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ABSTRACT 

This paper is aimed at to investigate the propagation of acousto diffusive (ETP) Lamb waves 

in homogenous isotropic, thermally conducting, semiconductor material in contact with fluid 

half space or layer. The concept of relaxation of heat and charge carrier fields is also taken. 

Secular equations, in isolated mathematical conditions and compact form, for the acousto 

diffusive lamb waves in semiconducting material half space or a layer with thickness d are 

derived. The different regions of secular equations are obtained and deduced. The secular 

equations for acousto diffusive lamb waves are also obtained and deduced. Finally, the 

numerical solution of various secular equations and other relevant relations is carried out for 

Germanium (Ge) semiconductor material with the help of functional iteration numerical 

technique. The dispersion curves, attenuation coefficient of the waves are computed and 

presented graphically, in order to illustrate and compare the analytical results.  

Keywords: Semiconductors; Relaxation time; holes; Germanium; Lamb waves; Diffusion; 

Lifetime;  Fluid.   

1.   INTRODUCTION 

      Nondestructive evaluation and testing for material characterization and condition 

monitoring is a critical technology for many industries. Recently, resurgent interest in Lamb 

waves was partially initiated by its application of multisensors [1–2]. Schoch [3] derived the 

dispersion relation for leaky Lamb waves for an isotropic plate immersed in an inviscid 

liquid. Incidentally, the dispersion equations also have an interface wave solution whose 

velocity is slightly less than the bulk sound velocity in the liquid and most of the energy is in 

the liquid. It is often called the Scholte wave after Scholte [4]. Watkins et al. [5] calculated 

the attenuation of Lamb waves in the presence of an inviscid liquid using an acoustic 

impedance method. Wu and Zhu [6] studied the propagation of Lamb waves in a plate 

bordered with inviscid liquid layers on both sides. The dispersion equations of this case were 

derived and solved numerically. Zhu and Wu [7-8] derived the dispersion equations of Lamb 

waves of a plate bordered with viscous liquid layer or half-space viscous liquid on both sides.   

Maruszewski [9-13] presented theoretical considerations of the simultaneous interactions of 

elastic, thermal and diffusive of charge carrier fields in semiconductors. Sharma and Thakur 

[14] studied the plane harmonic elastodiffusive surface wave in semiconductor materials. 
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Sharma, et al. [15] have also been studied about the propagation characteristics of thermo-

elastodiffusive surface acoustic waves in semiconductor materials. Sharma and Thakur [16] 

studied the propagation characteristics of elasto-thermodiffusive waves in semiconductor 

materials half-space. Recently, Sharma, et al. [17] have also been studied about elasto-

thermodiffusive surface waves in a semiconductor half-space underlying a fluid with varying 

temperature. Sharma and Pathania [18] studied the Lamb waves propagation characteristics.  

           Here we consider the problem of Lamb waves and present a systematic analysis of 

surface wave propagation in thermoelastic semiconductor materials in contact with fluid half 

space or a layer of finite thickness d based on the governing equations derived by 

Maruszewski [12] and non-dimensionalzed by Sharma and Thakur [16]. After deriving the 

secular equations for Lamb waves generation in semiconductor materials in contact with fluid 

by considering the effect of relaxation and life time of charge carrier fields in addition to 

thermal relaxation time the various characteristics of elasto-thermodiffusive (ETP) waves 

have been investigated. These waves are coupled with each other and get modified due to 

thermal variations, thermal relaxation time and life/relaxation time of holes charge carrier 

fields. The analytical results so obtained have been verified numerically and are illustrated 

graphically in case of Germanium (Ge) semiconductor half space (or a layer). 

2.  ANALYTICAL FARMULATIONS 

      We start by considering a two dimensional, infinitely large extrinsic, homogeneous, 

isotropic, thermally conducting, elastic semiconductor plate of thickness 2d medium, initially 

under undeformed state at uniform temperature 0T . The plate is in contact with fluid half 

space or a layer of thickness h  on both top and bottom. We take the origin of coordinate 

system   zy,x, on the middle surface of the plate. The yx   plane is chosen to coincide 

with the middle surface and the z-axis normal to it along the thickness as illustrated in Fig.a 

below. We take x-z plane as the plane of incidence and assume that all the particles on a line 

parallel to y-axis are equally displaced so that all the field quantities are independent of y-

coordinate. 

