
A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different

Application Domain

Section A-Research paper

6373

Eur. Chem. Bull. 2023,12(10), 6372-6381

A Novel Preprocessing Technique for the Preservation of

Tamil Brahmi Letters on Ancient Inscriptions in

Different Application Domain

Poornimathi.K1,Muralibhaskaran.V2,Priya.L3

Assistant Professor(SG) 1,

Professor2,3,
RajalakshmiEngineering College1,2,3
1poornimathi.k@rajalakshmi.edu.in ,

 2muralibhaskaran.v@rajalakshmi.edu.in ,
3priya.l@rajalakshmi.edu.in

+91 9790719507

Abstract: Inscriptions play a crucial role in preserving

historical, cultural, and linguistic information. The identification

and analysis of patterns in Tamil letters found in inscriptions

provide valuable insights into the evolution of the Tamil

language and its script. However, manual analysis of these

inscriptions is time-consuming and prone to errors. In recent

years, deep learning techniques have shown promising results in

pattern recognition tasks, motivating the exploration of various

strategies to identify the patterns of Tamil letters on

inscriptions.This paper focuses on leveraging deep learning

algorithms for the automated identification of Tamil letter

patterns in inscriptions. Firstly, a dataset of digitized Tamil

inscriptions is collected, consisting of high-resolution images

representing a wide range of letter variations. Preprocessing

techniques are employed to enhance the quality and clarity of

the images, removing noise and artifacts.Various deep learning

models, such as Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), are then trained using the

preprocessed image dataset. CNNs excel in extracting spatial

features from images, enabling the recognition of letter shapes

and contours. RNNs, on the other hand, capture temporal

dependencies within sequences of letters, aiding in deciphering

the structure and connectivity of the inscriptions. To improve

the performance of the models, data augmentation techniques

are employed to increase the dataset size and enhance its

diversity. However, preprocessing plays a major role in

sharpening the features present in the image. Hence, this paper

addresses the preprocessing techniques such as Image Blur,

Binarization and Edge Detection with respect to inscription.

Preprocessing techniques were identified and tested with the

inscription image. Based on the results and response time, it is

suggested that the Median filter with canny edge detection is

working well for inscription images. After preprocessing the

results have been tested with edge detection and it is found that,

Median filter with canny edge detection gives best accuracy in
comparison with other algorithms.

Keywords— Character Recognition, Pre-processing, Image

processing, Computer vision.

I. INTRODUCTION

Father of inscriptions is Samudragupta. However,

Chandragupta Maurya was the one who has used inscriptions

to communicate with his subjects. In olden days inscriptions

are the only format to communicate the human insights. The

Dravidian literary languages include Tamil, Telugu,
Kannada, and Malayalam. The eldest member of the

Dravidian language family is the Tamil language. It has been

in this world for more than 5,000 years. Based on the market

survey, the Tamil-only periodicals are numbered more than

1800. These periodicals have been classified into three
categories based on the thorough analyses of grammatical and

lexical variations, namely: Old Tamil (from about 450 BCE

to 700 CE), Middle Tamil (700–1600), and Modern Tamil

(since 1600). Tamil-Brahmi, also known as Tamili, was a

variant of the Brahmi script in southern India. It was used to

write inscriptions in the early form of Old Tamil. The Tamil-

Brahmi script has been paleo graphically and stratigraphically

dated between the third century BCE and the first century

CE, and it constitutes the earliest known writing system

evidenced in many parts of Tamil Nadu, Kerala, Andhra

Pradesh and Sri Lanka. Tamil Brahmi inscriptions have been
found on cave entrances, stone beds, potsherds, jar burials,

coins, seals, and rings.

From the 5th century CE onwards Tamil is written in

Vatteluttu in the Chera and Pandya country and Grantha or

Tamil script in the Chola and Pallava country. Vatteluttu is an

ancient script that was used to write the Tamil language and

several other languages in South India. The term "Vatteluttu"

means "rounded script" in Tamil, referring to the rounded or

circular shapes of its characters. This script has a rich history

and is of great importance in the development of writing

systems in the region.It evolved from the earlier Tamil-

Brahmi script, which was influenced by the Brahmi script of
North India. Vatteluttu script further developed into other

scripts such as the Grantha script, which in turn influenced

the modern Tamil script.Grantha script is an ancient writing

system primarily used for writing the Sanskrit language and

other languages of the South Indian region. It holds

significant historical and cultural importance, particularly in

the context of Tamil Nadu and Kerala. Both Vatteluttu and

Grantha scripts are derived from the Brahmi script, but they

belong to different categories and have distinct

characteristics. Vatteluttu is associated with Tamil and other

Dravidian languages, while Grantha script is associated with
Sanskrit and Tamil in a religious context.

