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Abstract 

We propose a Ramanujan’s method for solving a non-linear ordinary differential equation describing the 

stellar structure of the slowly rotating polytropic fluid sphere. Ramanujan’s method is an iterative method 

which is used to determine the roots of the obtained series through special function as it gives the accurate 

numerical results to the series solution as any other computational methods. Therefore, it can be used as an 

application to real stars and the core of degenerate stars. The numerical results are presented for the values of 

the polytropic index n = 0.0(0.1) to 2.0 and it is found in agreement with the earlier reported results (A.D. 

Parks 1984). 
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1. INTRODUCTION 

The structural study of the slowly rotating polytropic fluid problem has engrossed several astrophysicist and 

mathematicians. In the present study, our purpose is to solve the equation for a rotating polytropic fluid and 

to find the prospect of solving the rotating stars much more conveniently without any complicated computer 

programming methods. Previously, the problems of slowly rotating problems were solved by using 

Sledgehammer technique (Monaghan 1965) which was the only essential technique to solve the problem to 

the polytropic fluids. In this paper, we present a simple approximation technique extended by the special 

function (Legendre function and Power series) for solving the rotating polytropic problem in order to find the 

series that originate at the centre of a polytropic model. The calculation of the boundary values has been done 

by a Ramanujan’s method, a novel method which gives the exact result to the series solution. The applied 

technique to the polytropic problems can be extended to the case of real stars and the problem of the structure 

of slowly rotating white dwarf will be dealt with in a subsequent communication. The rotation problems was 

first investigated by Chandrasekhar(1933) using a first order perturbation, Monaghan J.J & Roxburgh 

I.W(1965) used an extension of Jean’s generalized Roche model, Sackmann I. & Anand S.(1969) constructed 

ten convective models in the frame work of first order perturbation., Smith B.L(1973) used a simple, analytic 

& iterative technique, Das M.K. & Tandon J.N(1975) used first order perturbation technique, Seidov Z.F & 

Kuzakhmedov R (1977) introduced functional series method, Mohan C. & Al-Bayaty A.R (1980) proposed a 

power series method, Singh & Singh (1984) used Monaghan & Roxburgh method, Parks A.D (1984) used 

Frobenius method & power series method, Jabbar R.J. (1984) integrated numerically the Chandrasekhar’s 

equation for polytropic gas spheres of zero order and index n=0(0.1) 4.9 numerically with CDC7600 

automatic computer to 16 decimal places, William P.S(1988) constructed analytical solution for the 

polytropic index n=1, Roxburgh I. & Stockman L.M (1999) used power series method , Hunter C. (2001) 

used Euler’s transformed Series, Daftardar & Jafari H.(2006) proposed an iterative method for solving non-

linear Volterra integral equations, Oproui T. & Horedt G.P.(2008) used analytical method, Prince A.M. & 

Thomas S.(2019) introduced new iterative method to solve second ODE and used Ramanujan’s method for 

series calculation, Kashem B.E & Shihab S.(2020) used modified Hermite operation matrix method to solve 

the structure of slowly rotating polytropes. 

 

The basic equations governing the structure of polytrope of index n such as, 

 

                                                            𝑃 = 𝑘𝜌1+
1

𝑛  and 𝜌 = 𝜌𝑐𝜎
𝑛                                                                                                          (1) 

 

and where P is the pressure, ρ the density, 𝜌𝑐  is its central density, 𝜎𝑛  is the dimensionless variable, k is the 

constant and n is the polytropic index, which can be used to model different polytropic state. 

 

Considering the equation of hydrostatic equilibrium for a rotating spheroid, 

                                                                    ∇𝑃 = 𝜌∇(𝑉 + 𝑉′)                                                                                 (2) 

 

where V ′ the rotational potential and V the gravitational potential satisfying the Poisson equation is given by, 

 

                                                                  ∇2𝑉 = −4𝜋𝐺𝜌 and  ∇2𝑉′ = 2𝜔2                                                                                            (3) 

         

Taking gradient of eqn (2) and substituting the value of eqn (3) in it we get, 

 

                                                           ∇⃗⃗  [
1

𝜌
∇⃗⃗ 𝑃] = −4𝜋𝐺𝜌 + 2𝜔2                                                                    (4) 

 

Introducing dimensionless variable ξ and α by the relation, 

 

