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Abstract

The construction of methods for solving applied problems is of mecomuennyto akryansrocts In this case, the
following requirements for the method are of particular importance: algorithmic simplicity and speed,
estimation of the accuracy of an approximate solution; minimum a priori information about the desired solution;
certain universality of the numerical algorithm. Bearing in mind a large number of specific mathematical
problems (integral equations, boundary value problems for differential equations, etc.), it is convenient to study
approximate methods immediately for some classes of equations, that is, in the form of operator equations. This
work is a direct generalization and development of the method of connected differential descent [1,2,3] for
solving systems of finite-dimensional equations as applied to solving operator equations considered in separable
Banach spaces. The differential descent method based on the solution of the Cauchy problem was considered in
[4]. S. M. Gerashenko [5] investigated the possibility of improving the convergence of differential descent
methods. To dampen oscillations near the extremum point, an additional coefficient is introduced into the right
side of the system of differential equations in order to increase the roughness of the system with respect to the
calculation error. The so-called sliding mode is introduced into the search algorithm. The study of sliding mode
differential descent methods was continued in [4,6]. In [6], the rate of convergence of such methods is studied.
In articles by B. A. Galanov [1,2], S. I. Alyber and Ya. I. Alyber [7], the differential descent method was applied
to solve a system of equations. The method makes it possible to obtain an exact solution.
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1. Introduction
B is the real separable Banach space: B* is the conjugated with space B ; ”X”B is a norm of the element
X € B; H is aseparable Hilbert space; ( f ,X) is a value of the inear element X € B with respect to X

*
functional T € B ; D(A) is a domain of definition, and R(A) is the domain of values of the operator

Al D ( p=> l) is a space of numerical sequences X = (fl, &yl ,) converges to a p- degree and

o |+~

with a norm ||X|| = {;|§k|p:| ; ai - solution of the first I equation of the system (2); Olni is an element

belonging to O(i and corresponding to the original condition of X , N = 0,1,2,... for the recurrence

sequence of the Cauchy problem (6); X,; approximating to &, N is a number of segment divisions

ni?

|: fi (Xni_l) , 0] ; hi = fi (Xni_l) / N, is a step of integration for the approximate intergration of the Cauchy
problem (6).

2. Results

Let the equation be given as
P(x)=0, (1)

with twice continiously Frechet differentiable nonlinear operator of P, acting from B onto a real Hilbert

0

space H with zero . By virtue of separability, in H there exists [8,9,10] the system {(pi} of elements
1

(oi, i :1,2,..., satisfying the conditions: 1) system {(Di }:O is full in H ; 2) elements @,,Q,,...(; are
linearly independent for any |.Thena system of scalar equations

f,(x) :(P(x),goi)zo, i=12,... @

is equavalent to the equation (1) and fucntional fi (X) i =1,2... defined by the left-hand side (2), have the

o0
domain of definition that conicides with the opereator P on this domain. In particular, if {(pi} is an
1

orthonormal system of elements in H with properties 1) and 2), then functionals fi (X) i =1,2,...

coincide with Fourier coefficients of the element P(X) € H, Xxe B. Then by the well-known Riesz —

Fischer Theorem [7,9,14] the series Z( F’(X),¢i )ziz fi2 (X) converges forany X € B.ie:
i=1 i=1

f(x)=((P(x),0).(P(x).0,).--)

is an element of the space |, forall X € B.

In (2), the elements of the system {¢i} are subject to the condition: 3) (Di S D(grad fi (X)) is the
1

0

domain of definition fi (grad fi (X)) , i.e. elements of the system {(pi }1 are selected so that they satisfy
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certain boundary conditions that are natural for the functional fi (X) This latter condition ensures Frechet

differentiability [8,9,10] of the functional fi (X) and allows to represent Frechet differential fi (X) in the
form of:

Df,(xh)=((P)h)=((P:) 1) heB,
*
where P is the Frechet derivative of the operator P at a point X € B, and (P)'() is the operator
conjugate with PX'.

Therefore, we obtain the following expression for the gradient of the functional fi (X)

f/ =grad f,(x)=(P) @, i=12...
The system of equations (2) can be represented in the following form too:
f(x):(fl(x),fz(x),...):O,, @3)
where X € B, f (X)€|IO (le).

We shall assume that for all X € B the following conditions are satisfied:

a) the functionals ¢yukioHaE! fi (X), I =1,2,... have continious Frechet derivatives up to the second
order inclusive;

b) the operator aiifl(X) acting from B onto B and constructed from fj (X) J=12,...,1 has
continious Frechet derivatives;

c) the operator ai"l (X) is constructed so that

1 o
(f.a™)=0. j<i-1 @
ai—l
i _ r_ *
T <K;=const<o, f/=grad f;(x)eB )
i1 B
Under the assumptions made, the following theorem holds.
Theorem 1. The solutions X; (ti ) = 1, 2, ... of the recurrence sequence of the Cauchy problems
dx, _ &~ (x)
- 1 A1)’
dt, (f.a™)
0 0
X =X (ti =1 ) =X (ti—l - 0) = Xpjqr
0 -
t="f (o) =% i=12,.. (6)

are determined, at least, on such segments as |:'[i0 , 5.] uto 0 € [tio , 5|:| Uy =X (O)

We omit the proof of the theorem since it is analogous to the proof of the corresponding theorem in the works
[1,2].

