
An Investigation on Classification Accuracy in Software Defect Prediction

Section A-Research paper

ISSN 2063-5346

4314
Eur. Chem. Bull. 2023,12(Special Issue 7), 4314-4317

An Investigation on Classification Accuracy in Software Defect Prediction

Medhunhashini DR* , Dr KS Jeen Marseline

Department of ICT and Cognitive Systems

Sri Krishna Arts and Science College

Coimbatore, India

medhun.hashini@gmail.com

Abstract

An active study field in software engineering is software

defect prediction. Before the testing phase even begins, the

defect-prone modules are identified using the defect

prediction approach. An effective defect prediction model

utilizes a few software metrics in order to improve defect

prediction. Metrics-based modules enhance software

quality, cut costs, and enable efficient resource allocation.

Employing classification of defect data with a classifier

will increase the effectiveness of defect prediction.

Software metrics like Halstead metrics, McCabe's metrics,

and LOC based metrics of each module is measured and

recorded as a dataset. In this study a real time software

project dataset KC1 is taken from NASA Metrics Data

Program. Naive Bayes algorithm, Support Vector

Machine algorithm, K Nearest Neighbour algorithm and

NB Simple algorithm are used as classifiers. The

classifications performance is measured using Exactness,

Accuracy, Recollection and F Measure. This paper

concludes for the used defect dataset an accuracy of 98.89

is obtained with Support Vector Machine algorithm as the

best classifier.

Keywords: Software Defect Prediction, Software Metrics,

Classifiers, Accuracy

1.Introduction
Software engineering is an active industry where everyday

humans need is demandingly converted into software with

high reliability. Robust software reduces time and effort spent

by the customers. There can be several reasons for the failure

of a software functionality. One among them is software

defect. Early defect detection in the software development life

cycle improves the software’s quality.. All facets of software

production are addressed by the field of software engineering.

Software engineers should take a methodical and organised

approach to their work and employ the right tools and

approaches depending on the issue at hand, the limitations of

the development process, and the available resources.

Software engineering is concerned with every step of the

software development process, from the initial phases of

system specification to the system's maintenance after it has

been put to use. The quality of software is described as

compliance with openly stated functional and performance

objectives, explicitly specified development standards, and

implicit qualities that are anticipated of any professionally

built software. Profound categorization of defect modules is

needed. Simple definition of a defect is "Flaws in the software

development process that would result in the software failing

to satisfy the desired expectations." [1].

phases on which each phase has entry and exit criteria. The

entire framework is suitable for the process management.

SDLC has the below defined framework phases.

2.Literature Review

Majority of the reliable and robust software happens

identifying the defect at the early stage. This is possible only

when a proper classification method is used in the initial

stage. There are researchers who proved the efficiency of the

software defect prediction incorporating various classification

models. The impact of the defect, the risk, and the dependency

connected to the projected or forecasted flaws and the

extension of the work to assess the various defect prediction

methods described by Shihab [2].

Gayatri et al [3] described a sharp increase in the need for

software quality estimation. As a result, testing-related

difficulties are becoming quite important. Reliability,

Functionality, Fault Proneness, Reusability, and

Comprehensibility are the SQA qualities for software. Defect

prediction or fault proneness is a crucial concern among these.

It can be used to gauge the standard and level of client

satisfaction, as well as the quality of the final product.

The SDP Methods are those that make use of test data to

forecast future software flaws. Software metrics and the

software's defect-prone modules are correlated with one

another. Software metrics are evaluated in this work as

independent variables throughout the Software Development

Life Cycle (SDLC), while faulty or non-faulty software is

evaluated as a dependent variable was proposed by Prasad et

al [4]

Jing et al. [5] described the classification and prediction of

software defects namely the Cost-sensitive Discriminative

Dictionary Learning (CDDL) approach. The performance of

all the comparative methods was assessed using the widely

used datasets from the NASA projects as test data. The

experimental results demonstrated that, in comparison to a

number of representative state-of-the-art defect prediction

methods, the CDDL methodology was superior.