 

                                     
                                                  Fig.1. Geometry of the problem 
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The x-axis is taken along the direction of acoustic wave propagation in the semiconductor 

half-space and the densities of the charge carriers at doping level are assumed to be of such 

values that the life time ,

pt  and the diffusion coefficients pD are independent of them. 

Further the disturbance is assumed to be confined to the neighbourhood of the free surface 

and hence vanishes as .z  In linear theory of thermoelasticity in semiconductors, the non-

dimensional governing field equations for temperature ),,,( tzxT  displacement vector 

),,0,(),,( wutzxu   holes diffusion fields ),,( tzxP  respectively; in the absence of body forces 

and heat sources; are given by Maruszewski [12]. 
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Here  ,  are Lame parameters ;  is the density of the semiconductor; p are the 

elastodiffusive constants of holes, T is the coefficient of linear thermal expansion of the 

material; K is the thermal conductivity, p  are thermo diffusive constants of holes; pQQp aaa ,,  

are the flux like constant; pD  are the diffusion coefficients of holes and electrons. The 

quantities qppq mm , are the Peltier-Seebeck-Dufour-Soret like constants; pQ tt ,  are the 

relaxation times of heat, holes fields, eC  is the specific heat, ,

pt denotes the life times of the 

charge carriers’ fields; ,0p p equilibrium and non-equilibrium values of holes and electrons 

concentrations, respectively.  

Further the equations (1) are subjected to following assumption: 

(i) All the considerations are made in the frame work of the phenomenological 

model. 

(ii) The electric neutrality of the semiconductor is satisfied. 

(iii) The magnetic field effect is ignored. 

(iv) The mass of charge carrier fields is negligible. 

(v) The electron field with in the boundary layer is very weak and can be neglected. 

(vi) The recombination function of holes is reduced on the basis of the facts that take 

care of defects and hence concentration values of the charge carrier field [20]. 

3. BOUNDARY CONDITIONS 

    The boundary conditions at solid-liquid interfaces dz   to be satisfied are: 

  02 ,,  PTwu pT

zx                                                                                 (3.1) 

0,,  xz wu                                                                                                                    (3.2) 
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Where pS sK ,  are respectively, the surface heat conduction coefficient and surface 

recombination velocities. 

     In the following analysis we shall confine our discussion to the interaction of elastic, 

thermal and holes charge carrier fields only and consequently complete equilibrium state of 

electrons concentration is assumed to be established. Where we have used the quantities 
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where   and T  are respectively the characteristics frequency and thermoelastic coupling 

parameters of the semiconductor. 

Upon introducing the quantities (4) and setting in the basic equations (1), we obtain 
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We introduce the scalar point potential function   and vector point potential function 
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The substitution of equations (6) in equations (5) leads to  
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The equation (7.4) corresponds to purely transverse waves which get decoupled from rest of 

the motion and are not affected by the thermal and charge carrier field. Thus elastic wave can 

travel in space without attenuation. The equations (7.1) and (7.3) in the above system can be 

simplified under the assumption that considered semiconductor is of relaxation type. For such 

materials, the diffusion approximation of the physical process ceases to be obligatory and the 

diffusion / life times ),( 
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scalar and vector point velocity potentials. Thus in the fluid medium the governing equations 

are given by 
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Here, Lc is the velocity of sound in the liquid, L is the bulk modulus, L  and L  is     

respectively the density and viscosity of the liquid; *  is the coefficient of volume thermal 

expansion; LT  is the temperature deviation of liquid medium from ambient temperature 

0T . 

The continuity of stresses, displacements, temperature, holes concentration, heat and holes 

fluxes leads to the following conditions required to be satisfied at the solid-liquid interface 

)0( z in the non-dimensional form. The non-dimensional boundary conditions in equations 
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Here 0, pT hh  correspond to thermally insulated and charge free (no flow of hole flux 

across the boundary) boundary and pT hh ,  refers to isothermal and equipotential one.                                                                                                                       

4. FORMAL SOLUTION 

We consider the case of time harmonic waves so that the solutions ,   ,T P ,                                                                                                                                                                                                                                                                                               

,  L , L  of equations (6) take the form 
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Here 3,2,1,2 iai  are the roots of the complex cubic equation       

0246  CaBAaa                                                                                     (14) 
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In case of relaxation type semiconductor life time and relaxation time are comparable 
 p

p tt  and consequently 


p  gets modified. In general, the characteristic roots 

)3,2,1( imi  are complex and as we are considering surface waves only, so without loss of 

generality we choose only that form of im  and i  which satisfies the radiation condition. 