The conditions of the theorem guarantees the existance and uniqueness of solution for the Cauchy problem (6)
forany I.

If for all X € B functionals fi(X), i =1,2,... and operators ai“l(x), i=l,2,... from B onto B,

constructed from fj (X) , j =1,2,... are such that conditions are b) the theorem holds, and the right hand
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sides of the differential equations (6) satisfy a Lipschitz condition [8,11], then the solution X; (ti),

I =1,2,... depends continiuosly on initial data, i.e. each problem is correct.
For the Cauchy problems (6) the first integrals are known for I=n+1:

fj (Xn+1(tn+1)) =0, ] <n,
tn+1 - fn+l(Xn+l (tn+1)) =0.

It follows that the Cauchy problem (6) can be used for vanishing the residual of the I -th equation system (2)

(7

for zero residuals (i —l) - of equations of this system. The alternative of the differential descent method

being considered requires construction of the operators aiifl(X) eB, xeB, i=12,..., ensuring the
fulfillment of the conditions (4) and (5). Such operators can be constructed in many ways [3,12]. In particular,

operators {ai“l ( X)}l can be constructed by the formula [12]:

' j-1
1—1( pa)

al =a'" -al (f, a."*l)’
L |

j<i, )

where 1, ] are whole numbers.

Let {aiO(X)} c B,, X& B be a set of linearly independent elements, for which (fj',ajj‘l) #0,
J =1,2,.... Then the formula (8) determines the elements aij (X) € B, X € B with properties [12]:
(fk’,aij)zo,, k<j, ©
(fi’, aij);éo,, j=i-1, (10)

i.e. the superscript to the element aij (X) implies the property of (9), subscript implies the property of (10). If

ai0 =f'e B=B", i=12,..., then to satisfy the properties (9), (10) linearly independent elements fi"

1 =1,2,... [89,13] are sufficient. And, if fi'é B*, 1=1,2,... and T isa linear operator from B* onto
B , then we can put

a’=Tf' i=12.. (11)

Indeed, if for T there is bounded inverse operator Tfl, then the linear independece and completeness of the

system {ai° = fi'} implies linear independence and completeness of the system (11) [10,14].
1

Instead of the system (2) a more general system of equations can be used:
®,(x)= f,(x)=(P(x).01)=0
D, (x) = f,(x) -, (x)(¢1,0,) =0

(12)

o0

If the system of elements {(oi } is orthogonal, then as a special case, we obtain the system (2).
1
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It is easy to verify that the systems of equations (2) and (12) are equivalent: any solution of the system (2)
satisfies the system (12) and vice versa.

In [14], it is shown that for B=L (G G is the domain of variation of the variable point
2

Q, X(Q) € B) series, the coefficients of which are determined by the left-hand of the system (12) give a
slightly better approximation to the function being approximated as compared to the Fourier series for the

o0
approximately arthonormal system {(oi} .
1
In practice, the construction of a large number of orthonormalized elements is associated with significant
computational difficulties [14], and in orthonormalization, approximately arthonormalized systems of elements
are always obtained. Thence, the advantage of the system (12) over the system (2) becomes clear when using
o0

approximately arthonormal systems {(Di} :
1

An approximate solution to the equation (1) implies the element &, € B, determined by the first M of the

Cuachy problem from (6) and satisfying the truncated system (2), 1= 12,...m.

From a computational point of view, integration of the equation (6) suggests the use of some numerical
integration formula [15,16] and in practice, the descent for solution to the system (2) occurs along the line

determinedd by the approximate solution of the Cauchy problem (6) for = 1, 2, ..., M . Here, the relations (7)

can be used for the control of accuracy of the apprximate solution to the problem. Similarly to [2], iteration
processes can be constructed. For example, using Euler’s Method [15,16] with the step of

hi = fi(Xni_l)/I"li the error of which hi (the equation (6) is solved with the initial conditions

tni_l = fi (Xni_l), X,i_1 and it is supposed that aii‘l(x), fi (X) a sufficient number of times are

continuously differentiable B ) an iteration method can be obtained

a_ifl(x __l)
Xnsaj = Xni — , : r:l_ hi’ (13)
Y ( 1:i (Xni—l)’ ai 1(Xni—l))
n=0,12,..;. i=12,..,m

where Oy, = X5p = X, € B is an initial approximation to the solution of the system (2).

Applying various methods of numerical integration of the ordinary differential equations (methods of Runge-
Kutta, Adama, etc.) to the equation (6), it is possible to obtain in a new way both many well-known and new
iteration methods for solving the system of equation (2). Thus, the methods can be described analitically and
subordinated to a single scheme.