                                                           𝑟 = 𝛼𝜉,   𝛼2 = [
(𝑛+1)𝑘𝜌𝑐

1
𝑛
−1

4𝜋𝐺
] ,    𝛼 =

𝜔2

2𝜋𝐺𝜌𝑐
                                                    (5) 

Since, 

                                                             

                                                         ∇⃗⃗  [
1

𝜌
∇⃗⃗ 𝑃] = (𝑛 + 1)𝐾𝜆

1

𝑛∇2𝜎                                                                     (6) 
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Then, 

                                                              [
(𝑛+1)𝑘𝜌𝑐

1
𝑛
−1

4𝜋𝐺
] ∇2𝜎 = −𝜎𝑛 +

𝜔2

2𝜋𝐺𝜌𝑐
                                                    (7) 

 
The above equation (7) becomes, 

 
                                                                       ∇2𝜎 = −𝜎𝑛 + 𝛼                                                                                             (8)     
 

Now, assuming the distance of a point on the surface from the origin r and the θ the angle between the 

rotation axis (z-axis) and r. We shall denote the cosine of the co-latitudes θ by µ = cos z. 

 We find that equation (1)-(3) can be reduced to, 

 

                                                
𝜕2𝜓

𝜕𝜉2
+

2

𝜉

𝜕𝜓

𝜕𝜉
 + 

1

ξ

𝜕2𝜓

𝜕𝜉2
+

2cotθ

ξ2
𝜕𝜓

𝜕𝑧
= [−𝜎𝑛 + 𝛼]𝜓                    (9) 

 
Boundary Condition : At the centre the polytopes has maximum density by boundary conditions, 

 

at      ξ = 0, θ = 1 and 
𝑑𝜃

𝑑𝜉
= 0                                                                (10) 

 

and Assuming that a solution of eqn (9) to the last equation to first order in the small parameter using 

perturbation technique, 

                                                        σ = θ + αψ + α2ϕ + ...                                                     (11) 

 

Expanding equation (11) in terms of equation (9) we have, 

 
1

𝜉2

𝜕

𝜕𝜉
[𝜉2 (

𝜕𝜃

𝜕𝜉
+ 𝛼

𝜕𝜓

𝜕𝜉
+ 𝛼2

𝜕𝛷

𝜕𝜉
+ ⋯)] +

1

𝜉2

𝜕

𝜕𝜇
[(1 − 𝜇2) (

𝜕𝜃

𝜕𝜇
+ 𝛼

𝜕𝜓

𝜕𝜇
+ 𝛼2

𝜕𝛷

𝜕𝜇
+ ⋯)] 

= −(𝜃𝑛 + 𝑛𝛼𝜃𝑛−1𝜓 + 𝑛𝛼2𝜃𝑛−1𝛷+. . . +
𝑛(𝑛−1)

2
𝛼2𝜃𝑛−2𝜓2 + ⋯) + 𝛼                   (12)  

 

Since, θ is a spherically-symmetrical function and independent of µ. 

 

Comparing the coefficients of zero, first and second order of α, we obtain the following equation, 

                                              
1

𝜉2

𝜕

𝜕𝜉
(𝜉2 𝜕𝜃

𝜕𝜉
) = − 𝜃𝑛                                         (13) 

 

                      
1

 𝜉2

𝜕

𝜕𝜉
(𝜉2 𝜕𝛹

𝜕𝜉
) +

1

𝜉2

𝜕

𝜕𝜇
[(1 − 𝜇2)

𝜕𝛹

𝜕𝜇
] = − 𝑛𝜃𝑛−1𝛹+1                                            

(14) 
 

                  
1

 𝜉2

𝜕

𝜕𝜉
(𝜉2 𝜕𝛷

𝜕𝜉
) +

1

𝜉2

𝜕

𝜕𝜇
[(1 − 𝜇2)

𝜕𝛷

𝜕𝜇
] =  − 𝑛𝜃𝑛−1𝛷 −

𝑛(𝑛−1)

2
𝜃𝑛−2𝛹2         (15) 

 

Where, equation (14) is the non linear differential equation of Lane Emden type equation for the slowly 

rotating polytropic fluid sphere of index n, which is the basic equation in the theory of stellar structure. To 

obtain the solution of equation (14) consider ψ as a series of Legendre Polynomials Pm (µ), 

 

                                           𝛹 = ∑ 𝐴𝑚𝛹𝑚𝑃𝑚(𝜇)∞
𝑚=0    and   ∑ 𝛷𝑚𝑃𝑚(𝜇)∞

𝑚=0                                         (16) 

