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Abstract: Inscriptions play a crucial role in preserving 

historical, cultural, and linguistic information. The identification 

and analysis of patterns in Tamil letters found in inscriptions 

provide valuable insights into the evolution of the Tamil 

language and its script. However, manual analysis of these 

inscriptions is time-consuming and prone to errors. In recent 

years, deep learning techniques have shown promising results in 

pattern recognition tasks, motivating the exploration of various 

strategies to identify the patterns of Tamil letters on 

inscriptions.This paper focuses on leveraging deep learning 

algorithms for the automated identification of Tamil letter 

patterns in inscriptions. Firstly, a dataset of digitized Tamil 

inscriptions is collected, consisting of high-resolution images 

representing a wide range of letter variations. Preprocessing 

techniques are employed to enhance the quality and clarity of 

the images, removing noise and artifacts.Various deep learning 

models, such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), are then trained using the 

preprocessed image dataset. CNNs excel in extracting spatial 

features from images, enabling the recognition of letter shapes 

and contours. RNNs, on the other hand, capture temporal 

dependencies within sequences of letters, aiding in deciphering 

the structure and connectivity of the inscriptions. To improve 

the performance of the models, data augmentation techniques 

are employed to increase the dataset size and enhance its 

diversity. However, preprocessing plays a major role in 

sharpening the features present in the image. Hence, this paper 

addresses the preprocessing techniques such as Image Blur, 

Binarization and Edge Detection with respect to inscription. 

Preprocessing techniques were identified and tested with the 

inscription image. Based on the results and response time, it is 

suggested that the Median filter with canny edge detection is 

working well for inscription images. After preprocessing the 

results have been tested with edge detection and it is found that, 

Median filter with canny edge detection gives best accuracy in 
comparison with other algorithms. 

Keywords— Character Recognition, Pre-processing, Image 

processing, Computer vision. 

I. INTRODUCTION  

Father of inscriptions is Samudragupta. However, 

Chandragupta Maurya was the one who has used inscriptions 

to communicate with his subjects.  In olden days inscriptions 

are the only format to communicate the human insights. The 

Dravidian literary languages include Tamil, Telugu, 
Kannada, and Malayalam. The eldest member of the 

Dravidian language family is the Tamil language. It has been 

in this world for more than 5,000 years. Based on the market 

survey, the Tamil-only periodicals are numbered more than 

1800. These periodicals have been classified into three 
categories based on the thorough analyses of grammatical and 

lexical variations, namely: Old Tamil (from about 450 BCE 

to 700 CE), Middle Tamil (700–1600), and Modern Tamil 

(since 1600). Tamil-Brahmi, also known as Tamili, was a 

variant of the Brahmi script in southern India. It was used to 

write inscriptions in the early form of Old Tamil. The Tamil-

Brahmi script has been paleo graphically and stratigraphically 

dated between the third century BCE and the first century 

CE, and it constitutes the earliest known writing system 

evidenced in many parts of Tamil Nadu, Kerala, Andhra 

Pradesh and Sri Lanka. Tamil Brahmi inscriptions have been 
found on cave entrances, stone beds, potsherds, jar burials, 

coins, seals, and rings. 

From the 5th century CE onwards Tamil is written in 

Vatteluttu in the Chera and Pandya country and Grantha or 

Tamil script in the Chola and Pallava country. Vatteluttu is an 

ancient script that was used to write the Tamil language and 

several other languages in South India. The term "Vatteluttu" 

means "rounded script" in Tamil, referring to the rounded or 

circular shapes of its characters. This script has a rich history 

and is of great importance in the development of writing 

systems in the region.It evolved from the earlier Tamil-

Brahmi script, which was influenced by the Brahmi script of 
North India. Vatteluttu script further developed into other 

scripts such as the Grantha script, which in turn influenced 

the modern Tamil script.Grantha script is an ancient writing 

system primarily used for writing the Sanskrit language and 

other languages of the South Indian region. It holds 

significant historical and cultural importance, particularly in 

the context of Tamil Nadu and Kerala. Both Vatteluttu and 

Grantha scripts are derived from the Brahmi script, but they 

belong to different categories and have distinct 

characteristics. Vatteluttu is associated with Tamil and other 

Dravidian languages, while Grantha script is associated with 
Sanskrit and Tamil in a religious context. 

