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Abstract 

 

The construction of methods for solving applied problems is of несомненную актуальность In this case, the 

following requirements for the method are of particular importance: algorithmic simplicity and speed, 

estimation of the accuracy of an approximate solution; minimum a priori information about the desired solution; 

certain universality of the numerical algorithm. Bearing in mind a large number of specific mathematical 

problems (integral equations, boundary value problems for differential equations, etc.), it is convenient to study 

approximate methods immediately for some classes of equations, that is, in the form of operator equations. This 

work is a direct generalization and development of the method of connected differential descent [1,2,3] for 

solving systems of finite-dimensional equations as applied to solving operator equations considered in separable 

Banach spaces. The differential descent method based on the solution of the Cauchy problem was considered in 

[4]. S. M. Gerashenko [5] investigated the possibility of improving the convergence of differential descent 

methods. To dampen oscillations near the extremum point, an additional coefficient is introduced into the right 

side of the system of differential equations in order to increase the roughness of the system with respect to the 

calculation error. The so-called sliding mode is introduced into the search algorithm. The study of sliding mode 

differential descent methods was continued in [4,6]. In [6], the rate of convergence of such methods is studied. 

In articles by B. A. Galanov [1,2], S. I. Alyber and Ya. I. Alyber [7], the differential descent method was applied 

to solve a system of equations. The method makes it possible to obtain an exact solution. 
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1. Introduction 

 

  is the real separable Banach space;  is the conjugated with space ;  is a norm of the element 

  is a separable Hilbert space;  is a value of the inear element  with respect to  

functional ;  is a domain of definition, and  is the domain of values of the operator 

;  is a space of numerical sequences , converges to a p- degree and 

with a norm ;  - solution of the first  equation of the system (2);  is an element 

belonging to  and corresponding to the original condition of ,  for the recurrence 

sequence of the Cauchy problem (6);  approximating to  is a number of segment divisions 

;  is a step of integration for the approximate intergration of the Cauchy 

problem (6).   

 

2. Results  

 

Let the equation be given  as 

                                                 (1)   

with twice continiously Frechet differentiable nonlinear operator of , acting from  onto a real Hilbert 

space  with zero . By virtue of separability, in  there exists [8,9,10] the system  of elements 

 ,  satisfying the conditions: 1) system  is full in ; 2) elements  are 

linearly independent for any . Then a system of scalar equations   

,       (2) 

is equavalent to the equation (1) and fucntional ,  defined by the left-hand side (2), have the 

domain of definition that conicides with the opereator on this domain. In particular, if  is an 

orthonormal system of elements in  with properties 1) and 2), then functionals ,  

coincide with Fourier coefficients of the element , . Then by the well-known Riesz – 

Fischer Theorem [7,9,14] the series  converges for any , i.e.:  

 

is an element of the space  for all .  

In (2), the elements of the system  are subject to the condition: 3)  is the 

domain of definition , i.e. elements of the system  are selected so that they satisfy 
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certain boundary conditions that are natural for the functional . This latter condition ensures Frechet 

differentiability [8,9,10] of the functional  and allows to represent Frechet differential  in the 

form of:  

, , 

where  is the Frechet derivative of the operator  at a point , and   is the operator 

conjugate with .  

Therefore, we obtain the following expression for the gradient of the functional   

,    

The system of equations (2) can be represented in the following form too:

,           (3) 

where , .  

We shall assume that for all  the following conditions are satisfied:   

а) the functionals функционалы  have continious Frechet derivatives up to the second 

order inclusive;  

b) the operator  acting from  onto  and constructed from ,  has 

continious Frechet derivatives;  

c) the operator  is constructed so that   

,     ,      (4)    

,   (5)    

Under the assumptions made, the following theorem holds. 

Theorem 1. The solutions ,  of the recurrence sequence of the Cauchy problems   

,    

  , 

,   ,                                  (6)    

are determined, at least, on such segments as , что  и .  

We omit the proof of the theorem since it is analogous to the proof of the corresponding theorem in the works 

[1,2].  

The conditions of the theorem guarantees the existance and uniqueness of solution for the Cauchy problem (6) 

for any .  

If for all  functionals  and operators ,  from  onto , 

constructed from ,  are such that conditions are b) the theorem holds, and the right hand 
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sides of the differential equations (6) satisfy a Lipschitz condition [8,11], then the solution , 

 depends continiuosly on initial data, i.e. each problem is correct. 

For the Cauchy problems (6) the first integrals are known for :  

                 (7) 

It follows that the Cauchy problem (6) can be used for vanishing the residual of the - th equation system (2) 

for zero residuals  - of equations of this system.  The alternative of the differential descent method 

being considered requires construction of the operators , , ensuring the 

fulfillment of the conditions (4) and (5). Such operators can be constructed in many ways [3,12]. In particular, 

operators  can be constructed by the formula [12]: 

         ,     (8) 

where  are whole numbers.  

Let ,  be a set of linearly independent elements, for which 

. Then the formula (8) determines the elements ,  with properties [12]:  

,   ,                (9)    

,    ,            (10)    

i.e. the superscript to the element  implies the property of (9), subscript implies the property of (10). If 

, , then to satisfy the properties (9), (10) linearly independent elements , 

 [8,9,13] are sufficient. And, if ,  and  is a linear operator from  onto 

, then we can put   

,                (11) 

Indeed, if for  there is bounded inverse operator , then the linear independece and completeness of the 

system implies linear independence and completeness of the system (11) [10,14].  

