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ABSTRACT 

 In the framework of partially ordered metric spaces, a fixed point theorem based on an H-

contractive type mapping of rational type is presented in this study. 
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1. INTRODUCTION 

 The traditional Banach contraction principle [1] has been essential to obtaining a unique 

solution to the results in fixed point theory and approximation theory. Undoubtedly, it is a crucial 

and well-liked technique in many areas of mathematics for resolving current nonlinear analysis 

problems. Since then, the underlying contraction condition has been improved, leading to a wide 

range of generalizations of the Banach contraction principle in metric fixed point theory. Then, 

by weakening its hypotheses on a wide range of spaces, including rectangular metric spaces, 

pseudo-metric spaces, fuzzy metric spaces, quasi-metric spaces, quasi-semi-metric spaces, 

probabilistic metric spaces, D-metric spaces, G-metric spaces, F-metric spaces, and cone metric 

spaces, vigorous research work was obtained and is soon to be used to support the findings that 

have already been made [4-16]. It seems sense that there would be interest in establishing 

practical fixed point findings given the prominence of work on the existence and uniqueness of a 

fixed point as well as common fixed point theorems using monotone mappings on cone metric 

spaces, partly ordered metric spaces, and other spaces. 

                                                           
*
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The aim of this paper is to give a version of H-contraction [3] theorem in partially 

ordered metric spaces for a pair of self-mappings satisfying a contractive condition of rational 

type. These results generalize and extend the results of Harjani et.al.[2] in partially ordered 

metric space. 

2. PRELIMINARIES 

Definition 2.1 [3] 

A mapping Υ: Ξ → Ξ be a rational type contraction, where (Ξ, 𝜚) is a complete metric space, is 

called H-rational type Contraction if there exist positive real numbers ℘,𝜑, 𝜏 such that 0 ≤ ℘ +

𝜑 + 2𝜏 < 1 for all 𝜂, 𝜅 ∈ Ξ, , the following inequality holds, 

𝜚(Υ𝜂, Υ𝜅) ≤ ℘𝜚(𝜂, 𝜅) + 𝜑
𝜚(𝜅, Υ𝜅)[1 + 𝜚(𝜂, Υ𝜂)]

1 + 𝜚(𝜂, 𝜅)
+ 𝜏[𝜚(𝜂, Υ𝜂) + 𝜚(𝜅, Υ𝜅)] 

Definition 2.2 [2] 

Let (Ξ, ≤) be a partially ordered set and Υ: Ξ → Ξ. We say that Υ is a nondecreasing mapping if 

for 𝜂, 𝜅 ∈ Ξ, 𝜂 ≤ 𝜅 ⇒ Υ𝜂 ≤ Υ𝜅. 

3. MAIN RESULTS 

Theorem 3.1  

Let (Ξ, ≤) be a partially ordered set and suppose that there exists a metric 𝜚 in Ξ such that (Ξ, 𝜚) is 

a complete metric space. Let Υ: Ξ → Ξ be a continuous and nondecreasing mapping such that 

 𝜚(Υ𝜂, Υ𝜅) ≤ ℘𝜚(𝜂, 𝜅) + 𝜑
𝜚(𝜅, Υ𝜅)[1 + 𝜚(𝜂, Υ𝜂)]

1 + 𝜚(𝜂, 𝜅)
+ 𝜏[𝜚(𝜂, Υ𝜂) + 𝜚(𝜅, Υ𝜅)] (1) 

For 𝜂, 𝜅 ∈ Ξ, 𝜂 ≥ 𝜅,  with ℘+φ +  2τ < 1. If there exists 𝜂0 ≤ Υ𝜂0, then Υ has a fixed point. 

Proof. 

If Υ𝜂0 = 𝜂0, then the proof is finished. Suppose that 𝜂0 < Υ𝜂0. Since Υ is a nondecreasing mapping, we 

obtain by induction that 

𝜂0 < Υ𝜂0 ≤ Υ
2𝜂0 ≤ ⋯ ≤ Υ

𝛾𝜂0 ≤ Υ
𝛾+1𝜂0 ≤ ⋯ 

Put 𝜂𝛾+1 = Υ𝜂𝛾. If there exists 𝛾 ≥ 1 such that 𝜂𝛾+1 = 𝜂𝛾, then from 𝜂𝛾+1 = Υ𝜂𝛾 = 𝜂𝛾, 𝜂𝛾 is a 

fixed point and the proof is finished. Suppose that 𝜂𝛾+1 ≠ 𝜂𝛾for 𝛾 ≥ 1. 