Tamil inscription images can be easily read and analyzed if 

the preprocessing is done effectively. Hence, this paper 

presented the various preprocessing techniques and its results 

for Tamil inscription images. The inscription images 
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represent politics, religious, economy, location, tradition, 

astronomy, history, culture and many others. 

Some of the ancient inscription images are shown below in 

Fig 1 for a better understanding of inscription images. 

 
 

a.Ashokan Kalvettu b.Inscription at 

vikkiramankalam 

(              ) 

  

c.Inscription at 

muthalaikulam 

(            ) 

d.Inscription at Aanaimalai 

(      ) 

 

Fig. 1 Sample Images of Tamil Inscription 
 

II. LITERATURE REVIEW 

 

In this section, a thorough discussion and analysis were 

conducted on the research work related to preprocessing 

techniques utilized for inscriptions, as well as the technique 

employed for the recognition of letters within inscriptions. 
 

To identify prehistoric languages, signs, and fonts, Naresh et 

al. (2022) used an approach that integrates an artificial neural 

network (ANN) with the Opposition-based Grey Wolf 

optimization Algorithm (OGWA). The authors emphasize the 

importance of the weights and connections between layers in 

ANN system efficacy. This paper investigates the 

implementation of various optimization algorithms, including 

Opposition-based Grey Wolf optimization, Particle Swarm 

optimization, and Grey Wolf optimization, to the ANN 

system in order to determine these weights effectively. In 

addition, the researchers declare their intention to reconfigure 

the ANN's structure in future studies in order to improve the 

system's predictive performance. [1] 

 

 

Dhivya S et al (2021) suggested a few steps for efficient 
character recognition. Training the CNN model from scratch 

with a SoftMax classifier in a sequential model. Using 

Mobile Net: Transfer learning paradigm from a pre-trained 

model on a Tamizhi dataset. Building a model with CNN and 

SVM. SVM for evaluating the best accuracy to recognize 

handwritten Brahmi characters The accuracy of the trained 

and tested Mobile Net model for the datasets of vowels (8 

classes), consonants (18 classes), and consonant vowels (26 

classes) is 98.1%, 97.7%, and 97.5%, respectively. Data 

Collection Techniques: Approximately 1,600 engineering 

students from the SRM Institute of Science and Technology 

contributed 1,090,000 isolated samples to the character 
database. The information was stored in CSV format. The 

handwritten typefaces had a grid-like layout. Each grid cell 

was segmented using the Hough Transform method. Using 

OPENCV, the image is segmented into distinct scripts. The 

algorithm for character segmentation is used to extract 

handwritten characters. Images of segmented characters are 

classified into 209 classifications. To evaluate the dataset, a 

CNN model and SoftMax classifier are combined to 

recognize the script. This research may convince historians, 

anthropologists, and scholars from other fields to utilize the 

source material and gain a deeper comprehension of ancient 
Tamil culture.[2] 

 

The diverse thresholding techniques (Sukanthi et al., 2021) 

The binarization of images of terrestrial and underwater stone 

inscriptions is preceded by contrast enhancement and 

followed by edge-based filtering that reduces noise and 

sharpens edges. The modified bi-level thresholding (MBET) 

algorithm is proposed and compared to several existing 

thresholding algorithms, including the Otsu method, Niblack 

method, Sauvola method, Bernsen method, and Fuzzy C 

means method. The proposed MBET algorithm, with its 

adaptive local thresholding feature, is expected to minimize 
noise and extract the margins of the objects in both terrestrial 

and underwater images flawlessly.
[3]

 

 

