversee 
and proactively alert for anomalous events or behaviors. This 
area represents a prominent avenue of research within the 
surveillance domain. In this study, deep learning techniques are 
employed, utilizing the cutting-edge instance segmentation frame- 
work known as Mask R-CNN. The methodology the authors 
adopt encompasses the training of a fine-tuning network using 
the dedicated datasets. This network showcases its adeptness 
in efficiently recognizing objects within video frames, all the 
while generating precise segmentation masks for each identified 
instance. Empirical findings underscore the ease of training 
our network and its seamless applicability to different datasets. 
Remarkably, the average precision of the segmentation masks 
approaches an impressive 98.5% on our exclusive datasets. 

Index Terms—Surveillance Video; Deep Learning; Mask R- 
CNN; Object Detection; 

 

I. INTRODUCTION 

Conventional video surveillance systems are limited to basic 

functions like video recording and storage. They lack the abil- 

ity to autonomously detect and alert for unusual situations. To 

identify abnormal behaviors in real-time monitoring, human 

operators must constantly monitor the video feed. However, 

this results in fatigue as operators need to keep track of numer- 

ous surveillance video streams. This continuous monitoring 

can lead to reduced concentration, potentially causing delayed 

responses to anomalies and overlooking crucial information in 

the footage. 

Furthermore, the need to store a substantial volume of 

surveillance video over extended periods, often spanning 

months or years, leads to significant storage costs. Conse- 

quently, there is a pressing need for an intelligent video 

surveillance system that can alleviate the burden on human 

operators. This system should employ intelligent detection 

technology to process, analyze, and comprehend video signals 

while preserving essential information within the footage. It 

should also autonomously identify target categories and their 

locations, eliminating the need for manual intervention. Should 

an anomaly occur, the system should promptly issue alarms 

to effectively support human operators. 

Conventional methods for detecting moving targets are lim- 

ited to identifying frames with motion but lack comprehension 

of the video’s semantic content. In the context of deep learn- 

ing advancements, sophisticated techniques for target detec- 

tion, semantic understanding, and instance segmentation have 

emerged. These techniques enable semantic comprehension of 

video content and enhance accuracy. 

II. LITERATURE SURVEY 

A method introduced by K. He et al. [1] exemplifies 

target segmentation by generating bounding boxes and masks 

for individual objects within images. This paper garnered 

recognition as the best paper at ICCV2017. 

The progression of video analysis technology has led to 

rapid developments in intelligent video surveillance systems. 

These systems leverage embedded video analysis algorithms 

to autonomously detect abnormal behavior at monitored lo- 

cations. Common anomalous behaviors include entrance/exit, 

rapid movement, and congregation.In the work by J. Zong 

et al. [2], a system for motion detection and target recog- 

nition is introduced, employing frame differences and self- 

mapping neural networks to enhance accuracy. Meanwhile, 

IBM’s Intelligent Surveillance System [3] leverages state-of- 

the-art computer vision algorithms for the automated detection 

of events in densely populated urban environments. Semantic 

segmentation-based video segmentation and object tracking 

are realized in the research by X. Liu et al. [4][5], offering a 

means to streamline video data analysis. 

This study draws from the foundation laid by reference [1] 

to extract informative key frames from videos and construct a 
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Fig. 1. VGG16 Architecture 

 

 
requisite dataset. Fine-tuning is performed on the upper-layer 

network of Mask R-CNN to achieve optimal accuracy tailored 

to this dataset. Target detection and instance segmentation 

are executed on videos spanning six consecutive working 

days each week. The resulting textual output encompasses the 

counts and positions of prisoners and chairs across various mo- 

ments in the video. This information is further utilized to chart 

daily people count trends over time and the distribution of 

individual positions and chair placements. Such visualizations 

enable monitors to discern differences between normal and 

abnormal curves, triggering automatic alarms upon detecting 

anomalous situations. 

 
III. METHODOLOGY 

A. CNN 

Convolutional Neural Networks (CNNs) represent a type 

of artificial neural network initially introduced by LeCun 

et al. as a pivotal deep learning algorithm. This paradigm 

has achieved remarkable success particularly in the domain 

of computer vision, notably within image recognition and 

speech analysis, thus becoming a central focus of research. 

A distinguishing feature of CNNs is weight sharing, which 

mitigates the challenges of processing high-dimensional data. 

They offer the unique capability to directly employ images as 

network inputs, showcasing strong generalization prowess. 