Then, from equation (1) and as the elements 𝜂𝛾 and 𝜂𝛾−1 are comparable, we get, for 𝛾 ≥ 1, 

𝜚(𝜂𝛾, 𝜂𝛾+1) = 𝜚(Υ𝜂𝛾−1, Υ𝜂𝛾)                                                                                          

 ≤ ℘𝜚(𝜂𝛾−1, 𝜂𝛾) + 𝜑
𝜚(𝜂𝛾, Υ𝜂𝛾)[1 + 𝜚(𝜂𝛾−1 , Υ𝜂𝛾−1)]

1 + 𝜚(𝜂𝛾−1, 𝜂𝛾)
 

+𝜏[𝜚(𝜂𝛾−1 , Υ𝜂𝛾−1) + 𝜚(𝜂𝛾 , Υ𝜂𝛾)]                         

= ℘𝜚(𝜂𝛾−1, 𝜂𝛾) + 𝜑
𝜚(𝜂𝛾, 𝜂𝛾+1)[1 + 𝜚(𝜂𝛾−1 , 𝜂𝛾)]

1 + 𝜚(𝜂𝛾−1 , 𝜂𝛾)
     

+𝜏[𝜚(𝜂𝛾−1 , 𝜂𝛾) + 𝜚(𝜂𝛾, 𝜂𝛾+1)]                               

𝜚(𝜂𝛾, 𝜂𝛾+1) ≤
℘ + 𝜏

[1  𝜑  𝜏]
𝜚(𝜂𝛾−1, 𝜂𝛾) 
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Again, using induction, 

𝜚(𝜂𝛾, 𝜂𝛾+1) ≤ [
℘ + 𝜏

1  𝜑  𝜏
]
𝛾

𝜚(𝜂0, 𝜂1) 

Put  =
℘+ 

1− − 
< 1 

Moreover, by the triangular inequality, we have, for  ≥ 𝛾 

𝜚(𝜂  , 𝜂𝛾) ≤ 𝜚(𝜂  , 𝜂 −1) + 𝜚(𝜂 −1 , 𝜂 −2) + ⋯+ 𝜚(𝜂𝛾+1 , 𝜂𝛾) 

       ≤ (  −1 +  −2 +⋯+ 𝛾)𝜚(𝜂0, 𝜂1) 

≤ (
 𝛾

1   
)𝜚(𝜂0, 𝜂1)                    

and this proves that 𝜚(𝜂  , 𝜂𝛾) → 0 as  , 𝛾 →  . 

So, {𝜂𝛾}  is a Cauchy sequence and, since Ξ is a complete metric space, there exists  

 ∈ Ξ such that    𝛾→ 𝜂𝛾 =  . 

Further the continuity of Υ implies 

Υ = Υ(    
𝛾→ 
𝜂
𝛾
) =    

𝛾→ 
Υ𝜂
𝛾
=     
𝛾→ 
𝜂
𝛾+1
=   

And this proves that   is a fixed point. 

This finishes the proof. 

In what follows, we prove that theorem 3.1 is still valid for Υ, not necessarily continuous, 

assuming the following hypothesis in Ξ: 

 If {𝜂𝛾} is a nondecreasing sequence in Ξ such that 𝜂𝛾 → 𝜂, then 𝜂 =    {𝜂𝛾}  (2) 

Theorem 3.2 

Let (Ξ, ≤) be a partially ordered set and suppose that there exists a metric 𝜚 in Ξ such that (Ξ, 𝜚) 

is a complete metric space. Assume that Ξ satisfies equation (2). Let Υ: Ξ → Ξ be a 

nondecreasing mapping such that 

𝜚(Υ𝜂, Υ𝜅) ≤ ℘𝜚(𝜂, 𝜅) + 𝜑
𝜚(𝜅, Υ𝜅)[1 + 𝜚(𝜂, Υ𝜂)]

1 + 𝜚(𝜂, 𝜅)
+ 𝜏[𝜚(𝜂, Υ𝜂) + 𝜚(𝜅, Υ𝜅)] 

With ℘+ 𝜑 + 2𝜏 < 1. If there exists 𝜂0 ∈ Ξ with 𝜂0 ≤ Υ𝜂0, then Υ has a fixed point. 

Proof. 

Following the proof of Theorem 3.1, we only have to check that Υ =  . 

As {𝜂𝛾} is a nondecreasing sequence in Ξ and 𝜂𝛾 →  , then, by (2),  =    {𝜂𝛾}. Particularly, 

𝜂𝛾 ≤   for all 𝛾 ∈  .  