The technique (Brindha et al., 2021) for deriving the features 

and converting the ancient Tamil script to its modern form is 

proposed. The processed image is subjected to a new feature 

extraction technique in which the system uses a chi-square 

test to determine whether or not all the zoning feature values 

are independent or dependent. Neural networks recognize the 

characters using the extracted features. The featured image is 

trained with NNTool, and the data are compared to the 
database in order to recognize Brahmi characters. The 

recognized characters are converted into modern Tamil 

letters, and the resulting HTML output is displayed. The 

image features are extracted using Zernike moments and 

zoning features, two novel feature extractions. To ascertain 

whether the values of the vectors are independent or 

dependent, a chi-square test is conducted. The accuracy rate 

of 91.3% is achieved using the confusion matrix. By 

employing sophisticated algorithms, the method can be 
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expanded to larger datasets, online character recognition, and 

improved precision.[4] 

 

Neha Gautam et al. (2020) propose using a deep 

convolutional neural network with dropout to recognize 

Brahmi words. In addition to proposing a DCNN for Brahmi 
word recognition, this study conducts a series of experiments 

on a conventional Brahmi dataset. On a publicly accessible 

Brahmi image database, the practical operation of this 

method was systematically tested, obtaining a 92.47% 

recognition rate by CNN with dropout. This study contrasted 

the outcomes of various methods in order to make 

recommendations based on parameter tuning. In addition, 

determining the optimal parameters for producing error-free 

results is a research problem. Similarly, complex future tasks 

such as character recognition of rotated, mirror-text, and 

chaotic images could benefit from the extraction of novel 

features.[5] 
 

In this paper (Merline et al., 2020), training of an 18-layer 

CNN for 73 class character recognition problems was 

conducted. This CNN architecture is trained to extract sample 

features using the ReLU activation function. CNN can 

autonomously learn a unique set of image-based features in a 

hierarchical fashion. We attained the Segmentation Rate and 

Recognition Rate using our framework by mapping the From 

Ancient Tamil to Modern Tamil characters rate. The 

proposed work concentrates on the Simple Convolution 

Neural Network for image classification, which incurs less 
computational expense. The results demonstrate that CNN is 

capable of obtaining good results on the Tamil Dataset 

through supervised learning alone. We did not use an 

unsupervised, pre-trained network, despite the fact that we 

believe it would have facilitated the work.[6] 

 

Using a Convolutional Neural Network, the proposed method 

(Suriya et al., 2020) is able to recognize characters in 

challenging conditions where traditional character 

recognition systems fail, such as in the presence of low 

resolution, substantial blur, low contrast, and other 

distortions. The following significant challenges can be 
investigated further in the future: This work utilizes HP Labs 

India's Isolated Handwritten Tamil Character data set. As a 

result, it has been determined that among the proposed 

algorithms, various CNN models produce different results, 

and the one that provides the highest recognition accuracy is 

superior. [7] 

 

The proposed work (Lalitha et al., 2019) concentrates on 

enhancing optical character recognition techniques for 7th- to 

12th-century Tamil script. After the image is binarized using 

the Otsu thresholding method, a two-dimensional 
convolutional neural network is defined and used to train, 

classify, and recognise ancient Tamil characters. The neural 

network is attached to Tesseract via the Python Pytesseract 

library in order to implement optical character recognition 

techniques. This work incorporates Google's text-to-speech 

voice engine to generate an audio output of the digitized text 

as an added feature. This research endeavored to develop a 

universally applicable OCR system with audio output for the 

ancient Tamil script. Using CNN and Image Recognition 

techniques, an operational system for modern and ancient 

Tamil was developed. The effectiveness of OCR techniques 

on ancient Tamil scripts can be enhanced through the 

addition of more data. The development of a language parser 

to aid in the segmentation of the digitized script and enhance 

the accuracy of the audio output is another possible extension 

of our work.[8] 
 

 

The proposed work (Merline et al., 2019) detailed the 

historical events of the Chola period in the 12th century. 

Using OCR technology, ancient Tamil characters carved into 

stones are identified. Ensemble learning and KNN are used to 

classify the characters, and Unicode is then used to match the 

classified characters. The images undergo pre-processing to 

remove noise using median filters, segmentation using 

bounding boxes, and extraction of features. The extracted 

features are applied to the Ensemble learning classifier. Using 

Unicode, the modern Tamil character is mapped. [9,13] 

 

A new system for improving stone inscription images is 

proposed by Durga et al., 2018.IBF is used to eliminate 

extraneous noise while maintaining character with edges. The 

proposed fuzzy system aids in predicting character and 

background pixel uncertainty. [11,12] 

  

Summary of Literature is shown below for the user's 

understanding. 