 

Where 𝐴𝑚
′ 𝑠  are the arbitrary constants and Pm(µ). The Legendre functions of index m satisfies the 

differential equation 

                        (𝜉2 𝜕2𝛹𝑚(𝜉)

𝜕𝜉2 ) + 2𝜉 (
𝜕𝛹𝑚(𝜉)

𝜕𝜉
) + [𝜉2 − 𝑚(𝑚 + 1)]𝛹𝑚(𝜉) = 0,   𝑚 = 1,2,3….                        (17) 

 

ξ = 0 is regular singular point for 1. Consider its series solution, 
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                                                                                                                                                                      (18) 

𝜓𝑚 = 𝑎0𝜉
𝑚 + 𝑎1𝜉

𝑚+1+𝑎2𝜉
𝑚+2+. . .. 

The solution of equation (17) is then given by, 

 

 

 

𝜓𝑚 = 1 −
1

3!
𝜉2 +

𝑛

5!
𝜉4 −

𝑛(8𝑛−5)

3∙7!
𝜉6 +

𝑛(70−183𝑛+122𝑛2)

9∙9!
𝜉8+. . . . ..                  (19)

 

which is the series solution of non-linear second order differential equation for of Lane-Emden equation near 

origin. 

 

2. METHODOLOGY 

2.1 RAMANUJAN’S METHOD 

An iterative method to determine the smallest root of the equation, f (x) = 0 where f (x) is the form of              

f (x) = 1 − (a1x + a2x2 + a3x3 + ...) described by Srinivasa Ramanujan [10].  For the smallest root of f(x),we can 

write 

                            [f(x) = 1 − (a1x + a2x2 + a3x3 + ···)]−1 = bx + b2x2 + b3x3 + ...                                              (20) 

         

Expanding L.H.S by Binomial theorem and equating the coefficients of like powers of x on both the sides, we 

obtain, 

           𝑏1 = 1, 𝑏2 = 𝑎1 = 𝑎1𝑏1, 𝑏3 = 𝑎2 + 𝑎1
2 = 𝑎2𝑏1 + 𝑎1𝑏2,  𝑏𝑛=𝑎1𝑏𝑛−1 +

                                                   𝑎2𝑏𝑛−2 + ⋯+ 𝑎𝑛−1𝑏1                                                   
                                                                                                                                                                     (21) 

The ratio 𝑏𝑛/𝑏𝑛−1, ,is called the convergent of the above equation (21). 

 

THE SERIES SOLUTION FOR ROTATING LANE EMDEN EQUATION 

The series solution of non-linear second order differential equation (19) of  Lane-Emden equation near origin 

is given by, 

𝜓𝑚 = 1 −
1

3!
𝜉2 +

𝑛

5!
𝜉4 −

𝑛(8𝑛 − 5)

3 ∙ 7!
𝜉6 +

𝑛(70 − 183𝑛 + 122𝑛2)

9 ∙ 9!
𝜉8+. . . . ..          

for n = 0,   ψ0 = 1 −
1

3!
𝜉2 and for n = 1,ψ1 =

sinξ

ξ
                         (22)

Substituting equation (19) in (20) we obtain, 

 

           [f(ξ) = 1-(
1

6
𝜉2 −

1

120
𝜉4 +

1

5040
𝜉6 −

1

362880
𝜉8+. . . . . . )]−1= 𝑏1𝜉

2
+ 𝑏2𝜉

4
+𝑏3𝜉

6
+𝑏4𝜉

8
+………     

 

𝑎1 =
1

6
, 𝑎2 = −

1

120
, 𝑎3 =

1

5040
, 𝑎4 = −

1

362880
 

 

                   𝑏1 = 1, 𝑏2 = 𝑎1 =
1

6
 = 0.016667, 𝑏3 = 𝑎2 + 𝑎1

2 = 𝑎2𝑏1 + 𝑎1𝑏2= 0.01944444……               (24) 

 

The ratio of  𝑏𝑛/𝑏𝑛−1,, of equation (24) determines the smallest root (ξ) of the equation. 

 
𝑏1

𝑏2
= 2.449489743,

𝑏2

𝑏3
= 2.927700219,

𝑏3

𝑏4
= 2.8419928. . . . . . . .

𝑏9

𝑏10
= 3.14145478  

 

Hence, 3.1414578 is the root of equation (24) for the polytropic index n = 1. 