Since, Υ is a nondecreasing mapping, then Υ𝜂𝛾 ≤ Υ , for all 𝛾 ∈   or, equivalently, 𝜂𝛾+1 ≤ Υ  

for all 𝛾 ∈  . Moreover, as 𝜂0 < 𝜂1 ≤ Υ  and  =    {𝜂𝛾}, we get  ≤ Υ .  

Suppose that  < Υ . Using a similar argument that in proof of Theorem 2 for 𝜂𝛾 ≤ Υ𝜂𝛾, we 

obtain that {Υ𝛾𝜂} is a nondecreasing sequence and     → Υ
𝛾𝜂 = 𝜅 for certain 𝜅 ∈ Ξ. 

Again, using equation (2), we have that 𝜅 =    {Υ𝛾 }. 
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Moreover, from 𝜂0 ≤  , we get 𝜂𝛾 = Υ
𝛾𝜂0 ≤ Υ

𝛾  for 𝛾 ≥ 1 and 𝜂𝛾 < Υ
𝛾  for 𝛾 ≥ 1 because 

𝜂𝛾 ≤  < Υ < Υ
𝛾  for 𝛾 ≥ 1. 

As 𝜂𝛾 and Υ𝛾  for comparable and distinct for 𝛾 ≥ 1, applying the contractive condition we get 

𝜚(𝜂𝛾+1, Υ
𝛾+1 ) = 𝜚 (Υ𝜂𝛾, Υ(Υ

𝛾 ))                                                                        

 ≤ ℘𝜚(𝜂𝛾 , Υ
𝛾 ) + 𝜑

𝜚(Υ𝛾 , Υ𝛾+1 )[1 + 𝜚(𝜂𝛾, Υ𝜂𝛾)]

1 + 𝜚(𝜂𝛾, Υ𝛾 )
 

+𝜏[𝜚(𝜂𝛾, Υ𝜂𝛾) + 𝜚(Υ
𝛾 , Υ𝛾+1 )]               

= ℘𝜚(𝜂𝛾 , Υ
𝛾 ) + 𝜑

𝜚(Υ𝛾 , Υ𝛾+1 )[1 + 𝜚(𝜂𝛾, 𝜂𝛾+1)]

1 + 𝜚(𝜂𝛾 , Υ𝛾 )
 

+𝜏[𝜚(𝜂𝛾, 𝜂𝛾+1) + 𝜚(Υ
𝛾 , Υ𝛾+1 )]               

Making 𝛾 →   in the last inequality, we obtain 

𝜚( , 𝜅) ≤ ℘𝜚( , 𝜅) 

As ℘ < 1 𝜚( , 𝜅) = 0 thus,  = 𝜅 

Particularly,  = 𝜅 =    {Υ𝛾 } and, consequently, Υ ≤   and this is a contradiction. 

Hence, we conclude that  = Υ . 

Now, we present an example where it can be appreciated that hypotheses in Theorem 3.1 do not 

guarantee uniqueness of the fixed point. This example appears in [10]. 

Let Ξ = {(1,0), (0,1)}   2 and consider the usual order 

(𝜂, 𝜅) ≤ ( ,  )  𝜂 ≤ 𝛾, 𝜅 ≤    

Thus, (Ξ, ≤) is a partially ordered set whose different elements are not comparable. 

Besides, (Ξ,  2) is a complete matric space considering,  2, the Euclidean distance. The identity 

map Υ(𝜂, 𝜅) = (𝜂, 𝜅) is trivially continuous and nondecreasing and assumption equation (1) of 

Theorem 3.1 is satisfied since elements in Ξ are only comparable to themselves. Moreover, 

(1,0) ≤ Υ(0,1) and Υ has two fixed points in Ξ. 

In what follows, we give a sufficient condition for the uniqueness of the fixed point in  

Theorem 3.1 and 3.2. This condition appears in [17] and  

 For 𝜂, 𝜅 ∈ Ξ, there exists a lower bound or an upper bound. (3) 

In [10], it is proved that the above-mentioned condition is equivalent, 

 For 𝜂, 𝜅 ∈ Ξ, there exists  ∈ Ξ which is comparable to 𝜂 and 𝜅. (4) 

Theorem 3.3.  

Adding condition (equation (4)) to the hypothesis of Theorem 1 (or Theorem 2) one obtains 

uniqueness of the fixed point of Υ. 

Proof.  

Suppose that there exists  , 𝜅 ∈ Ξ which are fixed point. 

We distinguish two cases. 