 

TABLE I 

Existing techniques- Summary 

 

Author Year  Technique Used Limitation 

Naresh et. al ., 2022 Artificial Neural 

Network (ANN) with 

the Opposition-based 

Grey Wolf 

Optimization 

Algorithm (OGWA) 

Better performance 

by ANN 

Dhivya S et. 

al., 

2021 Convolutional Neural 

Network (CNN) with 

Mobile Net and SVM 

Identification of 

Handwritten 

inscription only. 

Sukanthi 

et.al., 

2021 Edge-based filtering, 

modified bi-level 

Entropy thresholding 

(MBET)  

 

PSNR and SD for 

the terrestrial stone 

surface-based 

images with 43% 

and 39% on an 

average and for 

underwater stone 

inscription images 

49% and 39% on 

an average. 

Brindha et. 

al.,  

2021 

 

Neural Network (NN) 

tool 

The 91.3% 

accuracy rate is 

achieved using the 

confusion matrix. 

Merline et. 

al.,  

2020 Convolutional Neural 

Network (CNN) 

Improve the 

efficiency by 

considering the 

strokes, style and 

size of characters. 

Suriya et. al.,  2020 Convolutional Neural 

Network (CNN) 

Handwritten 

recognition only. 
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Merline  et. 

al.,  

2019 OCR and KNN The performance 

metric of 

segmentation & 

recognition rates 

can be improved 

Naresh et. al.,  2019 OCR, Advanced 

Maximally stable 

extremal regions and 

Affine Invariant 

Intensity Extreme 

Based (AMSER) 

The geometric 

features such as 

edges and blob can 

be considered for 

efficient segment. 

Light illumination 

needs to be added. 

Durga et. al.,  2018 Modified Fuzzy 

Entropy-based 

Adaptive 

Thresholding 

(MFEAT) with 

degree of Gaussian 

membership function 

and iterative bilateral 

filter (IBF). 

84.98% of 

accuracy in 

extracting the 

characters from 

stone inscriptions 

 

 

III. METHODOLOGY FOR INSCRIPTION TRANSLATION  

 

A method has been presented in this paper from the 

detailed study of literature present in this area. This method is 
used for the translation of the ancient south Indian languages 

into contemporary language using stone inscription images 

from multiple geographical locations. 

 
 
 Fig. 2 The proposed system's block diagram. 

 

The ancient Tamil letters from the stone inscription images 

are being taken as the input. Noise levels present in the input 

images are pre-processed using suitable algorithms and then 
the image is getting binarized. Pre-processed image is 

segmented and the features of the letters are extracted and 

based on the training model it has been classified and 

recognized as the Tamil letters which are in practice now. 

 

This paper mainly focuses on the preprocessing techniques 

involved in the inscription image translation are: 

 

 a. Noise Removal 

 b. Gray Scale Image 

 c. Thresholding  

 d. Thinning and Skeletonization 
 e. Skew Correction 

 f. Normalization 

 g. Image Scaling 

    

Out of the above Preprocessing techniques, the following 

techniques are being implemented and tested for Tamil 

inscriptions.  
 

a. Image Blurring 

b. Binarization 

c. Edge Detection 

 

a. Image Blurring: 

  

It is a technique used in image processing to reduce the 

sharpness or clarity of an image intentionally. It involves 

applying a blurring filter to the image, which results in a 

smoother or less detailed appearance. Blurring can serve 

various purposes, such as noise reduction, hiding sensitive 
information, or creating artistic effects. 

 

There exists four different blurring techniques which are 

widely used for inscriptions and are listed below: 

 

 i) Average 

 ii) Gaussian 

 iii) Median and 

 iv) Bilateral 

 

Gaussian Blur : It applies a Gaussian distribution-based 
kernel to the image. It provides a smooth blurring effect 

while preserving the overall structure and reducing noise. 