Illustrating the effectiveness of CNNs, the VGG16 network 

[8] serves as an exemplar to elucidate network structure, the 

utilization of the Backpropagation (BP) algorithm during train- 

ing, and the overall training procedure. Convolutional neural 

networks exhibit several archetypal configurations that have 

gained prominence over the years. The trajectory commenced 

with LeNet in 1998 and culminated in the emergence of 

AlexNet in 2012. Subsequently, they gained prominence in 

diverse image-related domains, boasting iterations such as ZF- 

Net, GoogleNet, VGG-Net, and ResNet. The subsequent expo- 

sition highlights VGG16 as an illustrative case to elucidate the 

construction of a CNN. The network’s architecture is visually 

depicted in Figure 1. 

The approach known as Region-based Convolutional Neural 

Network (R-CNN) [10] employs the selective search method 

[11] to generate potential target regions, allowing individual 

regions of interest (RoIs) to undergo processing. This convo- 

lutional neural network utilizes an SVM classifier to ascertain 

the target category and utilizes border regression to refine the 

border position, ultimately achieving the detection of target 

bounding boxes. 

Keras, a framework developed by Google engineer Francois 

Chollet, serves as a deep learning modeling environment 

in Python, leveraging backend computing frameworks like 

TensorFlow, CNTK, or Theano [9]. In comparison to other 

frequently utilized deep learning frameworks, Keras offers a 

significant advantage due to its user-friendliness. It liberates 

users from intricate mathematical formula commands, provid- 

ing a direct approach to constructing specific architectures for 

deep learning neural networks. 

Keras presents notable benefits in practical applications [9]: 

Keras provides highly   efficient   Python   APIs,   adaptable 

to various deep learning frameworks. It supports prevalent 

structures like Convolutional Neural Networks (CNN) and Re- 

current Neural Networks (RNN), enabling rapid construction 

and training of personalized deep learning models. 

The framework is characterized by its lightweight and 

modular nature. Users can flexibly combine modules to com- 

pose the desired model. In Keras, a neural network model 

can be depicted as either a sequential or a graph model. 

The components, including neural network layers, activation 

functions, loss functions, regularization methods, initialization 

techniques, and optimization engines, are organized into mod- 

ules. Users can arrange these modules within a sequential or 

graph model to construct the desired architecture, reducing 

the need for extensive code writing, enhancing efficiency, and 

minimizing error-prone situations. 

Keras, built on the Python language, offers exceptional ease 

of use and scalability. 

The framework seamlessly facilitates switching between 

Central Processing Units (CPU) and Graphics Processing 

Units (GPU), accommodating diverse application environ- 

ments. 

 
B. Mask R-CNN 

The configuration of the network is displayed in Figure 2. In 

a broad sense, the Mask R-CNN architecture can be segmented 

into two principal components: the lower layer and the upper 

layer network. The lower layer network takes the form of a 

ResNet-FPN convolutional neural network, primarily tasked 

with extracting distinctive features from the input image. 

Conversely, the upper layer network, integrated into the Faster 

R-CNN model, incorporates an Fully Convolutional Network 

(FCN) that encompasses classification, border regression, and 

mask prediction elements. 

(1) Training: The training process centers on utilizing im- 

ages as the foundation. The initial step involves resizing the 

images, with each Graphics Processing Unit (GPU) simultane- 

ously processing two images. Following the Region Proposal 

Network (RPN) phase, every image yields N Region of Interest 

(RoI) samples. The positive-to-negative sample ratio is set 

at 1:3, with N being 64 for the C4 backbone and 512 for 

FPN. Training involves 160,000 iterations on 8 GPUs, with 

a learning rate of 0.02. Learning rate attenuation is applied, 

reducing the rate by a factor of 10 at the 120th iteration. 

Additional parameters include a weight decay of 0.0001 and 
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Fig. 2. Mask R-CNN architecture 

 

Fig. 3. Upper Layer Network of Mask R-CNN 

 

 

momentum of 0.9. The RPN anchor spans 5 scales and 3 aspect 

ratios. 

(2) Prediction: In the prediction stage, the C4 backbone 

network generates 300 candidate regions, whereas the FPN 

produces 1000. These regions then undergo bounding box 

prediction, followed by non-maximum suppression (NMS) 

[22]. Subsequently, the mask branch is applied to the top 100 

detection boxes with the highest scores. For each Region of 

Interest (RoI), predictions for K masks are generated, but only 

the mask corresponding to the kth category of the classification 

branch prediction is chosen. 

C. Intelligent Video Detection Utilizing the Mask R-CNN 

Approach 

In contrast to Faster R-CNN, Mask R-CNN introduces only 

a minimal increase in computational overhead while offering a 

training process that is both uncomplicated and adaptable. This 

study employs the Mask R-CNN methodology for intelligent 

detection within indoor surveillance videos. Thanks to the pre- 

trained weight model derived from the COCO dataset, capable 

of recognizing 80 diverse object classes and backgrounds, 

the recognition capability is extensive. Consequently, the AP 

values achieved on the datasets discussed in this paper are not 

particularly high, as presented in Table 6. 