If the equation is given

P(x)=Ax—-g=86, (14)
where Aiis a linear operator acting from the dense set D(A) _ B onto the set R ( A)  H and having

an bounded inverse operator A, [8,9,11], § € R ( A) is a fixed element, then
fi(x)=(Ax-0,¢,)=0, i=12,. (15)

% . i . i *

f. =A@, 1=12,... Then, if operators ai' 1 i=12,... are calculated for ai° =f =Ap,
= 1 2, ... as per the formula (8), then the right-hand side of the differential equation (6) does not depend on
X Therefore, by integrating the equation (6) with consideration that aiH does not depend on X, to calculate

the elements of the sequence & , | = 1,2,... we obtain the following formula:

flans) i :
ao‘:%”_(A*((piﬁl)l)a‘ Looi=12,.. (16)
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where &y, € D ( A), is an arbitrary element.

In exact calculation using the formula (16) at the M -th step, the element &, € D ( A) is obtained which is

the solution of the first N of the equation system (15). If the calculations are approximate, then the process can
be made iterative.

The recurrence sequence of the Cauchy problems (6) defines a sequence of elements &, i =12,....

However, the convergence condition for I —> 00 to the zero of the residual ||f (0!Oi )”I , and elements
p

Oy = 1, 2, ... . to the solution of the equation (1) remain unclear. Let’s consider some of these conditions.

1=1,2,... andforany &£ >0

Let us say that f (X) has the property of (|p), if f (aOi)eW C |p,,

and for all é: =(§1,f§l,...) eW, there exists Ng such that

i|§n|<3p,, N>n_,
n=N

The property is trivial in case, |p = |f)n), [8,9] (|p)

Let us prove the theorem.
Theorem 2. In order to

lim| f ()} =0,
i—o ( 0i ) IP

it is necessary and sufficient that the operator f (X) has the property of (| b ), .
Proof. The necessity of the theorem is obvious. Let us prove the sufficiency.

Let f (X) c (| p) be the property. Then for any & > O there exists such n,,, that

o0
n=N

p
fn(%i)| <g?,, N2n

g’

Therefore, for all 1 > n., we have

[ ()] :é\ f () -
:Z‘ fi () + i £ ()| <",

j=1 j=n.+1
and there exixts such 1 = I"Ig, , that the set W = { f (aOi ) > nE}, is bounded. In combination with the
(|p), property, it means the set W C Ip is compact, i.e. the possibility of choosing such a subsequence
Xoix EV_V, k =1,2,...,forwhich
lim| f (o )|||p =0,

k—o0
which proves the theorem.

If in (2) {goi };o < H is an orthonormal system of elements, and P is such an operator that f (X) has

(|2 ) property and satisfies the conditions of the theorem 1, then
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lim|P (e, )”H =0, (16)

i—>0
Hence, for operators P with bounded inverse, it follows that the sequence convergence {aoi }, i =1 2,

as well to the solution of the equation (1).
In particular, for the equation (14) from (16) it follows that
lime, =a,,
|—00
where (¢ is a solution of the equations (14) and (15).
Thus, Theorem 2 gives necessary and sufficient condition for the convergence to the zero of the residual

”P(O(Oi)”H , for 1 —> 00. However, in the general case verification of the conditions of theorem 2 is

difficult and is determined by the specific form of the system {gpi }T and properties of the operator P .

In conclusion, we point out some of features of the considered method compared to other descent methods
[7,8,17].

1. The solutions X; (ti), in the recurrence sequence of the Cauchy problems (6) exist on the known finite

intervals |:'[i0, O:| , and the first integrals are known for problems (6).

This allows to control the movement along the descent trajectory defined by the solutions of the problems (6)
and creates some convinience in programming.

2. When implementing the ordinary sheme of the descent method [7,8,17], the minimum of the function of one
independent variable is to be found at each step of the iterative process which requires additional computing
work. The considered scheme relieves the computer man from this difficulty and it is distinguished by high
algorithmicity [1,2,3].

3. Descent methods based on the idea of minimizing some real functional may not converge to a solution if we
encounter a local minimum of this functional.

The nature of the considerations from which we proceeded when compiling system (2) shows that no connection

of this equation (1) with variational problems has been used. Therefore, the functionals fi (X), , = 12,..

of method (6) are not connected at all with variational problems and the above phenomenon, which is
characteristic of known descent methods, is absent in the considered differential descent method.

. 0
4. The variety of methods for constructing operators {ai"l}l , [3,12] generates a variety of recurrence

sequences of the problems (6) for each specific equation. In turn, various methods of numerical integration of
the Cauchy problems (6) [15,16], generate a whole class of iterative processes each of which determines an
approximate solution of a given equation and has its own region of convergence. Therefore, if one or another
iterative process does not give the desired result, it is possible to vary the sequences of the Cauchy problems (6)
and approximate methods for their solution.
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