Tamil inscription images can be easily read and analyzed if

the preprocessing is done effectively. Hence, this paper

presented the various preprocessing techniques and its results

for Tamil inscription images. The inscription images

mailto:1poornimathi.k@rajalakshmi.edu.in
mailto:2muralibhaskaran.v@rajalakshmi.edu.in
mailto:3priya.l@rajalakshmi.edu.in
https://en.wikipedia.org/wiki/Brahmi_script
https://en.wikipedia.org/wiki/Old_Tamil
https://en.wikipedia.org/wiki/Tamil_Nadu
https://en.wikipedia.org/wiki/Kerala
https://en.wikipedia.org/wiki/Andhra_Pradesh
https://en.wikipedia.org/wiki/Andhra_Pradesh
https://en.wikipedia.org/wiki/Sri_Lanka
https://en.wikipedia.org/wiki/Sherd
https://en.wikipedia.org/wiki/Jar_burials
https://en.wikipedia.org/wiki/Coin
https://en.wikipedia.org/wiki/Ring_(jewellery)
https://en.wikipedia.org/wiki/Vatteluttu_alphabet
https://en.wikipedia.org/wiki/Chera_dynasty
https://en.wikipedia.org/wiki/Pandya
https://en.wikipedia.org/wiki/Grantha_alphabet
https://en.wikipedia.org/wiki/Tamil_script
https://en.wikipedia.org/wiki/Chola
https://en.wikipedia.org/wiki/Pallava

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6374

Eur. Chem. Bull. 2023,12(10), 6372-6381

represent politics, religious, economy, location, tradition,

astronomy, history, culture and many others.

Some of the ancient inscription images are shown below in

Fig 1 for a better understanding of inscription images.

a.Ashokan Kalvettu b.Inscription at

vikkiramankalam

()

c.Inscription at

muthalaikulam

()

d.Inscription at Aanaimalai

()

Fig. 1 Sample Images of Tamil Inscription

II. LITERATURE REVIEW

In this section, a thorough discussion and analysis were

conducted on the research work related to preprocessing

techniques utilized for inscriptions, as well as the technique

employed for the recognition of letters within inscriptions.

To identify prehistoric languages, signs, and fonts, Naresh et

al. (2022) used an approach that integrates an artificial neural

network (ANN) with the Opposition-based Grey Wolf

optimization Algorithm (OGWA). The authors emphasize the

importance of the weights and connections between layers in

ANN system efficacy. This paper investigates the

implementation of various optimization algorithms, including

Opposition-based Grey Wolf optimization, Particle Swarm

optimization, and Grey Wolf optimization, to the ANN

system in order to determine these weights effectively. In

addition, the researchers declare their intention to reconfigure

the ANN's structure in future studies in order to improve the

system's predictive performance. [1]

Dhivya S et al (2021) suggested a few steps for efficient
character recognition. Training the CNN model from scratch

with a SoftMax classifier in a sequential model. Using

Mobile Net: Transfer learning paradigm from a pre-trained

model on a Tamizhi dataset. Building a model with CNN and

SVM. SVM for evaluating the best accuracy to recognize

handwritten Brahmi characters The accuracy of the trained

and tested Mobile Net model for the datasets of vowels (8

classes), consonants (18 classes), and consonant vowels (26

classes) is 98.1%, 97.7%, and 97.5%, respectively. Data

Collection Techniques: Approximately 1,600 engineering

students from the SRM Institute of Science and Technology

contributed 1,090,000 isolated samples to the character
database. The information was stored in CSV format. The

handwritten typefaces had a grid-like layout. Each grid cell

was segmented using the Hough Transform method. Using

OPENCV, the image is segmented into distinct scripts. The

algorithm for character segmentation is used to extract

handwritten characters. Images of segmented characters are

classified into 209 classifications. To evaluate the dataset, a

CNN model and SoftMax classifier are combined to

recognize the script. This research may convince historians,

anthropologists, and scholars from other fields to utilize the

source material and gain a deeper comprehension of ancient
Tamil culture.[2]

The diverse thresholding techniques (Sukanthi et al., 2021)

The binarization of images of terrestrial and underwater stone

inscriptions is preceded by contrast enhancement and

followed by edge-based filtering that reduces noise and

sharpens edges. The modified bi-level thresholding (MBET)

algorithm is proposed and compared to several existing

thresholding algorithms, including the Otsu method, Niblack

method, Sauvola method, Bernsen method, and Fuzzy C

means method. The proposed MBET algorithm, with its

adaptive local thresholding feature, is expected to minimize
noise and extract the margins of the objects in both terrestrial

and underwater images flawlessly.
[3]