Hence the solution is a superposition of the plane waves attenuating with depth. 

5. SECULAR EQUATIONS AND THEIR SOLUTION 

        We consider the situation in which p-type semiconductor plate is bordered with viscous 

fluid. Upon applying the required interface boundary conditions (11) at the fluid-solid - 

interface  dz  and using equations (13.1)-(13.9). We obtain a homogenous system of 
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twelve equations in twelve unknowns  432187654321 ,,,,,,,,,,, BBBBAAAAAAAA .  
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The system of equations (18) will have non-trivial solution of the resulting coupled equations, 

after lengthy but straight forward algebraic reductions and simplifications, the secular 

equations for Lamb wave is given below  
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Here 32 , LL  can be obtained from 1L by replacing the subscripts permutation (2, 3) with (1, 

2), (1,3), respectively. The secular equation (17) governs the motion of modified guided 

elasto-thermodiffusive (ETP) Lamb waves in the instant analysis. It contains complete 

information about the phase velocity, attenuation coefficient and other characteristics of the 

ETP Lamb waves in a thermoelastic semiconductor plate underlying a fluid layer of finite 

thickness with varying temperature. In case the semiconductor plate is loaded with fluid half-

space  h , the secular equation of modified guided ETP Lamb waves is again given by 

equation (17) with changed values of the coefficients  2,1,0, iBA ii  and  1,0iCi  

which can be obtained from equation (18) by setting '
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The secular equation for the surface waves at the interface of inviscid fluid/germanium 

semiconductor plate  h  can be written from (19) by setting 1'

5 T . 

In the absence of fluid  LLLL s 000  , the secular equations (19) and (21) 

reduce to 
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The characteristic roots  4,3,2,1, im ii   given by equation (14) are in general complex 

and therefore, the wave number and hence, phase velocities of the waves are complex 

quantities,  

Case I 

For isothermal Th  and isoconcentration ph   is obtained as the values of ii QP ,  

is given by  

  3,2,1,  iSWP i

pq

ii   

  3,2,1,'  iSWQ ipqpii                                                                              (23) 

Case II 

For insulated 0Th  and isoconcentration ph   is obtained as the values of ii QP ,  is 

given by  

  3,2,1,  iSTmWP i

pq

iiii   

  3,2,1,'  iSTWmQ ipqiiii                                                                        (24) 

Case III 

For isothermal Th  and impermeable 0ph   is obtained as the values of ii QP ,  is 

given by  

   3,2,1,  iTSmWP iii

pq

ii   

  3,2,1,  iTSWQ iiipi                                                                         (25) 

Case IV 

For insulated 0Th  and isoconcentration 0ph   is obtained as the values of ii QP ,  is 

given by  

  3,2,1,  iSWmP i

pq

iii   

  3,2,1,  iSWQ i

qp
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If we write 

                                  QiVc 111                                                                   (27)                                                                                                                                  

 so that ,k R i Q R
V


    where V  and Q  are real. The exponent in the plane wave 

solution (11) becomes   xQtVxiR  , which shows that V  is the propagation speed and Q  

the attenuation coefficient of the waves. Upon using equation (27) in secular equations (19) 

along with other relevant relations, the values of phase speed  V and attenuation coefficient 
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 Q   for the propagation of non-leaky and leaky Rayleigh waves can be obtained for different 

values of the wave number  R . For known values of m  these equations can be solved to 

compute phase velocity  V and attenuation coefficient  Q  for fixed values of wave number 

 R  and given 00 , QQVV  . We shall use functional iteration method to solve the 

secular equations for phase velocity  V  and attenuation coefficient  Q  for different values 

of wave number  R  and procedure adopted is outlined below. 

       The functional iteration method to solve of an equation of the form   0Vg , requires to 

put this equation in the form  VFV  , so that the sequence  nV  of iterations for the desired 

root can be easily generated as follows: If 0VV   be the initial approximation to the root, 

then we have      ,,, 231201 VFVVFVVFV    and so on. 