Wang et al. [6] used a classification method generated from

the data of prior development projects, classifiers divide

modules that are characterized by a set of software complexity

mailto:medhun.hashini@gmail.com

An Investigation on Classification Accuracy in Software Defect Prediction

Section A-Research paper

ISSN 2063-5346

4315
Eur. Chem. Bull. 2023,12(Special Issue 7), 4314-4317

metrics, code attributes or features into defect prone and non-

defect prone groups. He used the size of the code, complexity

of Halstead, and cyclomatic complexity of McCabe's. because

they are well-known indicators of software difficulty.

3. Methodology

This section explains the few classification methods Naïve

Bayes Classifier, Support Vector Machine, K Nearest

Neighbour and NB Simple. Software Product Metrics are used

in these classifiers are also discussed. The classifiers Naïve

Bayes, K Nearest Neighbour, Support Vector Machine and

NB Simple are used on the dataset KC1.The performance of

the defect prediction classifiers are evaluated. KC1 a public

dataset specifically consist software metric-based methods for

the prediction of software defect found in the NASA Metrics

Data Program (MDP).

Each collection of data corresponds to a software system or

subsystem used by NASA. The dataset includes fault statistics

and static code metrics for each associated module. This

dataset is used to evaluate a method's prospective real-world

performance. KC1 dataset implements with a Storage

Management System for collecting and processing ground

station data. It includes McCabe and Halstead features

including code extractors and module-based controls.[7]

3.1 Software Metrics

Program complexity and software development time estimates

have been made using software metrics. A lot of research

done to try and find an answer to the hot question, "How to

anticipate the quality of software through software metrics,

before it is being deployed?" Numerous publications that

support statistical techniques and measures that claim to

address the quality issue are available. Software metrics

typically clarify quantitative measurements of the software

product or its requirements Rawat et al. [7] During

Developmental Life Cycle (SDLC), software metrics are

monitored as independent variables, with faulty or non-faulty

software being the dependent variable. The Software Defect

Prediction Methods are those that make use of test data to

forecast future software flaws. Software metrics and the

software's defect-prone modules are interrelated with one

another.[8]. Software metrics are of two types Product Metrics

and Process Metrics. Product metrics are used for

measurement in different stages of Developmental Life Cycle

of the software (SDLC). The below table describes the

software metrics used in this investigation in specific to KC1

dataset of ground data.

3.1.1 Lines of Code

The standard metric for calculating programme size is lines of

code. As a result, it measures the software's size. It is used as

a metric to determine the degree of programme complexity

and can be calculated in a number of ways, including total

lines, lines with comments, lines with executable code, and

lines that include both code and comments for each module.

Table 1 LOC Metrics used in KC1 dataset

Metric Used Description

LOC Lines of Code

LOCode Total number of comment lines

LOComment Total no of executable codes

LOBlank Total number of blank lines

LOCode & Comment

Total number of Lines of code and

comment

3.1.2 McCabe Complexity Metrics

3.1.2.1 Cyclomatic Metrics

A Control Flow Graph is developed a metric used to assess

the program's sequential independent routes. It aids in

determining the program's complexity. The programme

statement is represented by nodes, while its flow is

represented by edges. Generally given as V(g) where E is the

edge and N is the node.

V(G) = E – N + 2

3.1.2.2 Essential Metrics

It is the metric where the D-Structured prime sub flowgraph is

eliminated, thus reducing the flowgraph. One entrance and

one exit sub flowgraph make up the D-Structured prime

flowgraph, which is a graph. By removing the primary

flowgraph, this measure aids in the identification of

unstructured flowgraphs. This complexity is evaluated using.

m determines the sub-flow graphs

ev(G) = V(G) – m

3.1.2.3 Design Metrics

Design Complexity eliminates decisions and nodes that do not

affect the calling control over a module's immediate

subordinates. It determines the number of decision logic in

subroutine calls. Consequently, measuring the interaction

between the subroutines is helpful. Denoted as iv(g).

Table 2 McCabe’s Metrics used in KC1 dataset

McCabe Complexity Metrics

v(g) cyclomatic complexity

ev(g) essential complexity

iv(g) design complexity

3.1.3 Halstead Complexity Metrics

Based on the operands and operators employed in the

programme, Halstead metrics measures the programme.