The technique (Brindha et al., 2021) for deriving the features

and converting the ancient Tamil script to its modern form is

proposed. The processed image is subjected to a new feature

extraction technique in which the system uses a chi-square

test to determine whether or not all the zoning feature values

are independent or dependent. Neural networks recognize the

characters using the extracted features. The featured image is

trained with NNTool, and the data are compared to the
database in order to recognize Brahmi characters. The

recognized characters are converted into modern Tamil

letters, and the resulting HTML output is displayed. The

image features are extracted using Zernike moments and

zoning features, two novel feature extractions. To ascertain

whether the values of the vectors are independent or

dependent, a chi-square test is conducted. The accuracy rate

of 91.3% is achieved using the confusion matrix. By

employing sophisticated algorithms, the method can be

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6375

Eur. Chem. Bull. 2023,12(10), 6372-6381

expanded to larger datasets, online character recognition, and

improved precision.[4]

Neha Gautam et al. (2020) propose using a deep

convolutional neural network with dropout to recognize

Brahmi words. In addition to proposing a DCNN for Brahmi
word recognition, this study conducts a series of experiments

on a conventional Brahmi dataset. On a publicly accessible

Brahmi image database, the practical operation of this

method was systematically tested, obtaining a 92.47%

recognition rate by CNN with dropout. This study contrasted

the outcomes of various methods in order to make

recommendations based on parameter tuning. In addition,

determining the optimal parameters for producing error-free

results is a research problem. Similarly, complex future tasks

such as character recognition of rotated, mirror-text, and

chaotic images could benefit from the extraction of novel

features.[5]

In this paper (Merline et al., 2020), training of an 18-layer

CNN for 73 class character recognition problems was

conducted. This CNN architecture is trained to extract sample

features using the ReLU activation function. CNN can

autonomously learn a unique set of image-based features in a

hierarchical fashion. We attained the Segmentation Rate and

Recognition Rate using our framework by mapping the From

Ancient Tamil to Modern Tamil characters rate. The

proposed work concentrates on the Simple Convolution

Neural Network for image classification, which incurs less
computational expense. The results demonstrate that CNN is

capable of obtaining good results on the Tamil Dataset

through supervised learning alone. We did not use an

unsupervised, pre-trained network, despite the fact that we

believe it would have facilitated the work.[6]

Using a Convolutional Neural Network, the proposed method

(Suriya et al., 2020) is able to recognize characters in

challenging conditions where traditional character

recognition systems fail, such as in the presence of low

resolution, substantial blur, low contrast, and other

distortions. The following significant challenges can be
investigated further in the future: This work utilizes HP Labs

India's Isolated Handwritten Tamil Character data set. As a

result, it has been determined that among the proposed

algorithms, various CNN models produce different results,

and the one that provides the highest recognition accuracy is

superior. [7]

The proposed work (Lalitha et al., 2019) concentrates on

enhancing optical character recognition techniques for 7th- to

12th-century Tamil script. After the image is binarized using

the Otsu thresholding method, a two-dimensional
convolutional neural network is defined and used to train,

classify, and recognise ancient Tamil characters. The neural

network is attached to Tesseract via the Python Pytesseract

library in order to implement optical character recognition

techniques. This work incorporates Google's text-to-speech

voice engine to generate an audio output of the digitized text

as an added feature. This research endeavored to develop a

universally applicable OCR system with audio output for the

ancient Tamil script. Using CNN and Image Recognition

techniques, an operational system for modern and ancient

Tamil was developed. The effectiveness of OCR techniques

on ancient Tamil scripts can be enhanced through the

addition of more data. The development of a language parser

to aid in the segmentation of the digitized script and enhance

the accuracy of the audio output is another possible extension

of our work.[8]

The proposed work (Merline et al., 2019) detailed the

historical events of the Chola period in the 12th century.

Using OCR technology, ancient Tamil characters carved into

stones are identified. Ensemble learning and KNN are used to

classify the characters, and Unicode is then used to match the

classified characters. The images undergo pre-processing to

remove noise using median filters, segmentation using

bounding boxes, and extraction of features. The extracted

features are applied to the Ensemble learning classifier. Using

Unicode, the modern Tamil character is mapped. [9,13]

A new system for improving stone inscription images is

proposed by Durga et al., 2018.IBF is used to eliminate

extraneous noise while maintaining character with edges. The

proposed fuzzy system aids in predicting character and

background pixel uncertainty. [11,12]

Summary of Literature is shown below for the user's

understanding.