 

 

3. RESULT & DISCUSSION 

 

In the present paper our purpose, is to solve the equation for a polytropic fluid and it is found that the solution 

of the rotating polytropic fluid sphere can be obtained much more conveniently without complicated 

computer programming methods. 



Numerical Solution For The Slowly Rotating Polytropic Fluid Sphere Section A-Research paper 

 

Eur. Chem. Bull. 2023, 12(Special Issue 5), 6675 –6680                                   6679 

 

Case 1: The series solution for the slowly rotating polytropic fluid sphere equation, 

(𝜉2 𝜕2𝛹𝑚(𝜉)

𝜕𝜉2 ) + 2𝜉 (
𝜕𝛹𝑚(𝜉)

𝜕𝜉
) + [𝜉2 − 𝑚(𝑚 + 1)]𝛹𝑚(𝜉) = 0 is evaluated for different polytropic index i.e.       

 

n= 0.0(0.1) to 2.0 by using special function (Legendre function and power series). 

 

Case 2: The boundary values ξ = 0, θ = 1 and θ′ = 0 for small values of ξ has been obtained using 

Ramanujan’s Method and it is compared with the A.D. Parks’s boundary value (reference), as presented in the 

table. The % error shows the efficiency of solving such equations by Ramanujan’s Method. As, for slowly 

rotating polytropic fluid this method is highly accurate for the values of the polytropic index n = 0.0(0.1) to 

1.7 and a simple calculator or MS-excel sheet can be used for the calculation. 

 

Case 3: The polytropic model gives good results practically in the whole star, except for the nuclear region, 

suggesting that in this region a slightly higher polytropic index would be more appropriate. It also helps us to 

estimate the main properties of stellar interiors such as pressure P, density ρ, temperature T which can be 

compared with real stars because the physical laws derive from the laboratory also holds in the whole 

universe. 

 

Case 4: The study of gaseous filaments or of spiral arms, where it would provide less idealized models than 

some which have been considered in the past. The solution to the polytropic model of index n can be used for 

the description of celestial objects such as: 

• A polytropic index n=0 has constant density; it has in-compressible interior and used to model rocky 

planets. 

• A polytropic index n=0.5 to 1.0 models the neutron stars. 

• A polytropic index n=1.5 is a good model for white dwarf with low mass, fully convective star cores, 

brown dwarfs. 

 

which can further lead to an application to the astronomy and astrophysics. 

 

Table: Comparison table for the boundary values (ξ1) using Ramanujan’s Method with A.D. Parks’s Value. 

 

n A.D. Parks's Result Author's Result (ξ1) Error (%) 

0.0 2.44949 2.44949 0.00000 

0.1 2.50454 2.49624 0.33100 

0.2 2.56222 2.54570 0.64443 

0.3 2.62268 2.59812 0.93617 

0.4 2.68610 2.66402 0.82197 

0.5 2.75270 2.76911 0.59623 

0.6 2.82268 2.82421 0.05442 

0.7 2.89628 2.88681 0.32663 

0.8 2.97376 2.96913 0.15538 

0.9 3.05543 3.09307 1.23191 

1.0 3.14159 3.14145 0.00432 

1.1 3.23261 3.23955 0.21471 

1.2 3.32887 3.33646 0.22812 

1.3 3.43081 3.38042 1.46848 

1.4 3.53893 3.50050 1.08583 

1.5 3.65375 3.63316 0.56344 

1.6 3.77590 3.78063 0.12537 

1.7 3.90606 3.94554 1.01086 

1.8 4.04501 4.13129 2.13299 

1.9 4.19361 4.34186 3.53521 

2.0 4.35287 4.58257 5.27711 
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4. SUMMARY & CONCLUSION 

Several iterative methods has been studied previously to determine the solution to initial boundary problems 

of the non linear differential equation but it was not very efficient. In the present study, we have calculated 

the roots (boundary values) for the slowly rotating polytropic fluid spheres using Ramanujan’s method which 

can be seen as a useful tool for solving the in-homogeneous second order differential equation as, it is a novel 

method used to determine the accurate numerical results to the series solution as any other computational 

method. The numerical comparison of the results discussed here justified the relevance and the efficiency of 

the present study as the numerical values obtained are also close to the exact results. Hence, it can be used as 

an application in the field of astronomy such as real stars, white dwarfs and core of the degenerate star. 
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