Table 3 Halstead’s Metrics used in KC1 dataset

Halstead Metrics

n Total no of operators + operands

v Halstead volume

An Investigation on Classification Accuracy in Software Defect Prediction

Section A-Research paper

ISSN 2063-5346

4316
Eur. Chem. Bull. 2023,12(Special Issue 7), 4314-4317

l Halstead Program level

d Halstead difficulty

i Halstead intelligence

e Halstead effort

b Halstead error estimate

t Halstead’s time estimator

uniq_Op unique operators

uniq_Opnd unique operands

total_Op total operators

total_Opnd total operands

branchCount branch count

3.2 Classification Methods

3.2.1 Naïve Bayes (NB)

Defect prediction is treated as binary classification in an NB

technique. It analyses past software module data to train and

build a predictor, and it will decide whether or not the new

module has flaws depending on the prediction. A software

module is selected to serve as the training and prediction

object unit by the Naive Bayes Prediction (NBP) approach. "A

software module is a programme unit that is discrete and

identifiable with regard to compilation and combining with

other units," according to the IEEE definition. The Module is

also a logically separable part of a program.[9] Naïve Bayes

classification algorithm follows Bayes Rule:

 ∏

3.2.2 K-Nearest Neighbour (KNN)

The voting system is the foundation for how this classifier

operates. With the use of previously identified data samples,

referred to as the nearest neighbour, and samples that are

assigned using the voting procedure, KNN locates new or

unidentified data samples. The classification of the data

sample involves participation from more than one nearest

neighbour. KNN is known as a "lazy learner" since it has a

slow rate of learning. KNN is a clustering and classification

algorithm. A newly reported problem is classified using a 1-

Nearest Neighbour classifier based on the severity of the most

similar report from the training set.[10] KNN classifier

follows the Euclidean distance given as

 √∑

The k Nearest Neighbour classification algorithm identifies a

group of k entities in the data used for training the dataset that

are near to the input and classifies it using the majority of that

group's class. [11]

3.2.3 Support Vector Machine (SVM)

A hyper-plane is identified in the input space to divide the

sample data into two classes. It maximises the distinction

between the classes. By utilising the kernel function theory,

SVM performs effectively for the linearly inseparable

categorization of data samples. There are many kernel

functions that can be used to map data samples to higher

dimension feature spaces, such as Gaussian, Polynomial, and

Sigmoid. The data samples for the various classes are then

divided using a hyper-plane determined by SVM feature

space.[12] For the categorization of linearly and nonlinearly

separable data, this is a preferable option. SVM boosts its

capacity to generalise by adhering to the Structural Risk

Minimization (SRM) concept and reducing risk during

training. The data points is given as below equation

By dividing hyperplane, it can see this training data that takes

3.2.4 NB Simple

A Naive Bayes classifier, where the normal distribution is

used to model the numerical properties. A continuous value

has a probability distribution depicted as normal distribution.

The same has values that are symmetrically distributed largely

around the mean [13].

3.2.4.1 Evaluation Methods

Performance metrics can be used to assess how well the defect

prediction method is working. Accuracy, Recall, Precision,

and F-Measure are the performance measures employed in

this work.

Confusion Matrix

A visual of confusion matrix forms the basis for the

performance assessment for the classifiers

Accuracy

It is the proportion of accurately predicted faulty modules to

all predicted modules. The result is projected as a percentage.

Recall

It is the percentage of all defect prone modules that were

accurately forecasted as units. It goes by the name of

sensitivity.

 PREDICTED

ACTUAL

True Positive (Tp) False Negative (Fn)

False Positive (Fp) True Negative (Tn)

An Investigation on Classification Accuracy in Software Defect Prediction

Section A-Research paper

ISSN 2063-5346

4317
Eur. Chem. Bull. 2023,12(Special Issue 7), 4314-4317

Precision

It is the percentage of all forecasted defective modules that

were accurately identified as defective units.

F-Measure

It is an evaluation of the precision of a model on a dataset.

Table 5 Confusion Matrix of Classifiers for Defect

Prediction

4. Results and Discussion

The experimental results show the classifiers Naïve Bayes has

generated an accuracy percentage around 86 whereas the

Support Vector Machine has given 98.8 percentage.

Comparatively the KNN has proved with accuracy level 97.6

percentage and NB Simple has given 83.8 lowest performance

among other three on the data given. Accuracy, Recall,

Precision and F-Measure is calculated using Weka Tool. The

below table shows the outcome of the classification prediction

accuracy.