In general,   3,2,1,0,1  nVFV nn .. If   ,1' VF for all IV  , then the sequence 

 nV of approximations to the root will converge to the actual value aVV   of the root, 

provided IV 0 . Here I  is the interval in which roots is expected.  

For initial values of 0VV   and 0QQ  , the values of  3,2,1, im ii   can be obtained 

from equation (14) and then these values are further used in secular equations (19) obtain 

current values of V and Q  which are then used to generate a new approximation until or 

unless the sequence of iterations to the values of V  or Q  converges to the desired level of 

accuracy. That is the condition  ,1 nn VV  being arbitrarily small number to be 

selected at random in order to achieve the accuracy level, is required to be satisfied. This 

process is continuously repeated for different values of wave number  R  to obtain phase 

velocity  V  and attenuation coefficient  Q .  

 6. DISCUSSION OF THE SECULAR EQUATIONS 

      we may have 321 ,,,, mmm being real, zero or imaginary. Then the frequency 

equation (19) is correspondingly altered as follows. 

6.1.1. REGION I 

    For 



k  implying that 321 /1,/1,/1, aaac   and consequently, we have

3,2,1,,  iimi ii  . In this case the secular equation (19) is written by replacing 

circular tangent functions of  3,2,1,, imi  with hyperbolic tangent functions of 

3,2,1,, ii  
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6.1.2. REGION II 

 

For 



 k , it follows that ,1 c  and the frequency equation in this case is obtained 

from Eq. 19 by replacing circular tangent functions of  3,2,1, imi  with hyperbolic 

tangent functions of 3,2,1, ii  
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6.1.3. REGION III 

         

  For ,k  it follows that 1c  and the frequency equation is given by Eq.19. 

 

6.2 WAVES AT SHORT WAVELENGTH 

 

 Some information on the asymptotic behaviour is obtainable by putting k . If we take ,



k  it 

follows that k  and that .1,c  In this case the roots of the secular equation lie in region I and 

then we replace 21 ,, mm  and 3m  in the frequency equation (19) by 321 ,,,  iiii .For k
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, 3,2,1,1tanh/tanh  idki  6,5,tanh/tanh  iidhi  , so that the frequency 

equation reduces to  

    0321321

2  GmLmLmLFLLLp                                                                            (31) 
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 The secular equation (30) governs the motion of elasto-thermodiffusive (ETP) Rayleigh 

(Stoneley) surface waves in the instant analysis. It contains complete information about the 

phase velocity, attenuation coefficient and other characteristics of the ETP surface waves in a 

thermoelastic semiconductor half-space underlying a fluid layer of finite thickness with 

varying temperature. In case the semiconductor half-space is loaded with fluid half-space 

 d , the secular equation of modified guided ETP surface Rayleigh waves is again 

given by equation (19) with changed values of the coefficients  2,1,0, iBA ii  and 

 1,0iCi  which can be obtained from equation (20) by setting '

6

'

5 1 TT  . 

In case of inviscid fluid ),00(  aLL   the secular equation (31) becomes 

        )32(0224 *'

3211321
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The secular equation for the surface waves at the interface of inviscid fluid/germanium 

semiconductor plate  h  can be written from (32) by setting 1'

5 T . 

In the absence of fluid  LLLL s 000  , the secular equations (31) and (32) 

reduce to 

    04 332211321

2  LmLmLmLLLp                                                                  (33) 

The equation (33) is the same as obtained and discussed in detail by Sharma and Thakur [10] 

in case of thermoelastic semiconductor under free surface conditions. 
  

7. NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate the theoretical results obtained in the preceding sections, we now  

present some numerical results. The material chosen for this purpose is germanium (Ge) 

semiconductor materials the physical data for which is given in Table 1. The values of 

viscosity for inviscid (H2O) and viscous fluid (D2O) fluids are taken as  0.0L  and 0.1L

, respectively. All the considerations presented in this paper were only devoted to the 

semiconductor of the relaxation type. This means that we are interested in a case when the 

relaxation times and the life times of the holes are comparable with each other.  The 

corresponding profiles of phase velocity  V , attenuation coefficient  Q , are plotted on linear 

scales against non-dimensional wave number (R) and liquid layer thickness(h) in Figs.2 to 7. 

The non-dimensional values of lifetimes of charge carriers are taken as 0796.0,796.0

pt  

which corresponds to their dimensional values 

pt 1ps, 0.1ps respectively, have been 

considered for the computation purpose.  