TABLE I

Existing techniques- Summary

Author Year Technique Used Limitation

Naresh et. al ., 2022 Artificial Neural

Network (ANN) with

the Opposition-based

Grey Wolf

Optimization

Algorithm (OGWA)

Better performance

by ANN

Dhivya S et.

al.,

2021 Convolutional Neural

Network (CNN) with

Mobile Net and SVM

Identification of

Handwritten

inscription only.

Sukanthi

et.al.,

2021 Edge-based filtering,

modified bi-level

Entropy thresholding

(MBET)

PSNR and SD for

the terrestrial stone

surface-based

images with 43%

and 39% on an

average and for

underwater stone

inscription images

49% and 39% on

an average.

Brindha et.

al.,

2021

Neural Network (NN)

tool

The 91.3%

accuracy rate is

achieved using the

confusion matrix.

Merline et.

al.,

2020 Convolutional Neural

Network (CNN)

Improve the

efficiency by

considering the

strokes, style and

size of characters.

Suriya et. al., 2020 Convolutional Neural

Network (CNN)

Handwritten

recognition only.

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6376

Eur. Chem. Bull. 2023,12(10), 6372-6381

Merline et.

al.,

2019 OCR and KNN The performance

metric of

segmentation &

recognition rates

can be improved

Naresh et. al., 2019 OCR, Advanced

Maximally stable

extremal regions and

Affine Invariant

Intensity Extreme

Based (AMSER)

The geometric

features such as

edges and blob can

be considered for

efficient segment.

Light illumination

needs to be added.

Durga et. al., 2018 Modified Fuzzy

Entropy-based

Adaptive

Thresholding

(MFEAT) with

degree of Gaussian

membership function

and iterative bilateral

filter (IBF).

84.98% of

accuracy in

extracting the

characters from

stone inscriptions

III. METHODOLOGY FOR INSCRIPTION TRANSLATION

A method has been presented in this paper from the

detailed study of literature present in this area. This method is
used for the translation of the ancient south Indian languages

into contemporary language using stone inscription images

from multiple geographical locations.

 Fig. 2 The proposed system's block diagram.

The ancient Tamil letters from the stone inscription images

are being taken as the input. Noise levels present in the input

images are pre-processed using suitable algorithms and then
the image is getting binarized. Pre-processed image is

segmented and the features of the letters are extracted and

based on the training model it has been classified and

recognized as the Tamil letters which are in practice now.

This paper mainly focuses on the preprocessing techniques

involved in the inscription image translation are:

 a. Noise Removal

 b. Gray Scale Image

 c. Thresholding

 d. Thinning and Skeletonization
 e. Skew Correction

 f. Normalization

 g. Image Scaling

Out of the above Preprocessing techniques, the following

techniques are being implemented and tested for Tamil

inscriptions.

a. Image Blurring

b. Binarization

c. Edge Detection

a. Image Blurring:

It is a technique used in image processing to reduce the

sharpness or clarity of an image intentionally. It involves

applying a blurring filter to the image, which results in a

smoother or less detailed appearance. Blurring can serve

various purposes, such as noise reduction, hiding sensitive
information, or creating artistic effects.

There exists four different blurring techniques which are

widely used for inscriptions and are listed below:

 i) Average

 ii) Gaussian

 iii) Median and

 iv) Bilateral

Gaussian Blur : It applies a Gaussian distribution-based
kernel to the image. It provides a smooth blurring effect

while preserving the overall structure and reducing noise.

Median Blur : It replaces each pixel with the median value

of its neighboring pixels. It is effective for reducing salt-

and-pepper noise while preserving edges and fine details.

Bilateral Blur : It considers both spatial proximity and pixel

intensity similarity to perform blurring. It

preserves edges and details while reducing noise, resulting in

a smoother image with

preserved structure.

code snippet for preprocessing is given below for better

understanding.

a. Image Blurring

import cv2

from google.colab.patches import cv2_imshow

from matplotlib import pyplot as plt

img = cv2.imread('/content/kalvettu2.png')

print('Original Image')
cv2_imshow(img)

Gaussian Blurring

gausBlur = cv2.GaussianBlur(img, (3,3),0)

print('Gaussian Blurring')

cv2_imshow(gausBlur)

cv2.waitKey(0)

Median blurring

medBlur = cv2.medianBlur(img,3)

print('Median Blurring')

cv2_imshow(medBlur)

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6377

Eur. Chem. Bull. 2023,12(10), 6372-6381

cv2.waitKey(0)