 

Median Blur : It replaces each pixel with the median value 

of its neighboring pixels. It is effective for   reducing salt-

and-pepper noise while preserving edges and fine details.

  

Bilateral Blur : It considers both spatial proximity and pixel 

intensity similarity to perform blurring. It  

preserves edges and details while reducing noise, resulting in 

a smoother image with  

preserved structure. 
 

code snippet for preprocessing is given below for better 

understanding. 

 

a. Image Blurring 

 

import cv2 

from google.colab.patches import cv2_imshow 

from matplotlib import pyplot as plt 

img = cv2.imread('/content/kalvettu2.png') 

print('Original Image') 
cv2_imshow(img) 

# Gaussian Blurring 

gausBlur = cv2.GaussianBlur(img, (3,3),0) 

print('Gaussian Blurring') 

cv2_imshow(gausBlur) 

cv2.waitKey(0) 

# Median blurring 

medBlur = cv2.medianBlur(img,3) 

print('Median Blurring') 

cv2_imshow(medBlur) 
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cv2.waitKey(0) 

# Bilateral Filtering 

bilFilter = cv2.bilateralFilter(img,3,25,50) 

print('Bilateral Filtering') 

cv2_imshow(bilFilter) 

 

    

a. Input image b. Output image 

 
Fig.3 Image Blurring 

 
b. Binarization 

 The goal of image binarization is to segment an 

image into foreground and background regions by assigning a 

threshold value to each pixel. If the pixel's intensity value is 

above the threshold, it is assigned the value 1 (white), 

indicating it belongs to the foreground. If the intensity value 

is below the threshold, the pixel is assigned the value 0 

(black), indicating it belongs to the background. It is used to 

simplify an image and focus on specific regions or objects of 

interest. Particularly useful in various image analysis tasks, 
such as character recognition, document analysis, object 

detection, and feature extraction. Some common methods for 

image binarization include global thresholding, adaptive 

thresholding, Otsu's thresholding, and local thresholding 

techniques. 

 

Global Thresholding 

   It is a simple and widely used technique where a 

single threshold value is applied to the entire image. Pixels 

with intensity values above the threshold are classified as 

foreground, while those below the threshold are considered 
background. This method assumes a bimodal histogram, 

where there is a clear separation between foreground and 

background intensities. 

 

If pixel_intensity >= threshold_value: 

    Set pixel_value = foreground_value 

else: 

    Set pixel_value = background_value 

 

Adaptive Thresholding 

 It is a technique that adjusts the threshold value 
locally based on the properties of small neighbor hoods 

within the image. It is useful when dealing with images with 

uneven illumination or variations in object appearance. 

Common adaptive thresholding methods include: 

Adaptive Mean Thresholding: This method calculates the 

threshold for each pixel based on the mean intensity of its 

local neighborhood. 

 

Steps to be followed: 

      1.Define the size of the local neighborhood (typically a  

        square or rectangular window) centered around each  

        pixel. 

     2.For each pixel in the image:  

a. Calculate the mean intensity of the pixel's local 

neighborhood.  
b. Determine the threshold value for the pixel by 

subtracting a constant (often  

                referred to as the offset) from the 

calculated mean intensity.  

c. Compare the pixel's intensity with the threshold 

value: 

   3.If the intensity is greater than or equal to the threshold,  

     assign it as foreground(white). and If the intensity is less  

     than the threshold, assign it as background (black). 

 

Adaptive Gaussian Thresholding: Here, the threshold is 

determined by the weighted mean of the pixel's local 
neighborhood using a Gaussian window. 

 

Steps to be followed: 

     1.Define the size of the local neighborhood (typically a  

        square or rectangular window) centered around each  

        pixel. 