Table 1:  Physical data of germanium (Ge) semiconductor materials  

Physical   

Quantities 

Units 

 

Ge References 

  Nm
-2

 111048.0    

  Nm
-2

 111053.0    

  Kgm
-3

 3103.5    



nt  s 510  [12] 



pt  s 510   

nD  m
2
s

-1
 2105.0    

pD  m
2
s

-1
 2105.0    

00 pn   m
-3

 2010   

n  sm /2  3104.3   [21] 

p  sm /2  3103.1    

K  Wm
-1

K
-1 

60   
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eC  JKg
-1

K
-1 

310  [22] 

T  K
-1 6108.5    

nqm  vk
-1

 610004.0   [23] 

qnm  vk
-1 610004.0    

 

 

 

Table 2 -   Physical data for inviscid fluid (H2O) and viscous fluid (D2O) 

 

Physical   

Quantities 

Units 

 

H2O D2O References 

L  Kgm
-3 

10
3 

1104.36 [24] 

or 

Lc  ms
-1 

1500 1500 [25] 

L  Nm
-2

s 0.0 1.0  

KL Wm
-1

k
-1 

0.686 0.636 [26] 

 

Table 3: Specific heat of water at constant volume for different temperatures 

)(0*

0 CT  0 15 35 50 100 

)/(* CKgJC o

v  1.008 1.00 0.997 0.998 1.006 

 

 

 

The value of half of the plate thickness (h) is taken as unity and the thickness of liquid layers 

is also kept as unity for the purpose of numerical calculations. From Fig. 2, it is observed that 

the phase velocity of lowest acoustic symmetric mode increases from zero value at vanishing 

wave number to become asymptotically closer to the thermoelastic Rayleigh wave velocity at 

higher wave numbers. It is quite clear that due to the damping effect of the liquid on both side 

of the plate, the phase velocity of The phase velocity of acoustic symmetric mode gets 

significantly reduced/ affected in the presence of liquid loading and asymptotically tends to 

the velocity of thermoelastic Rayleigh wave in the considered material half-space with 

increasing wave number symmetric and sk-symmetric mode. The phase velocity of higher 

(optical) symmetric and skew -symmetric modes attains quite large values at vanishing wave 

number which slashes down to become steady and asymptotic to the shear wave velocity with 

increasing wave number. All the modes show dispersive behavior in the considered directions 

of wave propagation. It can be seen that as the wave number increases, the phase velocity of 

each mode decreases in all the directions of wave propagation. When wave number becomes 

indefinitely large, the curves asymptotically approach to the Rayleigh wave velocity, because 

in such a situation a finite thickness plate behaves like a half-space and the transportation of 

energy takes place mainly across the free surface of the plate. Figs.3 represents the variation 
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of non-dimensional attenuation coefficient (Q) of the waves with non-dimensional wave 

number (R) for acoustic mode of wave propagation in a plate.  it is noticed that the 

attenuation first increases monotonically in the wave number range 20  R  and then 

linearly for 2R  and also decreases in the range 55.3  R  It is also noticed that the 

attenuation coefficient  Q  exhibit dispersive behavior after wave number interval 5R .  

The attenuation caused by fluid loading is due to the combined effects of radiation loss due to 

energy leakage into the fluid and dissipative loss due to viscous friction at the interfaces. 

Fig.4 shows the variation of phase velocity of symmetric and skew symmetric mode for non 

leaky lamb waves with wave number in the liquid loading. The lowest symmetric mode and 

skew symmetric mode has zero velocity at vanishing wave number, which increases to 

become closer to the velocity of Rayleigh wave with increasing wave number but also get 

reduced and effected due to the presence of the liquid. The phase velocities of higher modes 

of propagation attain large values at vanishing wave number, which slash down to become 

steady and asymptotic to the reduced Rayleigh wave velocity with increasing wave number. 

The magnitude of velocity of higher modes is observed to develop at same rate, which 

approximately n-times, the magnitude of phase velocity of first mode  1n .  It is quite clear 

that due to the damping effect of the liquid on both side of the plate, the phase velocity of 

acoustic symmetric and skew symmetric mode gets significantly reduced/ affected in the 

presence of liquid loading and asymptotically tends to the velocity of elastic Rayleigh wave 

in the considered material half-space with increasing wave number symmetric and 

antisymmetric mode. All the modes show dispersive behavior in the considered directions of 

wave propagation. It can be seen that as the wave number increases, the phase velocity of 

each mode decreases in all the directions of wave propagation. When wave number becomes 

indefinitely large, the curves asymptotically approach to the Rayleigh wave velocity, because 

in such a situation a finite thickness plate behaves like a half-space and the transportation of 

energy takes place mainly across the free surface of the plate.  