However, the specific objective of this study revolves around 

identifying two specific categories of targets along with the 

background, concentrating on quantifying and establishing 

location distribution. To address this objective, a transfer learn- 

ing approach is embraced, wherein the Mask R-CNN network 

undergoes fine-tuning using the pre-trained COCO weight 

model. Subsequently, the upper layer network is retrained to 

attain the optimal model for accurately detecting individuals 

and chairs, as well as determining their numbers and positions 

 

 
Fig. 4. Labelling the images with labelme 

 

 
Fig. 5. Labels during dataset production 

 
 

across various instances in the video. Visualizations in the 

form of count and distribution curves are generated, facilitating 

the automatic detection of abnormal events. 

The experimental dataset for this research is derived from 

video recordings captured by a surveillance camera in a school 

laboratory. Videos were recorded during the working days of 

Monday to Saturday, spanning a week’s routine. The process 

involves extracting key frames from the video, annotating 

target outlines and categories within the images, saving this 

information in JSON files, which conform to the standard data 

format compatible with Mask R-CNN’s processing. 

The process unfolds as follows: Members of the laboratory 

captured a video spanning six days, adhering to daily routines. 

The surveillance video’s frame rate was 25 frames per second 

(fps), yielding closely spaced frames. To mitigate redundancy, 

a frame was selected every 12 seconds, equating to one frame 

every 288 frames, resulting in approximately 7,500 images 

from one day’s video. 

However, initial frame extraction yielded numerous dupli- 

cates, largely from scenes such as dormitory sleep or leaving 

for work. These duplicates had minimal impact on neural 

network training. To mitigate this, frames were chosen from 

sequences with significant target variations. After these two 

steps, over 600 useful images were culled from the original, 

voluminous dataset. 

Subsequently, under the ubuntu16.04 system, the annotation 

software ”labelme” was employed to annotate images. This 

involved delineating masks for individuals and chairs within 
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Fig. 6. Mask visualization of images 

 

 

the images, along with assigning corresponding categories. 

Naming conventions followed the patterns ”person1,” ”per- 

son2,” ”chair1,” ”chair2,” and so forth, depicted in Figure 4. 

These annotations were saved as JSON files. 

IV. EXPERIMENTAL RESULTS 

There are two methodologies for pre-training models: 

Training solely the upper layer network component: This ap- 

proach is generally suited for scenarios where the new dataset 

closely resembles the original dataset and is relatively small 

in size.In order to preserve the feature extraction capabilities 

of the underlying backbone network, all layers of ResNet- 

101-FPN are locked, maintaining the current weight values of 

these lower-level backbone networks. The sole layer subjected 

to training is the upper layer network’s newly initialized 

component. 

Training all layers: In scenarios necessitating better adap- 

tation to the new dataset, all layers must be retrained. This 

involves using pre-training weights as initial values and con- 

ducting training across the entire network, from its first layer 

to the last. 

Given that this study’s dataset shares similarities with the 

MS COCO dataset and is comparatively compact, to ensure 

swift convergence and efficiency without compromising accu- 

racy, the first method is employed. Training is conducted on a 

single GPU with an effective small batch size of 2, spanning 

3,000 iterations, and a learning rate of 0.001. 

1) Process of Training: Throughout the training process, an 

image is selected randomly from the training set, visualizing 

the masks for distinct objects like individuals and chairs, 

as illustrated in Figure 6. Concurrently, the ”fit generate()” 

function systematically records the training log within a desig- 

nated logs file. Within this study, the TensorFlow framework’s 

tensorboard tool is harnessed to dynamically monitor the 

evolution of each loss function. By scrutinizing the loss func- 

tion’s alterations in response to iteration counts, continuous 

fine-tuning of network parameters is executed. Optimality is 

achieved when the loss function exhibits a descending trend 

and approaches convergence. For the training set comprising 

300 images and the validation set encompassing 40 images, 

the network parameters adhere to the specifications outlined in 

Table 4. The progression curves depicting the loss function’s 

dynamics over iterations for both the training and validation 

sets are showcased in Figure 7 and Figure 8, respectively. 

When dealing with a training set size of 300, this study 

delves into the influence of the anchor size within the RPN 

network on network accuracy. The results, showcased in Table 

2, underscore that when the anchor’s aspect ratio remains 

consistent at (0.5, 1, 2), the mAP (mean Average Precision) 

attains its zenith at an anchor size of (32, 64, 128, 256, 

512). This specific anchor size selection aligns optimally with 

the original image’s dimensions, as the dimensions of these 

five scales correspond most effectively to the sizes of the 

distinct targets within the image. This strategic choice ensures 

that larger targets aren’t overlooked due to overly diminutive 

anchors, nor are smaller targets missed due to excessively large 

anchors. 