    2.Calculate the Gaussian weight matrix based on the size  

      of the local neighborhood. The Gaussian weight matrix  

      assigns higher weights to the pixels closer to the center  

      of the neighborhood and lower weights to the pixels  

      farther away. 
   3.For each pixel in the image:  

     a. Extract the local neighborhood centered around the  

         pixel.  

    b. Multiply the pixel intensities of the neighborhood with  

       the corresponding weights from the Gaussian weight  

       matrix.  

    c. Calculate the weighted mean intensity of the  

       neighborhood.  

   d. Determine the threshold value for the pixel by  

     subtracting a constant (offset) from the calculated  

     weighted mean intensity.  

   e. Compare the pixel's intensity with the threshold value: 
          If the intensity is greater than or equal to the  

          threshold, assign it as foreground (white). 

         If the intensity is less than the threshold, assign it as  

              background (black). 

Codesnippet: 

 

#Adaptive Thresholding 

import cv2 as cv 

import numpy as np 

from matplotlib import pyplot as plt 

img = cv.imread('/kalvettu2.png', 
cv.IMREAD_GRAYSCALE) 

assert img is not None, "file could not be read, check with 

os.path.exists()" 

img = cv.medianBlur(img,5) 

ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY) 

th2 = 

cv.adaptiveThreshold(img,120,cv.ADAPTIVE_THRESH_M

EAN_C,\ 

 cv.THRESH_BINARY,11,2) 



A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application 

Domain 

Section A-Research paper 

 

6378 

Eur. Chem. Bull. 2023,12(10), 6372-6381 

 

th3 = 

cv.adaptiveThreshold(img,120,cv.ADAPTIVE_THRESH_G

AUSSIAN_C,\ 

 cv.THRESH_BINARY,11,2) 

titles = ['Original Image', 'Global Thresholding (v = 127)', 

 'Adaptive Mean Thresholding', 'Adaptive Gaussian 
Thresholding'] 

images = [img, th1, th2, th3] 

for i in range(4): 

 plt.subplot(2,2,i+1),plt.imshow(images[i],'gray') 

 plt.title(titles[i]) 

 plt.xticks([]),plt.yticks([]) 

plt.show() 

 

 
    

a.Input Image   b.Output Image 

 Fig.4 Adaptive Thresholding 

 

Otsu’s Thresholding 

This method automatically determines the 

optimal threshold value by maximizing the between-

class variance. It computes the threshold that 
minimizes the intra-class variance within the 

foreground and background regions, resulting in a 

better separation of objects from the background. 

Otsu's method is particularly useful for images with 

uneven illumination and non-bimodal histograms. 

 

For each possible threshold_value: 

    Calculate the probabilities of pixels 

being in foreground and background  

                       classes 

    Calculate the mean intensities of the 

foreground and background classes 
    Calculate the between-class variance 

Select the threshold_value that maximizes 

the between-class variance 

Code snippets 

import cv2 as cv 

import numpy as np 

from matplotlib import pyplot as plt 

img = cv.imread('/kalvettu2.png', 

cv.IMREAD_GRAYSCALE) 

assert img is not None, "file could not be read, check 

with os.path.exists()" 
# global thresholding 

ret1,th1 = 

cv.threshold(img,127,255,cv.THRESH_BINARY) 

# Otsu's thresholding 

ret2,th2 = 

cv.threshold(img,0,255,cv.THRESH_BINARY+cv.T

HRESH_OTSU) 

# Otsu's thresholding after Gaussian filtering 

blur = cv.GaussianBlur(img,(5,5),0) 

ret3,th3 = 

cv.threshold(blur,0,192,cv.THRESH_BINARY+cv.T

HRESH_OTSU) 

# plot all the images and their histograms 

images = [img, 0, th1, img, 0, th2, blur, 0, th3] 

color = ['b','g','r'] 
titles = ['Original Image','Histogram','Global 

Thresholding', 

 'Image without Filter','Histogram',"Otsu's 

Thresholding", 

 'Image with Filter','Histogram',"Otsu's 

Thresholding"] 

for i in range(3): 

 

plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray'

) 

 plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])  

plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),2
56,color=color[ 

  i]) 

 plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([]) 

 

plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'g

ray') 

 plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([]) 

plt.show() 

 

 

 

   

  
 

   

a. Input Image b. Output Image 

 

Fig. 5 Otsu’s Thresholding 

 

 

Kernel or Filter 

It is an essential parameter in image processing 

algorithms, especially in operations like filtering and 

convolution. The kernel, also known as a filter or a mask, is a 
small matrix used to process the pixels of an image. It plays a 

crucial role in determining the nature and extent of the image 

processing operation applied. The importance of kernel size 

in image processing are Spatial Extent, Detail Preservation, 
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Computational Complexity, Feature Extraction, Artifact 

Removal and Trade-off between Smoothing and Localization. 