 

Fig.5 represents the variation of non-dimensional attenuation coefficient (Q) of the waves 

with non-dimensional wave number for acoustic mode of wave propagation in a plate for 

symmetric and skew symmetric mode. It is noticed that the attenuation first increases 

monotonically in the wave number range 5.20  R  and then linearly in the range

55.3  R . It is also noticed that the attenuation coefficient  Q  exhibit dispersive behavior 

after wave number interval 5R . The attenuation caused by liquid loading is due to the 

combined effects of radiation loss due to energy leakage into the liquid and dissipative loss 

due to viscous friction at the interfaces. The zoomed version of phase velocity profiles of 

acoustic modes for both symmetric and asymmetric, with respect to liquid layer thickness(h) 

has been plotted in Fig. 6. It is observed that the values of phase velocity of acoustic modes 

get suppressed, which is attributed to the shock absorbing nature of the liquid. Moreover, the 

magnitude of phase velocity increases with decreasing the value of life time of charge 

carriers. The dispersion of these modes is attributed to the fact that at long wavelengths the 

disturbance due to wave penetrates deep into the medium, due to which coupling between 

various interacting fields become highly operative while at short wavelengths, the wave 

follows the free surface of the plate and so the effect of coupling reduced significantly. 
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Fig. 7 represents the variation of non-dimensional attenuation coefficient (Q) of the waves 

with non-dimensional liquid layer thickness(h) for acoustic mode of wave propagation in a 

plate for symmetric and skew symmetric mode. It is noticed that the attenuation first 

decreases monotonically in the liquid layer thickness(h) range 5.01.0  h  and then linearly 

increases in the range 9.05.0  h . It is also observed that the magnitude of attenuation of 

acoustic modes for both symmetric and asymmetric is found to be high as compared to the 

inviscid liquid loading.  

 

 

8. CONCLUSIONS 

 

The propagation of lamb waves in a homogeneous isotropic semiconductor materials plate 

loaded with viscous liquid layer on both sides, is investigated. The behaviour of dispersion 

curves of lamb waves is found to be similar except that the magnitude of phase velocity in 

case of symmetric mode is found to be large. The phase velocity of lowest symmetric (i.e. 

fundamental mode) become dispersionless and gets significantly reduced and effected in the 

presence of the liquid and remains close to the velocity of Rayleigh wave with increasing 

wave number.  The influence of the liquid on a lamb wave depends very significantly on the 

ratio of the phase velocities of these waves and velocity of the liquid. In essentially every and 

for practically all mode except 0A , the condition TL cc   is satisfied. It is clear from physical 

consideration that in this case the propagation of a wave in a plate will involve the radiation 

of energy from that wave into the liquid and, accordingly, attenuation along the direction of 

propagation. The radiation into the liquid strongly depends on the ratio of the vertical to the 

horizontal component of surface displacement in the given mode. The attenuation become 

maximum when the vertical component of surface displacement is a maximum, and it is 

generally vanishes when the vertical surface displacement is equal to zero. 
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FIGURE CAPTIONS 

 

FIGURE2. Phase velocity profile with wave number of symmetric and skew symmetric lamb   

                   wave  at different life time . 

FIGURE3. Attenuation profile with wave number of symmetric and skew-symmetric lamb  

                    wave   at different life time (inviscid fluid). 

FIGURE4. Phase velocity profile with wave number of symmetric and skew-symmetric  

                    lamb wave at different life time (Isothermal and Isoconcentration Plate). 

FIGURE5. Attenuation profile with wave number of symmetric and skew-symmetric  

                    lamb wave at different life time (Isothermal and Isoconcentration Plate). 

FIGURE6. Phase velocity profile with liquid layer thickness (h) of symmetric and skew-     

                    symmetric  lamb wave at different life time. 

FIGURE7. Attenuation profile with liquid layer thickness (h) of symmetric and skew-     

                    symmetric  lamb wave at different life time. 
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