Bilateral Filtering

bilFilter = cv2.bilateralFilter(img,3,25,50)

print('Bilateral Filtering')

cv2_imshow(bilFilter)

a. Input image b. Output image

Fig.3 Image Blurring

b. Binarization

 The goal of image binarization is to segment an

image into foreground and background regions by assigning a

threshold value to each pixel. If the pixel's intensity value is

above the threshold, it is assigned the value 1 (white),

indicating it belongs to the foreground. If the intensity value

is below the threshold, the pixel is assigned the value 0

(black), indicating it belongs to the background. It is used to

simplify an image and focus on specific regions or objects of

interest. Particularly useful in various image analysis tasks,
such as character recognition, document analysis, object

detection, and feature extraction. Some common methods for

image binarization include global thresholding, adaptive

thresholding, Otsu's thresholding, and local thresholding

techniques.

Global Thresholding

 It is a simple and widely used technique where a

single threshold value is applied to the entire image. Pixels

with intensity values above the threshold are classified as

foreground, while those below the threshold are considered
background. This method assumes a bimodal histogram,

where there is a clear separation between foreground and

background intensities.

If pixel_intensity >= threshold_value:

 Set pixel_value = foreground_value

else:

 Set pixel_value = background_value

Adaptive Thresholding

 It is a technique that adjusts the threshold value
locally based on the properties of small neighbor hoods

within the image. It is useful when dealing with images with

uneven illumination or variations in object appearance.

Common adaptive thresholding methods include:

Adaptive Mean Thresholding: This method calculates the

threshold for each pixel based on the mean intensity of its

local neighborhood.

Steps to be followed:

 1.Define the size of the local neighborhood (typically a

 square or rectangular window) centered around each

 pixel.

 2.For each pixel in the image:

a. Calculate the mean intensity of the pixel's local

neighborhood.
b. Determine the threshold value for the pixel by

subtracting a constant (often

 referred to as the offset) from the

calculated mean intensity.

c. Compare the pixel's intensity with the threshold

value:

 3.If the intensity is greater than or equal to the threshold,

 assign it as foreground(white). and If the intensity is less

 than the threshold, assign it as background (black).

Adaptive Gaussian Thresholding: Here, the threshold is

determined by the weighted mean of the pixel's local
neighborhood using a Gaussian window.

Steps to be followed:

 1.Define the size of the local neighborhood (typically a

 square or rectangular window) centered around each

 pixel.

 2.Calculate the Gaussian weight matrix based on the size

 of the local neighborhood. The Gaussian weight matrix

 assigns higher weights to the pixels closer to the center

 of the neighborhood and lower weights to the pixels

 farther away.
 3.For each pixel in the image:

 a. Extract the local neighborhood centered around the

 pixel.

 b. Multiply the pixel intensities of the neighborhood with

 the corresponding weights from the Gaussian weight

 matrix.

 c. Calculate the weighted mean intensity of the

 neighborhood.

 d. Determine the threshold value for the pixel by

 subtracting a constant (offset) from the calculated

 weighted mean intensity.

 e. Compare the pixel's intensity with the threshold value:
 If the intensity is greater than or equal to the

 threshold, assign it as foreground (white).

 If the intensity is less than the threshold, assign it as

 background (black).

Codesnippet:

#Adaptive Thresholding

import cv2 as cv

import numpy as np

from matplotlib import pyplot as plt

img = cv.imread('/kalvettu2.png',
cv.IMREAD_GRAYSCALE)

assert img is not None, "file could not be read, check with

os.path.exists()"

img = cv.medianBlur(img,5)

ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)

th2 =

cv.adaptiveThreshold(img,120,cv.ADAPTIVE_THRESH_M

EAN_C,\

 cv.THRESH_BINARY,11,2)

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6378

Eur. Chem. Bull. 2023,12(10), 6372-6381

th3 =

cv.adaptiveThreshold(img,120,cv.ADAPTIVE_THRESH_G

AUSSIAN_C,\

 cv.THRESH_BINARY,11,2)

titles = ['Original Image', 'Global Thresholding (v = 127)',

 'Adaptive Mean Thresholding', 'Adaptive Gaussian
Thresholding']

images = [img, th1, th2, th3]

for i in range(4):

 plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')

 plt.title(titles[i])

 plt.xticks([]),plt.yticks([])

plt.show()

a.Input Image b.Output Image

 Fig.4 Adaptive Thresholding

Otsu’s Thresholding

This method automatically determines the

optimal threshold value by maximizing the between-

class variance. It computes the threshold that
minimizes the intra-class variance within the

foreground and background regions, resulting in a

better separation of objects from the background.