When the training set size comprises 100 samples, this study 

examines the impact of employing distinct batch sizes on both 

the speed of network training and the resultant model accuracy. 

In this scenario, a single GPU is utilized, and the epoch’s steps 

are determined by the formula steps = 100 / batch size. As 

indicated in Table 3, the overall training duration is nearly 

equivalent when the batch size is either 1 or 2. The training 

duration for each image is approximately 10 seconds, and the 

loss function converges to a value of 1 for a batch size of 

1, oscillating during the process. In contrast, a batch size of 

2 leads to a reduction in the required iterations for a single 

cycle. However, with a batch size of 4, the process fails to 

execute due to insufficient memory. 

Initially, this study utilized a training set comprising 100 

images, coupled with a validation set containing 40 images for 

training purposes. Acknowledging the inherent limitation of a 

small training set, which can lead to overfitting, adjustments 

were made to expand the training set size to 200 and 300 

images, as detailed in Table 4. This variation aimed to evaluate 

the influence of training set size on network accuracy. With 

network parameters kept constant and an epoch duration of 

18, the mAP value exhibited a steady rise as the training 

set size escalated. This phenomenon can be attributed to the 

larger training sets yielding a greater extraction of features, 

thus amplifying the network’s generalization capabilities, and 

correspondingly augmenting accuracy in both detection and 

segmentation tasks. As a result, future endeavors can con- 

tinue to amplify the training set size, further bolstering the 

network’s generalization aptitude while mitigating overfitting 

tendencies. Nevertheless, such augmentation comes at the cost 

of increased training time, subsequently elevating the time 

investment required for the process. 

Among the top 20 epochs, the Mask R-CNN model demon- 

strating the highest accuracy on the validation set was selected 

as the definitive model. The average accuracy scores for both 

the COCO weight model and the model assessed on the 

Lab426 validation set are provided in Table 4. Building upon 

the COCO weight model’s foundation, the upper layer network 

within the Mask R-CNN architecture is subsequently retrained 

using the dataset introduced in this paper. Through a process 

of successive enhancements, the mask Average Precision (AP) 

of the ultimate model advances remarkably to an impressive 

98.5%. Comparative results of the two models applied to 

identical images are illustrated in Figure 9. 

The outcomes of the fine-tuned Mask R-CNN are visually 

depicted in Figure 10. Favorable results have been attained 

in both target detection and instance segmentation tasks. 
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Fig. 7. Training set loss function curve 

 

 
 
 
 
 

 
Fig. 8. validation set loss function 

 

 

Notably, even instances involving partial occlusions and over- 

laps between targets yield improved segmentation outcomes. 

However, within the 40 images constituting the validation set, 

instances of detection errors still exist, as showcased in Figure 

Fig. 10. Test results of lab426 model 

 

 

Fig. 11. Test results on fine tuned Mask R-CNN 

 
weights batch size epoch validation steps 

0.0001 2 19 20 

0.001 2 25 25 

TABLE I 
TRAINING  PARAMETERS  WITH  LEARNING  RATE  OF  0.001 

 
 

anchor ratio anchor sclaes anchors per image 

0.5,1,2 32, 64, 128, 256, 512 256 

4.10. Analysis of these images highlights that substantial 

overlaps between distinct targets, or challenges arising from 

occlusion (as exemplified in Figure 4.10(a), where a person 

seated on a chair obstructs the central part of the chair, 

rendering only the backrest and a portion of the chair leg 

visible, leading to Mask R-CNN mistaking it for two chairs), 

result in errors. Given the constraint imposed by the limited 

RPN 
TABLE II 

PARAMETERS WITH NMS THRESHOLD OF 0.7 AND POSITIVE 

ANCHOR RATIO 0.33 

 
 

weights batch size epoch validation steps 

0.0001 2 19 20 

0.001 2 25 25 
TABLE III 

dataset size, the occurrence of fitting phenomena is inevitable. 

Therefore, for the purpose of optimizing training velocity, 

the strategy of augmenting the training dataset size stands 

as a viable approach, contributing to the enhancement of the 

network’s generalization capabilities. 

V. CONCLUSION 

This study presents an approach centered on Mask R-CNN 

to enable intelligent monitoring of indoor surveillance videos. 

By harnessing cutting-edge target detection and instance seg- 

 
 

Fig. 9. Test results of COCO model 

TRAINING  PARAMETERS  WITH  LEARNING  RATE  OF  0.001 

 
 
 

mentation techniques within the domain of deep learning, the 

method achieves semantic comprehension of video content. 

This not only preserves crucial details embedded within the 

original video but also alleviates the storage and computational 

burden posed by extensive surveillance footage. Additionally, 

the incorporation of an automated alarm mechanism for de- 

tecting anomalous events serves to alleviate the workload of 

 
 

Fig. 12. Few Misclassified error samples 
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