Instead of the system (2) a more general system of equations can be used:  

              (12)    

If the system of elements is orthogonal, then as a special case, we obtain   the system (2).  
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It is easy to verify that the systems of equations (2) and (12) are equivalent: any solution of the system (2) 

satisfies the system (12) and vice versa.   

In [14], it is shown that for  (  is the domain of variation of the variable point 

) series, the coefficients of which are determined by the left-hand of the system (12) give a 

slightly better approximation to the function being approximated as compared to the Fourier series for the 

approximately arthonormal system .  

In practice, the construction of a large number of orthonormalized elements is associated with significant 

computational difficulties [14], and in orthonormalization, approximately arthonormalized systems of elements 

are always obtained.  Thence, the advantage of the system (12) over the system (2) becomes clear when using 

approximately arthonormal systems .     

An approximate solution to the equation (1) implies the element , determined by the first  of the 

Cuachy problem from (6) and satisfying the truncated system (2), .  

From a computational point of view, integration of the equation (6) suggests the use of some numerical 

integration formula [15,16] and in practice, the descent for solution to the system (2) occurs along the line 

determinedd by the approximate solution of the Cauchy problem (6) for . Here, the relations (7) 

can be used for the control of accuracy of the apprximate solution to the problem. Similarly to [2], iteration 

processes can be constructed. For example, using Euler’s Method [15,16] with the step of 

 the error of which  (the equation (6) is solved with the initial conditions 

,  and it is supposed that ,  a sufficient number of times are 

continuously differentiable ) an iteration method can be obtained 

           (13)     

     

where  is an initial approximation to the solution of the system (2).  

Applying various methods of numerical integration of the ordinary differential equations (methods of Runge- 

Kutta, Adama, etc.) to the equation (6), it is possible to obtain in a new way both many well-known and new 

iteration methods for solving the system of equation  (2). Thus, the methods can be described analitically and 

subordinated to a single scheme. 

If the equation is given    

                (14) 

where is a linear operator acting from the dense set  onto the set  and having 

an bounded inverse operator , [8,9,11], is a fixed element, then   

       (15) 

, . Then, if operators ,  are calculated for , 

 as per the formula (8), then the right-hand side of the differential equation (6) does not depend on 

. Therefore, by integrating the equation (6) with consideration that  does not depend on , to calculate 

the elements of the sequence ,  we obtain the following formula:   

,        ,    (16) 
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where  is an arbitrary element.  

In exact calculation using the formula (16) at the -th step, the element   is obtained which is 

the solution of the first  of the equation system (15). If the calculations are approximate, then the process can 

be made iterative.  

The recurrence sequence of the Cauchy problems (6) defines a sequence of elements , . 

However, the convergence condition for  to the zero of the residual and elements 

, . to the solution of the equation (1) remain unclear. Let’s consider some of these conditions.  

Let us say that  has the property of , if ,  and for any  

and for all  there exists  such that  

,     

The property is trivial in case,  [8,9]   

Let us prove the theorem.   

Theorem 2. In order to   

 

it is necessary and sufficient that the operator  has the property of .  

Proof. The necessity of the theorem is obvious. Let us prove the sufficiency.  

 Let  с  be the property. Then for any  there exists such , that  
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                                  (16) 

Hence, for operators  with bounded inverse, it follows that the sequence convergence   

as well to the solution of the equation (1).  

In particular, for the equation (14) from (16) it follows that   

, 

where is a solution of the equations (14) and (15).  

Thus, Theorem 2 gives necessary and sufficient condition for the convergence to the zero of the residual 

 for . However, in the general case verification of the conditions of theorem 2 is 

difficult and is determined by the specific form of the system  and properties of the operator .  

In conclusion, we point out some of features of the considered method compared to other descent methods 

[7,8,17].  

1. The solutions  in the recurrence sequence of the Cauchy problems (6) exist on the known finite 

intervals  and the first integrals are known for problems (6).   

This allows to control the movement along the descent trajectory defined by the solutions of the problems (6) 

and creates some convinience in programming.  

2. When implementing the ordinary sheme of the descent method [7,8,17], the minimum of the function of one 

independent variable is to be found at each step of the iterative process which requires additional computing 

work.  The considered scheme relieves the computer man from this difficulty and it is distinguished by high 

algorithmicity [1,2,3].  

3. Descent methods based on the idea of minimizing some real functional may not converge to a solution if we 

encounter a local minimum of this functional. 

The nature of the considerations from which we proceeded when compiling system (2) shows that no connection 

of this equation (1) with variational problems has been used. Therefore, the functionals ,  

of method (6) are not connected at all with variational problems and the above phenomenon, which is 

characteristic of known descent methods, is absent in the considered differential descent method.  

4. The variety of methods for constructing operators  [3,12] generates a variety of recurrence 

sequences of the problems (6) for each specific equation. In turn, various methods of numerical integration of 

the Cauchy problems (6) [15,16], generate a whole class of iterative processes each of which determines an 

approximate solution of a given equation and has its own region of convergence. Therefore, if one or another 

iterative process does not give the desired result, it is possible to vary the sequences of the Cauchy problems (6) 

and approximate methods for their solution.  
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