Otsu's method is particularly useful for images with

uneven illumination and non-bimodal histograms.

For each possible threshold_value:

 Calculate the probabilities of pixels

being in foreground and background

 classes

 Calculate the mean intensities of the

foreground and background classes
 Calculate the between-class variance

Select the threshold_value that maximizes

the between-class variance

Code snippets

import cv2 as cv

import numpy as np

from matplotlib import pyplot as plt

img = cv.imread('/kalvettu2.png',

cv.IMREAD_GRAYSCALE)

assert img is not None, "file could not be read, check

with os.path.exists()"
global thresholding

ret1,th1 =

cv.threshold(img,127,255,cv.THRESH_BINARY)

Otsu's thresholding

ret2,th2 =

cv.threshold(img,0,255,cv.THRESH_BINARY+cv.T

HRESH_OTSU)

Otsu's thresholding after Gaussian filtering

blur = cv.GaussianBlur(img,(5,5),0)

ret3,th3 =

cv.threshold(blur,0,192,cv.THRESH_BINARY+cv.T

HRESH_OTSU)

plot all the images and their histograms

images = [img, 0, th1, img, 0, th2, blur, 0, th3]

color = ['b','g','r']
titles = ['Original Image','Histogram','Global

Thresholding',

 'Image without Filter','Histogram',"Otsu's

Thresholding",

 'Image with Filter','Histogram',"Otsu's

Thresholding"]

for i in range(3):

plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray'

)

 plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])

plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),2
56,color=color[

 i])

 plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])

plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'g

ray')

 plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])

plt.show()

a. Input Image b. Output Image

Fig. 5 Otsu’s Thresholding

Kernel or Filter

It is an essential parameter in image processing

algorithms, especially in operations like filtering and

convolution. The kernel, also known as a filter or a mask, is a
small matrix used to process the pixels of an image. It plays a

crucial role in determining the nature and extent of the image

processing operation applied. The importance of kernel size

in image processing are Spatial Extent, Detail Preservation,

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6379

Eur. Chem. Bull. 2023,12(10), 6372-6381

Computational Complexity, Feature Extraction, Artifact

Removal and Trade-off between Smoothing and Localization.

It is essential to understand the characteristics and

requirements of the image processing operation to select an

appropriate kernel size that balances the desired outcome

with computational efficiency and the preservation of
relevant image details.

import cv2

import numpy as np

from matplotlib import pyplot as plt

image = cv2.imread('/content/kalvettu2.png')

making filter of 3 by 3 filled with 1 divide by 9 for

normalization

blur_filter1 = np.ones((3, 3), float)/(9.0)

making filter of 5 by 5 filled with 1 divide by 25 for

normalization

blur_filter2 = np.ones((5, 5), float)/(25.0)
making filter of 7 by 7 filled with 1 divide by 49 for

normalization

blur_filter3 = np.ones((7, 7), float)/(49.0)

image_blur1 = cv2.filter2D(image, -1, blur_filter1)

image_blur2 = cv2.filter2D(image, -1, blur_filter2)

image_blur3 = cv2.filter2D(image, -1, blur_filter3)

plt.subplot(2,2,1),plt.imshow(image,cmap = 'gray')

plt.title('Original'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,2),plt.imshow(image_blur1,cmap = 'gray')

plt.title('Image_Blur(3*3)'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,3),plt.imshow(image_blur2,cmap = 'gray')

plt.title('Image_Blur(5*5)'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,4),plt.imshow(image_blur3,cmap = 'gray')

plt.title('Image_Blur(7*7)'), plt.xticks([]), plt.yticks([])

cv2.waitKey(0)

cv2.destroyAllWindows()

a. Input

Image

b. Output Image

Fig.6 Kernel Size

c. Edge Detection

It is used to identify boundaries or edges between

different objects or regions within an image.It is performed

using various algorithms or operators, such as the Sobel

operator, Canny edge detector, or Laplacian of Gaussian

(LoG), among others. These algorithms analyze the gradients
or changes in pixel intensities to locate and highlight edges

within an image.Edges represent significant transitions in

image intensity and by detecting edges, subsequent

algorithms can focus on analyzing and interpreting the

structural information within the image.Edge detection is an

important preprocessing step that sets the foundation for

subsequent image analysis and interpretation tasks in image
processing pipelines. Most commonly used types of edge

detection methods:

Steps Followed:

Sobel Operator:

It is a popular edge detection method that uses a

convolutional kernel to compute the gradient magnitude of an

image. It approximates the gradient of the image intensity at

each pixel to identify edges. The Sobel operator is effective

in detecting both horizontal and vertical edges.