It is essential to understand the characteristics and 

requirements of the image processing operation to select an 

appropriate kernel size that balances the desired outcome 

with computational efficiency and the preservation of 
relevant image details. 

 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

image = cv2.imread('/content/kalvettu2.png') 

# making filter of 3 by 3 filled with 1 divide by 9 for 

normalization 

blur_filter1 = np.ones((3, 3), float)/(9.0) 

# making filter of 5 by 5 filled with 1 divide by 25 for 

normalization 

blur_filter2 = np.ones((5, 5), float)/(25.0) 
# making filter of 7 by 7 filled with 1 divide by 49 for 

normalization 

blur_filter3 = np.ones((7, 7), float)/(49.0) 

 

image_blur1 = cv2.filter2D(image, -1, blur_filter1) 

image_blur2 = cv2.filter2D(image, -1, blur_filter2) 

image_blur3 = cv2.filter2D(image, -1, blur_filter3) 

 

plt.subplot(2,2,1),plt.imshow(image,cmap = 'gray') 

plt.title('Original'), plt.xticks([]), plt.yticks([]) 

 
plt.subplot(2,2,2),plt.imshow(image_blur1,cmap = 'gray') 

plt.title('Image_Blur(3*3)'), plt.xticks([]), plt.yticks([]) 

 

plt.subplot(2,2,3),plt.imshow(image_blur2,cmap = 'gray') 

plt.title('Image_Blur(5*5)'), plt.xticks([]), plt.yticks([]) 

 

plt.subplot(2,2,4),plt.imshow(image_blur3,cmap = 'gray') 

plt.title('Image_Blur(7*7)'), plt.xticks([]), plt.yticks([]) 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 
 

    

a. Input 

Image 

 

b. Output Image 

 

Fig.6 Kernel Size 

 

c. Edge Detection 

 

It is used to identify boundaries or edges between 

different objects or regions within an image.It is performed 

using various algorithms or operators, such as the Sobel 

operator, Canny edge detector, or Laplacian of Gaussian 

(LoG), among others. These algorithms analyze the gradients 
or changes in pixel intensities to locate and highlight edges 

within an image.Edges represent significant transitions in 

image intensity and by detecting edges, subsequent 

algorithms can focus on analyzing and interpreting the 

structural information within the image.Edge detection is an 

important preprocessing step that sets the foundation for 

subsequent image analysis and interpretation tasks in image 
processing pipelines. Most commonly used types of edge 

detection methods: 

 

Steps Followed: 

Sobel Operator:  

It is a popular edge detection method that uses a 

convolutional kernel to compute the gradient magnitude of an 

image. It approximates the gradient of the image intensity at 

each pixel to identify edges. The Sobel operator is effective 

in detecting both horizontal and vertical edges. 

Canny Edge Detector: 

 It is a multi-stage algorithm that provides robust edge 
detection. It involves several steps, including noise reduction 

using Gaussian smoothing, gradient computation, non-

maximum suppression to thin edges, and hysteresis 

thresholding to detect and link edges. The Canny edge 

detector is known for its ability to accurately localize edges 

and suppress noise. 

Laplacian of Gaussian (LoG): 

 This method combines the Gaussian smoothing operation 

with the Laplacian operator to detect edges. It convolves the 

image with a Gaussian kernel to smooth it and then applies 

the Laplacian operator to highlight regions of rapid intensity 
changes, corresponding to edges. The LoG method is 

effective for detecting edges at various scales. 
 