Table 5 Performance Measures of Classifiers on KC1

Dataset

Classifier

Correctl

y

Classifie

d

Instances

Accurac

y

Precisio

n

Recal

l

F

Measur

e

Naïve

Bayes
544 85.94 0.843 0.859 0.841

Support

Vector

Measure

626 98.89 0.989 0.989 0.989

K Nearest

Neighbou

r

618 97.63 0.976 0.976 0.976

NB

Simple
531 83.88 0.885 0.839 0.852

Figure 1 Performance Accuracy of Classifiers

5.Conclusion

This paper is developed to understand the best classifier for

the data classification on the defect data. Classifiers like

Naïve Bayes, Support Vector Machine, K Nearest Neighbour

and NB Simple were tested on the KC1 dataset. The

preliminary study with the performance measures like

accuracy, recall, precision, and F-Measure were calculated

and analysed in order to assess the defect prediction's

performance. The performance accuracy measure has proved

Support Vector Machine does a best classification with an

accuracy of 98.89 %. Further this study can be extended with

the best classifier SVM the necessary feature can be selected

by optimizing to find the best fit using fitness function.

6.References
[1] Kumaresh, S & Baskaran, R 2010, ‘Defect analysis and
prevention for software process quality improvement. International
Journal of Computer Applications, vol. 8, no. 7, pp. 42-47.
[2] Shihab, E 2014, ‘Practical software quality prediction’, IEEE
International Conference on Software Maintenance and Evolution, pp.
639-644.
[3] Gayatri, N, Nickolas, S, Reddy, AV, Reddy, S & Nickolas,
AV 2010, Feature selection using decision tree induction in class level

metrics dataset for software defect predictions’, In Proceedings of the
World Congress on Engineering and Computer Science vol. 1, pp.
124-129.
[4] Prasad, MC, Florence, L & Arya, A 2015, ‘A Study on
Software Metrics based Software Defect Prediction using Data
Mining and Machine Learning Techniques’, International Journal of
Database Theory and Application, vol. 8, no. 3, pp. 179-190.
[5] Jing, XY, Ying, S, Zhang, ZW, Wu, SS & Liu, J 2014,
‘Dictionary learning based software defect prediction’ 36th ACM
International Conference on Software Engineering, pp. 414-423.
[6] Shirabad, JS & Menzies, TJ 2005, ‘The Promise repository of
software engineering databases’, School of Information Technology
and Engineering, University of Ottawa, Canada, vol. 24
[7] Rawat, MS & Dubey, SK 2012, ‘Software defect prediction
Models for quality improvement: a literature study’, International
Journal of Computer Science, vol. 9, no. 2, pp. 288-296
[8] Prasad, MC, Florence, L & Arya, A 2015, ‘A Study on
Software Metrics based Software Defect Prediction using Data
Mining and Machine Learning Techniques’, International Journal of
Database Theory and Application, vol. 8, no. 3, pp. 179-190
[9] Wang, T & Li, WH 2010, ‘Naive bayes software defect
prediction Model’, International Conference on Computational
Intelligence and Software Engineering, pp. 1-4.
[10] Lamkanfi, A, Demeyer, S, Soetens, QD & Verdonck, T
2011, ‘Comparing mining algorithms for predicting the severity of a
reported bug’, 15th European Conference on Software Maintenance
and Reengineering, pp. 249-258.
[11] Sridhar & Babu, 2012, ‘Evaluating the Classification
Accuracy of Data Mining Algorithms for Anonymized Data’, IEEE
Transactions on Software Engineering, vol. 3, no. 8, pp. 63- 67
[12] Xing, F, Guo, P & Lyu, MR 2005, ‘A novel method for
early software quality prediction based on support vector machine’,
16th IEEE International Symposium on Software Reliability
Engineering, pp. 10-17
[13] Wang, J, Shen, B & Chen, Y 2012a, ‘Compressed C4. 5
Models for Software Defect Prediction’, 12th International
Conference on Quality Software, pp. 13-16

NB Simple

Classifier

Naïve

Bayes

Classifier

Support

Vector

Machine

K Nearest

Neighbour

 PREDICTED VALUES

ACTUAL
440 84 505 19 521 3 518 6

18 91 70 39 4 105 9 100