Canny Edge Detector:

 It is a multi-stage algorithm that provides robust edge
detection. It involves several steps, including noise reduction

using Gaussian smoothing, gradient computation, non-

maximum suppression to thin edges, and hysteresis

thresholding to detect and link edges. The Canny edge

detector is known for its ability to accurately localize edges

and suppress noise.

Laplacian of Gaussian (LoG):

 This method combines the Gaussian smoothing operation

with the Laplacian operator to detect edges. It convolves the

image with a Gaussian kernel to smooth it and then applies

the Laplacian operator to highlight regions of rapid intensity
changes, corresponding to edges. The LoG method is

effective for detecting edges at various scales.

Table. II

Comparison of Image Blur with Edge Detection

 Gaussian Blur

Median Blur

Bilateral Blur

a. Input

Image

b. Output Image

Fig.6 Comparison of Image Blur with Edge Detection

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6380

Eur. Chem. Bull. 2023,12(10), 6372-6381

IV.RESULTS AND DISCUSSION

The preprocessing of images was performed, and the
response time for each step was measured. The obtained

results reveal important insights into the impact of

preprocessing techniques on response time in image

processing tasks. The analysis of the results highlights the

significant influence of preprocessing techniques on the

response time of image processing. Several key observations

can be made based on the data obtained. Firstly, it was

observed that the application of efficient noise reduction

algorithms during the preprocessing stage contributed to a

notable reduction in response time. By effectively reducing

noise and enhancing image quality, these techniques

streamlined subsequent processing steps, leading to faster
overall performance.

In addition, the incorporation of parallel processing

methodologies, such as multi-threading or GPU acceleration,

significantly improved the response time of the preprocessing

phase. By leveraging the computational power of multiple

cores or specialized hardware, the system was able to process

multiple images simultaneously, resulting in faster overall

execution.

However, it is worth noting that the achieved response time

improvements may vary depending on factors such as image

complexity, resolution, and hardware specifications. Further

evaluation and experimentation on a diverse set of images

and hardware configurations would provide a more

comprehensive understanding of the impact of preprocessing

techniques on response time. Over all, the results demonstrate

the effectiveness of the implemented preprocessing

techniques in reducing response time for image processing
tasks. These findings have important implications for

applications that require image processing in stone

inscription, enabling faster and more efficient analysis,

recognition, and manipulation of images.

Table III

Preprocessing Techniques with Response Time
2

Preprocessing

Techniques

Response Time in milliseconds

Image Blurring Gaussian

Blur=0.79m

s

Median

Blur=0.24m

s

Bilateral

Blur=0.55m

s

Binarization Global

Thresholdin

g = 0.13ms

Otsu's

Thresholdin

g = 0.19ms

Adaptive

Threshold

Thresholdin

g = 16.17ms

Kernel Size Filter

Size=3

0.33ms

Filter

Size=5

0.43ms

Filter

Size=7

0.75ms

Edge Detection

(Gaussian Blur)

Canny Edge

Detection
0.97ms

Sobel Edge

Detection
4.53ms

LoG Edge

Detection
1.74ms

Edge Detection

(Median Blur)

Canny Edge

Detection

1.15ms

Sobel Edge

Detection

2.77ms

LoG Edge

Detection

2.95ms

Edge Detection

(Bilateral Blur)

Canny Edge

Detection

0.94ms

Sobel Edge

Detection

2.17ms

LoG Edge

Detection

1.28ms

 Fig.7 Preprocessing Techniques with Response

 Time

 Fig.8 Comparison of Image Blur with Edge

 Detection Techniques

V.CONCLUSION

 This paper focuses on the utilization of various

preprocessing techniques, which play a crucial role in

enhancing the quality, readability, and interpretability of
inscription data. Depending on the specific characteristics and

requirements of the inscription data, different preprocessing

techniques offer distinct advantages. The selection of

appropriate preprocessing techniques for inscriptions depends

on the specific goals, data characteristics, and subsequent

analysis tasks. In order to assess the response time of

A Novel Preprocessing Technique for the Preservation of Tamil Brahmi Letters on Ancient Inscriptions in Different Application

Domain

Section A-Research paper

6381

Eur. Chem. Bull. 2023,12(10), 6372-6381

preprocessing techniques, a table (Table III) is provided,

highlighting the efficiency of Median Blur in combination

with canny edge detection. Median Blur is a powerful

technique known for its effectiveness in image denoising and

edge preservation. It offers noise reduction, edge

preservation, and robustness against extreme values.
Therefore, implementing preprocessing techniques in a

systematic manner significantly improves the legibility,

quality, and usability of inscription data. This enhancement

enables various downstream applications, such as historical

research, cultural preservation, and automated content

extraction. Furthermore, these techniques can be utilized for

accurate segmentation and recognition of letters in stone

inscriptions, resulting in high accuracy rates.