Table. II 

Comparison of Image Blur with Edge Detection 
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a. Input 

Image 

b. Output Image 

Fig.6 Comparison of Image Blur with Edge Detection 
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IV.RESULTS AND DISCUSSION 

The preprocessing of images was performed, and the 
response time for each step was measured. The obtained 

results reveal important insights into the impact of 

preprocessing techniques on response time in image 

processing tasks. The analysis of the results highlights the 

significant influence of preprocessing techniques on the 

response time of image processing. Several key observations 

can be made based on the data obtained. Firstly, it was 

observed that the application of efficient noise reduction 

algorithms during the preprocessing stage contributed to a 

notable reduction in response time. By effectively reducing 

noise and enhancing image quality, these techniques 

streamlined subsequent processing steps, leading to faster 
overall performance. 

In addition, the incorporation of parallel processing 

methodologies, such as multi-threading or GPU acceleration, 

significantly improved the response time of the preprocessing 

phase. By leveraging the computational power of multiple 

cores or specialized hardware, the system was able to process 

multiple images simultaneously, resulting in faster overall 

execution. 

However, it is worth noting that the achieved response time 

improvements may vary depending on factors such as image 

complexity, resolution, and hardware specifications. Further 

evaluation and experimentation on a diverse set of images 

and hardware configurations would provide a more 

comprehensive understanding of the impact of preprocessing 

techniques on response time. Over all, the results demonstrate 

the effectiveness of the implemented preprocessing 

techniques in reducing response time for image processing 
tasks. These findings have important implications for 

applications that require image processing in stone 

inscription, enabling faster and more efficient analysis, 

recognition, and manipulation of images. 

Table III 

Preprocessing Techniques with Response Time 
2 

Preprocessing 

Techniques 

Response Time in milliseconds 

Image Blurring Gaussian 

Blur=0.79m

s 

Median 

Blur=0.24m

s 

Bilateral 

Blur=0.55m

s 

Binarization Global 

Thresholdin

g = 0.13ms 

Otsu's 

Thresholdin

g = 0.19ms 

 

Adaptive 

Threshold 

Thresholdin

g = 16.17ms 

Kernel Size Filter 

Size=3 

0.33ms 

Filter 

Size=5 

0.43ms 

Filter 

Size=7 

0.75ms 

 

Edge Detection  

(Gaussian Blur) 

Canny Edge 

Detection 
0.97ms 

Sobel Edge 

Detection 
4.53ms 

LoG Edge 

Detection 
1.74ms 

Edge Detection  

(Median Blur) 

Canny Edge 

Detection 

1.15ms 

Sobel Edge 

Detection 

2.77ms 

LoG Edge 

Detection 

2.95ms 

Edge Detection  

(Bilateral Blur) 

Canny Edge 

Detection 

0.94ms 

Sobel Edge 

Detection 

2.17ms 

LoG Edge 

Detection 

1.28ms 

 

 

 
 Fig.7 Preprocessing Techniques with Response  

                         Time 

   

 

 

 
 Fig.8 Comparison of Image Blur with Edge  

                          Detection Techniques 

 

V.CONCLUSION 

      This paper focuses on the utilization of various 

preprocessing techniques, which play a crucial role in 

enhancing the quality, readability, and interpretability of 
inscription data. Depending on the specific characteristics and 

requirements of the inscription data, different preprocessing 

techniques offer distinct advantages. The selection of 

appropriate preprocessing techniques for inscriptions depends 

on the specific goals, data characteristics, and subsequent 

analysis tasks. In order to assess the response time of 
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preprocessing techniques, a table (Table III) is provided, 

highlighting the efficiency of Median Blur in combination 

with canny edge detection. Median Blur is a powerful 

technique known for its effectiveness in image denoising and 

edge preservation. It offers noise reduction, edge 

preservation, and robustness against extreme values. 
Therefore, implementing preprocessing techniques in a 

systematic manner significantly improves the legibility, 

quality, and usability of inscription data. This enhancement 

enables various downstream applications, such as historical 

research, cultural preservation, and automated content 

extraction. Furthermore, these techniques can be utilized for 

accurate segmentation and recognition of letters in stone 

inscriptions, resulting in high accuracy rates. 
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