Case 1. If 𝜅 and   are comparable and 𝜅 ≠  , then using the contractive condition we have 

𝜚(𝜅,  ) = 𝜚(Υ𝜅, Υ )                                                                                                       
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≤ ℘𝜚(𝜅,  ) + 𝜑
𝜚( , Υ )[1 + 𝜚(𝜅, Υ𝜅)]

1 + 𝜚(𝜅,  )
+ 𝜏[𝜚(𝜅, Υ𝜅) + 𝜚( , Υ )] 

= ℘𝜚(𝜅,  ) + 𝜑
𝜚( ,  )[1 + 𝜚(𝜅, 𝜅)]

1 + 𝜚(𝜅,  )
+ 𝜏[𝜚(𝜅, 𝜅) + 𝜚( ,  )]           

= ℘𝜚(𝜅,  )                                                                                          

As ℘ < 1 is the last inequality, it is a contradiction. Thus, 𝜅 =   

Case 2. If 𝜅 is not comparable to  , then by equation (4) there exists 𝜂 ∈ Ξ comparable to 𝜅 and 

 . 

Monotonicity implies that Υ𝛾𝜂 is comparable to Υ𝛾𝜅 = 𝜅 and Υ𝛾 =   for 𝛾 =  0,1,2,    

If there exists 𝛾0 ≥ 1 such that Υ𝛾 𝜂 = 𝜅 then as 𝜅 is a fixed point, the sequence {Υ𝛾𝜂: 𝛾 ≥ 𝛾0} 

is constant, and, consequently,    𝛾→ Υ
𝛾𝜂 = 𝜅. 

On the other hand, if Υ𝛾𝜂 ≠ 𝜅 for 𝛾 ≥ 1, using the contractive condition, we obtain, for 𝛾 ≥ 2, 

𝜚(Υ 𝜂, 𝜅) = 𝜚(Υ 𝜂, Υ 𝜅)                                                                                                                       

= 𝜚(Υ(Υ𝛾−1𝜂), Υ(Υ𝛾 −1𝜅))                                                                             

≤ ℘𝜚(Υ𝛾−1𝜂, Υ𝛾−1𝜅) + 𝜑
𝜚(Υ𝛾−1𝜅, Υ𝛾𝜅)[1 + 𝜚(Υ𝛾−1𝜂, Υ𝛾𝜂)]

1 + 𝜚(Υ𝛾−1𝜂, Υ𝛾−1𝜅)
            

+𝜏[𝜚(Υ𝛾−1𝜂, Υ𝛾𝜂) + 𝜚(Υ𝛾−1𝜅, Υ𝛾𝜅)]                                                  

≤ ℘𝜚(Υ𝛾−1𝜂, 𝜅) + 𝜑
𝜚(𝜅, 𝜅)[1 + 𝜚(Υ𝛾−1𝜂, Υ𝛾𝜂)]

1 + 𝜚(Υ𝛾−1𝜂, 𝜅)
                                   

+𝜏[𝜚(Υ𝛾−1𝜂, Υ𝛾𝜂) + 𝜚(𝜅, 𝜅)]                                                               

𝜚(Υ 𝜂, 𝜅) ≤
℘ + 𝜏

1  𝜏
(Υ𝛾−1𝜂, 𝜅) 

Using induction, 

𝜚(Υ 𝜂, 𝜅) ≤ (
℘ + 𝜏

1  𝜏
)
𝛾

(Υ𝛾−1𝜂, 𝜅)                𝛾 ≥ 2 

And as 
℘+ 

1− 
< 1, the last inequality gives us     → Υ

𝛾𝜂 = 𝜅. 

Hence, we conclude that     → Υ
𝛾𝜂 = 𝜅. 

Using a similar argument, we can prove that     → Υ
𝛾𝜂 =   

Now, the uniqueness of the limit gives us 𝜅 =  . 

This finishes the proof. 

Remark 3.4. It is easily proved that the space  [0,1] = {𝜂: [0,1] →  ,           } with the 

partial order given by  

𝜂 ≤ 𝜅  𝜂( ) ≤ 𝜅( ),           ∈ [0,1] 

And the metric given by 

𝜚(𝜂, 𝜅) =    {|𝜂( )  𝜅( )|:  ∈ [0,1]} 

Satisfies condition (equation (2)). Moreover, as for 𝜂, 𝜅 ∈  [0,1], the function    (𝜂, 𝜅)( ) =

   {𝜂( ), 𝜅( )} is continuous, ( [0,1], ≤) satisfies also condition (equation (4)). 
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