REFERENCES

[1] A. Naresh Kumar, and G. Geetha,Recognizing Ancient South Indian

Language Using Opposition Based Grey Wolf Optimization ,Intelligent
Automation& Soft Computing,March 2022,Vol. 35,No. 3.DOI:

10.32604/iasc.2023.028349.

[2] Dhivya S and Usha Devi G.TAMIZHİ: Historical Tamil-Brahmi Script
Recognition Using CNN and MobileNet. ACM Trans. Asian Low-

Resour.Lang.Inf.Process.Vol.20,No. 3, Article 39 (June 2021), 26
pages.https://doi.org/10.1145/3402891.

[3] Sukanthi S, Sakthivel Murugan and S. Hanis, Binarization of Stone
InscriptionImagesbyModifiedBilevelEntropyThresholding,Underwater

AcousticResearchLaboratory,WorldScientificPublishingCompany,Vol.
20,No.6(2021)2150054(16 pages),DOI:

10.1142/S0219477521500541.

[4] S. Brindha and S. Bhuvaneswari, Repossession and recognition
system:Transliteration of antique Tamil Brahmi typescript-Current

Science,Vol. 120,No. 4,Feb 2021.

[5] Neha Gautam,Soo See Chai , Jais Jose,Recognition of Brahmi words

byUsingDeepConvolutionalNeuralNetwork,https://www.researchgate.n
et/publication/341701111.

[6] Merline Magrina,Convolution Neural Network based Ancient Tamil
Character Recognition from Epigraphical Inscriptions-International

Research Journal of Engineering and Technology (IRJET)-Volume: 07
Issue: 04 , Apr 2020.

[7] S.Suriya,Dhivya.S and Balaji.M,Intelligent Character Recognition

SystemUsingConvolutional Neural Network-EAI Endorsed
Transactions-16October2020-DOI:10.4108/eai.16-10-2020.166659-|

Volume 6 | Issue 19 | e5

[8] Lalitha Giridhar Aishwarya Dharani Velmathi Guruviah,A Novel
Approach to OCR using Image Recognition based Classification for

AncientTamilInscriptionsinTemples,https://arxiv.org/abs/1907.04917-
Jul 2019 .

[9] Merline Magrina M & Santhi M,Ancient Tamil Character Recognition

from Epigraphical Inscriptions using Image Processing
Techniques,Page40-48©MATJournals,Volume4|Issue2,2019.DOI:

http://doi.org/10.5281/zenodo.3253775.

[10] A.Naresh Kumar and Dr.G.Geetha,Character Recognition of Ancient
South Indian language with conversion of modern language and

translation, Caribbean Journal of Science-Volume 53, ISSUE 2 (MAY
- AUG), 2019.

[11] K. Durga Devi & P. Uma Maheswari, Digital acquisition and character

extraction from stone inscription images using modified fuzzy entropy-
based adaptive thresholding, © Springer-Verlag GmbH

Germany, part of Springer Nature 2018 images.Nov 2018.

[12] Priya, L., Anand, S. Object recognition and 3D reconstruction of

occluded objects using binocular stereo. Cluster Comput 21, 29–38
(2018). https://doi.org/10.1007/s10586-017-0891-7

[13] Anand, S., & Priya, L. (2020). A Guide for Machine Vision in Quality

Control (1st ed.). Chapman and Hall/CRC.
https://doi.org/10.1201/9781003002826

[14] https://www.tnarch.gov.in/epigraphy/inscriptions-tamil-script

[15] https://accounts.shutterstock.com-Photos of inscription

[16] “Tamil-Brahmi Kalvettu”-Sridhar-Published by Government of Tamil

Nadu Department of Archaeology

https://doi.org/10.1145/3402891
https://www.researchgate.net/publication/341701111
https://www.researchgate.net/publication/341701111
https://arxiv.org/abs/1907.04917-
http://doi.org/10.5281/zenodo.3253775
https://doi.org/10.1007/s10586-017-0891-7
https://www.tnarch.gov.in/epigraphy/inscriptions-tamil-script
https://accounts.shutterstock.com/-----Phoytos
https://accounts.shutterstock.com/-----Phoytos

